
1562 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 67, NO. 5, MAY 2020

Low-Latency Reconfigurable Entropy Digital
True Random Number Generator With

Bias Detection and Correction
Leonardo Bosco Carreira, Student Member, IEEE, Paige Danielson, Student Member, IEEE,

Arya A. Rahimi, Student Member, IEEE, Maximiliam Luppe, Member, IEEE,

and Subhanshu Gupta , Senior Member, IEEE

Abstract— Digital true-random number generators (TRNG)
are increasingly employed to generate random channels in low-
power resource-constrained IoT devices at the network edge.
However, their susceptibility to process variations, or even
intrusion attacks, degrade the generated entropy requiring an
on-the-fly processor for detection of bias variations and correc-
tion. This work proposes a two-step search process to implement
an optimized search that minimizes the latency (number of clock-
cycles) for bias correction implemented on a FPGA platform. The
first step implements a subset of NIST tests for entropy validation
and an additional autocorrelator is used for entropy validation
and bias detection on-the-fly in the second step. Measured results
with the proposed algorithm implemented on FPGA shows signif-
icant improvement in the probability of bias correction with low
number of trials. The measured power consumption of the TRNG
and the bias correction is 10.22mW and 10.96mW respectively
at 1.25 V with 18 kHz throughput for three random channels.

Index Terms— Digital true-random number generator, recon-
figurable, bias detection and correction, low-latency.

I. INTRODUCTION

THE dramatic growth of Internet-of-Things (IoT) [1],
[2] based applications have raised new concerns about

robust security for resource-constrained devices at the net-
work edge. These devices demand on-sensor decision making,
autonomous bias detection and key regeneration without the
overhead of cloud-driven secure exchange [3].

Although various threats challenge the security of IoT,
the root of trust starts from the hardware security [2], [4].
Fig. 1 shows a typical edge-device (for example, an IoT
gateway or a router at the network edge) that has a random-
number generator (RNG) attached to its modules through high-
speed interconnect. High entropy RNGs mitigate the threat of

Manuscript received April 15, 2019; revised October 3, 2019 and
November 26, 2019; accepted December 10, 2019. Date of publication Janu-
ary 8, 2020; date of current version May 1, 2020. This work was supported in
part by the Washington State University (WSU) Grand Challenges Research
Grant Award. The work of S. Gupta was supported by the Cisco Faculty
Research Award #935126. This article was recommended by Associate Editor
R. Azarderakhsh. (Corresponding author: Subhanshu Gupta.)

L. B. Carreira, P. Danielson, A. A. Rahimi, and S. Gupta are with the
School of EECS, Washington State University, Pullman, WA 99163 USA
(e-mail: sgupta@eecs.wsu.edu).

M. Luppe is with the Department of Electrical Engineering, University of
São Paulo, São Paulo 01000, Brazil.

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSI.2019.2960694

Fig. 1. Conventional microcontroller die with hardware random number
generator (Hardware RNG).

revealing sensitive information from a system. For this reason,
different sources of randomness have been used in the past
including cryptographically-secured pseudo random number
generators (PRNG) [3], analog or digital true-random number
generators (TRNG) [5]–[7]. The periodicity of PRNGs with a
fixed pattern results in spurs and requires long bit sequence
generators that can constrain the system power budget. TRNGs
in contrast, harvest entropy from physical sources without any
periodicity. Furthermore, even if high quality PRNGs may be
built, these PRNGs still need to be seeded using TRNGs [8].

To date, various combinations of analog and digital com-
ponents have been proposed [8]–[13] as sources of random
jitter. From a practical standpoint, it is highly desirable to
construct the TRNGs using digital design techniques through
cheap bulk-silicon processes. Jitter and metastability are two
main sources of randomness in digital TRNGs with ring-
oscillator (RO) based TRNG designs gaining popularity owing
to their simplicity and portability across technology nodes. The
operation mechanism of the RO-based digital TRNG can be
classified into free-running [8], [11], [12] and staged-running
mechanism [14] with emphasis on higher entropy outputs.

While simple to design, ROs are susceptible to PVT vari-
ations (fabrication process, supply voltages and operating
temperature). If no compensation is made to combat these
issues, it can result in highly variable and unreliable entropy
generation between different fabricated parts. This unreliabil-
ity results in a statistical imbalance in the numbers of ‘1’s and
‘0’s termed as bias imbalance. The device characteristics and
the varying PVT environment makes it harder to predict this
bias before implementation. Efforts to increase the entropy

1549-8328 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Washington State University. Downloaded on June 06,2020 at 16:48:23 UTC from IEEE Xplore. Restrictions apply.

CARREIRA et al.: LOW-LATENCY RECONFIGURABLE ENTROPY DIGITAL TRUE RANDOM NUMBER GENERATOR 1563

of RO-based TRNGs alleviating issues from bias variation
have included combining outputs of several parallel ROs [8],
dynamic duty-cycle tuning [15] and more recently, collapsible
even-stage RO with automatic tuning loop [16]. In practice,
the raw random bitstream from the entropy generator does not
bear satisfactory statistical properties, therefore, the auxiliary
post-processing part performs the tasks of quality improve-
ment. However, the dependence on post-processing brings in
throughput loss and potential security weakness [17].

This work proposes an embedded host-processor algorithm
(HP) that detects and corrects bias variations in the digital
TRNG on-the-fly achieving up to 98% success in recovery.
This is achieved by combining two methods creating a novel
recovery algorithm implemented on hardware: A learning-
based method using a subtest of NIST tests [18] to store
the RO paths with higher entropy and the AIS-20/31 [19]
autocorrelation test to quickly detect output bias and select
the stored paths until the output is unbiased. Both combined
were able to greatly reduce the recovery latency. The main
contributions of this work are as follows:

a. We propose two metrics to select a subset from NIST
tests for lightweight hardware implementation. The
selected subset is uncorrelated and sensitive to output
bias. (Section III)

b. We introduce a learning-based method based on hard-
ware implementation of NIST tests that greatly reduces
the number of cycles needed to detect and correct output
bias compared to the state-of-the-art. (Section IV)

c. We demonstrate a complete hardware implementation
with a dedicated host processor for bias detection and
correction based on lightweight NIST/AIS test imple-
mentation (Section V).

d. Finally, the randomness property of the proposed TRNG
is validated using all NIST and AIS-20/31 statistical
randomness tests. (Section VI)

The proposed algorithm is divided in two different stages
called the learning mode and the running mode. During the
learning mode, the configuration bits that generates higher
entropy outputs are saved in FPGA memory. This selection
is made based on a subset of NIST tests implemented on
the FGPA and applied to the TRNG output generated by
each configuration bits’ combination. The learning mode is
completed with storage configurations learned in a controlled
environment. The system then executes the running mode
where it uses an autocorrelator to identify output bias on-
the-fly. When bias variation is detected, system recovery is
initiated driven by the guided search that uses the configuration
settings stored in the memory during learning mode to produce
unbiased outputs again. The TRNG is implemented on a
development kit equipped with a Cyclone IV FPGA with the
HP integrated on a Cyclone V FPGA.

Section II briefly discusses the RO-based digital TRNG.
Section III defines the randomness tests for entropy determi-
nation on hardware followed by the proposed algorithm in
Section IV. Section V presents the hardware implementation
and section VI presents the measured results under bias vari-
ations. Lastly, Section VII concludes this paper with potential
research areas in future.

Fig. 2. RO proposed by Yang et al. [16].

II. PRIOR ART

A. RO-Based Entropy Generator

The manifestation of random jitter in digital RNGs
was discussed earlier in the seminal work by Abidi [20].
Fluctuations in zero-crossing instants of the inverter output
ramps were modeled as random jitter and then linked to
phase noise. Yang et al. [16] extended the model in [20]
using collapse time of a dual-edge inverter-based RO
(shown in Fig. 2) as a randomness source. The same signal
(START) is injected into the ring by two NAND gates.
However, the independent random noise effects associated
with different rising and falling times from the propagation
delay of the two injected edges cause the oscillation to stop
after a finite number of cycles due to the collapse of the
falling and rising edge. A counter counts the number of
pulses before this collapse occurs. The output of this counter
is then stored as the random number output. The entropy of
this TRNG was monitored using an off-chip host-processor
unit that analyses the number of cycles taken to collapse
multiple times and alters the configuration of the RO when
any shift in the mean of the collapse times is detected.
To ensure high entropy in presence of PVT variations, each
stage of the RO was replaced by eight selectable inverters
controlled by three input multiplexers, the selection bits of
each stage is called configuration bits. This selection makes
it possible to rearrange the oscillation paths accounting for
any bias variations. Thus, for S inverter stages in the RO, 8S

possible configurations are created with each configuration
exhibiting a slightly different oscillation frequency. The
above architecture proved that the digital RO based TRNG
can achieve high entropies while generating multiple random
channels, being each counter output considered as a channel.
However, to correct the bias variations the TRNG must
search for a new configuration among all 8S until the output
became unbiased what requires multiple trials, this searching
process is named in this work as random search. Every
time that the TRNG in [16] detected a biased output and
must change its configuration bits it took anywhere between
12.5 configurations (considering 8% success rate in typical
condition) to 315 configurations (worst-case) to correct for the
bias variations. Each configuration further requires anywhere
between 500 to 5000 trials (collapses) as the reported lower
and upper bounds to calculate the mean of cycles taken
to collapse used as correction metric. Thus, the total trials
required can vary between 6250 (= 12.5 × 500) in the usual
case to 1,575,000 (= 315 × 5000) in the worst case. In [16],

Authorized licensed use limited to: Washington State University. Downloaded on June 06,2020 at 16:48:23 UTC from IEEE Xplore. Restrictions apply.

1564 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 67, NO. 5, MAY 2020

the random search approach becomes highly computationally
intensive. The bias detection and correction methodology were
further implemented off-chip only. This work overcame the
drawback in [16] by reducing the sample space of the number
of configurations to be searched to a subset of pretested
configurations which have higher probability of success.

B. Validation of Random Number Generators

Several sophisticated tests have been proposed [18],
[19], [21] and metrics developed to analyze and validate
various aspects of randomness. The National Institute of
Standards and Technologies (NIST) RNG test suite [18] and
the AIS-20/31 [19] test suite provided by the German Federal
Office for Information in Security’s (BSI) are the most popular
used to RNG validation, both are an extension of the Federal
Information Processing Standards (FIPS) tests [21]. However,
hardware implementation of these tests is too computationally
intensive. Over the years lightweight hardware implementa-
tions have been studied. Deciding which test to implement
among all existing is critical to reduce the hardware com-
plexity. Moreover, implementing all the tests is not viable
due to increasingly area and power constraint designs [22].
The most common selection criteria is the input data size
required to perform each test [22], [24] because the size of
the hardware needed to compute them depends on the required
data sample size. The tests also must be simplified to reduce
the computation time. In [22], [23], and [24], a similar method
with relaxed computational effort was proposed by reducing
each test to simple logic modules. However, no closed-loop
bias correction was proposed. As proposed in Section III,
this work will extend these prior studies by selecting a bias
sensitive and uncorrelated subset of the tests that do not add
additional power and area overhead. The selection of tests
for bias detection is further inspired by [24] where it is
shown that the first-time lag in the AIS-20/31 autocorrelation
tests is a very sensitive parameter that can be used for bias
detection. The proposed method goes beyond closing the
loop by automatically controlling the entropy source for bias
correction after bias detection.

III. TESTS DEFINITION FOR ENTROPY DETERMINATION

This section defines the various tests used in entropy deter-
mination in the proposed algorithm described in Section IV.
It is important to note that our proposed approach is com-
pletely digital and does not have any analog components.
We use the NIST test suite [18] with an additional autocorre-
lator for entropy validation. Though an exhaustive validation
using all the 16 tests in the NIST test suited can be conducted
offline, we use a subset of NIST tests in this work to save
hardware resources without loss in accuracy. We also confirm
the entropy generation results by reading the random bits off-
line and conducting all NIST tests for validation as described
in Section V.

In order to determine the most suitable subset of NIST tests,
we used the following selection criteria: i) effort required for
hardware computation, ii) sensitivity to bias variations, and iii)
degree of correlation. Tests with lower hardware effort (i.e. the

Fig. 3. Sum of Squared Error (SSD) of NIST test results of biased and
unbiased sequences. The Non-Overlapping, Random Excursion, and Random
Excursion Variant tests were not chosen due to large computational overhead.

Fig. 4. Correlation matrix of NIST tests results plotted for a random input
sequence. ∗(black) High degree of correlation. +(yellow) Low degree of
correlation.

smaller input size and the number of gates requirements) had
priority over those that demand higher effort. The number of
bits necessary to perform each test were based on the NIST
test suite documentation [18]. The sensitivity of these tests
was analyzed using the sum-of-squared-error (SSD) of NIST
tests results for biased and unbiased sequences. Following this,
each of the NIST tests are analyzed pairwise, and their degree
of correlation is observed to exclude redundant pairs. The
selection process is described in Fig. 3 and Fig. 4 respectively.

Fig. 3 analyzes the sensitivity of each test to input bias
after determining the number of bits based on NIST test
suite [18]. A random input vector of 128 × 106 bits created
using MATLAB RNG was split in 128 unbiased sequences of
106 bits, and used as an input for the NIST tests suite. Each
test returned 128 unbiased outputs (OUTunbiased). Later, each
sequence with 106 bits were purposely biased injecting ‘1’s
at random positions at the limit where the first test starts to
fail. Using the obtained sequences as new inputs to the test
suite, 128 new results (OUTbiased) were obtained for each test.
The computed SSD between the biased and the unbiased test
outputs is shown in Fig. 3.

Fig. 3 shows that the Longest Run of Ones (Long. Run)
and the DFT tests (DFT) are not as sensitive to bias change as

Authorized licensed use limited to: Washington State University. Downloaded on June 06,2020 at 16:48:23 UTC from IEEE Xplore. Restrictions apply.

CARREIRA et al.: LOW-LATENCY RECONFIGURABLE ENTROPY DIGITAL TRUE RANDOM NUMBER GENERATOR 1565

Frequency (Freq), Frequency within Block (Freq. Blk), Runs
(Runs), Cumulative Sum Forward (Cum. For) and Cumulative
Sum Reverse (Cum. Rev). The unbiased results were then
used to calculate the correlation between each test as shown
in the correlation matrix in Fig. 4. It can be observed that
the Runs test exhibits a very low degree of correlation with
all other tests as well as has low computational complexity.
This analysis resulted in three pairs of tests that meet the
desired expectations: 1) Runs and Frequency Monobit, 2) Runs
and Cumulative Sum (Forward or Reverse), and 3) Runs and
Frequency within a Block. The Frequency within a Block test
implementation consumes 40% more area and power than the
Frequency Monobit test [22]. The Cumulative Sum (Forward
or Reverse) and the Frequency Monobit tests in pairs 1 and 2
calculate the same statistical variable (partial sum) which
makes them highly correlated as shown in Fig. 3. As either of
the pairs 1 and 2 could be chosen, the Runs and Frequency
Monobit test in pair 1 has been selected because both are
requirements of other important standard FIPS 140-2 [21] and
AIS-20/31 [19].

These subtests including the Frequency Monobit and the
Runs tests guarantee the higher channel entropy configura-
tions to be selected and stored during the training process.
We describe these tests as follows:

1. Frequency Monobit test: This test is the preliminary test
of randomness and all other tests depends on passing of this
test [18]. This test calculates the ratio of zeros and ones in
the sequence under analysis and compares with the desired
scenario where the number of zeros and ones should be equal.
The input sequence bits, εi, are summed following the function
below [18]:

Su =
u∑

i=1

2 × εi − 1 (1)

where u is the number of bits of the sequence under analysis.
We further determine the range of acceptable proportions using
the confidence interval (α = 0.01) as:

p′ ± 3

√
p′ (1 − p′)

m
(2)

where, p′ = 1 − α and m is the number of sequences with
u bits. For m = 128, greater than the NIST recommendation
for α = 0.01 [18], this requires 96% of sequences to have
pvalue > 0.01. In other words, 123 out of 128 sequences must
have their pvalue > 0.01. In our implementation, u is selected
to be 256, to have a larger margin from the minimum recom-
mended value of 100 for this test [18]. The generated Su is
converted into a pvalue using the complementary error function
(erfc) [25] as shown in (3) by the following equation [19]:

P − value = er f c(
|Su|√
2 × u

) (3)

The hardware implementation of erfcfunction, however,
is computationally intensive. To overcome this problem,
(3) was solved for Su. Considering NIST recommendation of
P − value ≥ 0.01, Sn was found to be:

−41 < Su < 41

This simplification reduces the hardware implementation of
the Frequency Monobit test to a simple digital circuitry
comprising of an accumulator and a binary comparator as
described in Section V.

2. Runs test: This test is to quantify the number of uninter-
rupted equal bits sequences. While the Frequency Monobit
test determines the ratio of zeros and ones, the Runs test
determine if the sequence is oscillating at a slower or faster
rate. Both these tests give independent answers and assess
completely different aspects of randomness and hence are a
good complement. Other combinations, such as the cusum test
and the Frequency Monobit test, result in P-value that are
likely to be correlated, as shown in Fig. 4. The test is divided in
two stages. Given the sequence under test ε1:u , with length u,
it calculates the number of ones in the sequence, k, as follows:

k =
u∑

j=1

εj (4)

Using the value of k, the proportion of ones, π, in the sequence
is then calculated as:

π = k

u
(5)

This leads to the calculation of the number of observed Runs,
vobs, in the analyzed sequence as follows:

vobs =
∑u−1

j=1
r (j) + 1 (6)

where r (j) = 0 if εj = εj+1, and r (j) = 1 otherwise. Using
(34)-(45), the computed P-value is defined as [18]:

P − value = er f c(
|vobs − 2uπ (1 − π)|

2
√

2uπ (1 − π)
) (7)

Similar to the Frequency Monobit test, the hardware imple-
mentation of erfc is computationally intensive. For the
sequence to be considered satisfactory, the above equation
is solved for two variables, k and vobs targeting P-value ≥
0.01 [18]:

er f c

(∣∣vobs − 2k
(
1 − k

u

)∣∣
2
√

2uk
u

(
1 − k

u

)

)
≥ 0.01 (8)

As we are analyzing 128 sequences of 256 bits each, u is fixed
at 256. Using a symbolic solver, k was varied for all possible
sums of ‘1’s in a 256 bits sequence, i.e. from 0 to 256. Because
equation (8) is a quadratic equation, there are two solutions
for each k. Solving this, we get a bounded k ×2 matrix. Each
vobs will be stored between lower and upper bounds labeled
as vl(k) and vh(k), where k lies between 0 to 256, this process
is later depicted in Fig. 6(a). As described in section IV, this
solution reduces the hardware computational time requiring
only a comparator to check if vobs is in the desired range
for the calculated number of ones (k) in the sequence under
analysis.

3. Max average collapse check: Large PVT variations can
result in wrong estimate of collapse time as the RO may not
collapse, and keeps oscillating. This check guarantees that the
HP doesn’t store a configuration that was oscillating close to

Authorized licensed use limited to: Washington State University. Downloaded on June 06,2020 at 16:48:23 UTC from IEEE Xplore. Restrictions apply.

1566 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 67, NO. 5, MAY 2020

Fig. 5. Typical correlation coefficient distribution for a 512-bit random
sequence [23].

the maximum allowed. As described in section V, the temper-
ature increases after prolong usage can result in the number
of cycles taken to collapse to increase by 25%. The mean
and standard deviation of the stored configurations thus needs
to accommodate this temperature increase. The Max Average
Collapse Check thus ensures that recorded configurations with
collapse times close to the maximum are not recorded.

4. Correlation coefficient: We calculate the auto-correlation
coefficient as a measure of independence between two random
variables. The first-time lag auto-correlation coefficient is
defined by [19] and implemented in [24]:

C1 =
u−i∑

k=1

εk ⊕ εk+1 (9)

where aεk and εk+1 are the bits of the tested sequence. The
upper and lower limits of the correlation coefficient can be
fixed empirically from the mean and standard deviation of
the probability density function (pdf). Considering a rejection
of 1%, we can determine the upper and lower limits to
accept or decline the sequence under analysis based on this sta-
tistical feature. As shown in Fig. 5, proven random sequences
were generated in MATLAB and the rejection limits were
calculated for 512-bit sequences on a total of 10 × 106 bits.
The calculated correlation coefficient yields the same pdf and
is also useful for bias detection in two different topologies of
TRNG [24].

5. Power supply variations and its effect on entropy
generation: We analyze the effect of power-supply variations
to demonstrate change in bias followed by detection and
correction. As the variance (σ 2) is related to the supply of
a RO, any changes in the supply voltage induces a change in
the variance as described in [20] and re-stated below:

σ 2 = 4kT γ tdN

I (VDD − Vt)
+ kT C

I 2 (10)

Here, tdN is the window that noise is integrated during out-
put transition, I is the charging/discharging current for each
inverter stage, VDD is the supply voltage, Vt is the threshold
voltage, γ is the technology-dependent noise coefficient, C is
the load capacitance of the inverter, and k is the Boltzmann
constant. Supply variation results in change in variance of the
TRNG that requires a closed-loop feedback to ensure high

TABLE I

HARDWARE TESTS FOR BIAS VARIATION DETECTION

degree of randomness in the entropy generation. The next
section describes the proposed algorithm for low-latency (or
few clock cycles) bias detection and correction.

IV. PROPOSED RECONFIGURABLE ENTROPY GENERATOR

WITH BIAS DETECTION AND CORRECTION ALGORITHM

This section describes the proposed algorithm for the recon-
figurable entropy generator with low-latency bias detection
and correction. The proposed algorithm is separated into
two stages both implemented in hardware. The first-stage
implements a learning mode that identifies and stores the
best ranked configurations exhibiting the highest entropy. The
classification is based on a pipeline hardware implementation
of a subset of NIST’s randomness tests [18]. The data analysis
is separated in two phases. The first phase executes the tests for
every sequence of 256 collapses. The second phase process the
results of all the 128 sequences. The three least significative
bits (LSBs) of the collapses are analysed in parallel and must
be approved for the configuration under test to be stored. The
second-stage called as running mode estimates the entropy on-
the-fly and uses the stored configurations to re-configure the
RO when bias variations are detected.

Table I illustrates the tests executed in the learning mode
comprising of the Frequency Monobit test, Runs test and Max
Average Collapse Check as previously defined in Section III.
It is important to note that the learning mode is executed only
during initial configuration of the FPGA to identify and store
the best ranked configurations. This mode is performed under
a controlled environment to ensure that the output generated
by each configuration bits tested reflects exactly the quality
of the RO oscillation paths under tests, avoiding any possible
bias caused by external sources. The learning and the running
mode algorithm are described in detail next.

A. Learning Mode

To speed the learning process, the erfc calculations
in (3) and (8) for Frequency Monobit and Runs tests, respec-
tively are computed in MATLAB. The desired values of
observed runs (vobs) and partial sum (Su) for the given
sequence length (u) and number of ones in the sequence
under test (k) are computed and thus stored in two mapped
memories on the FPGA labeled as LUT1 (Fig. 6(a)) and LUT2
(Fig. 6(b)). LUT2 stores the minimum and maximum partial
sum acceptable to guarantee P-value > 0.01 in Frequency
Monobit test for a sequence of 256 bits. LUT1 stores the
minimum and maximum observed runs acceptable for each
case with number of ones (k) in the 256-bit sequence that
guarantee P-value > 0.01 in Runs test.

Authorized licensed use limited to: Washington State University. Downloaded on June 06,2020 at 16:48:23 UTC from IEEE Xplore. Restrictions apply.

CARREIRA et al.: LOW-LATENCY RECONFIGURABLE ENTROPY DIGITAL TRUE RANDOM NUMBER GENERATOR 1567

Fig. 6. Implementation steps: (a) compute equation (7) and initialize LUT1;
(b) compute equation (2) for P-value>0.01 to initialize LUT2.

Fig. 7. FPGA initialization at power up followed by loop sequence for
configuration testing.

Power-ON FPGA: The FPGA is configured to self-load
using the instruction set stored in the memory. The variables
are then initialized and the system now starts to execute the
first of the 128 sequences to test this specific configuration as
part of the Loop Sequence as shown in Fig. 7.

1. Loop sequence: The HP acquires 32768 collapses
from the TRNG output and analyzes this data as

Fig. 8. Loop bits conduct the Frequency Monobit, Runs, and Maximum
Average Check test.

128 sequences of 256 following NIST specifications
of number of sequences and sequence length for the
Frequency Monobit and the Runs test. Each test result
is updated after every collapse; thus, the system does
not need to store the 32,768 collapses to process the
data This stage checks if we have already analyzed all
128 sequences and redirect the process to learn stage for
configuration storage. If all the sequences have not been
analyzed, the loop bits procedure is initiated to execute
the tests for these bits.

2. Loop bits: The falling edge of the START signal trig-
gers the collection of 12-bit TRNG output. In this
procedure shown in Fig. 8, we conduct the Frequency
Monobit, the runs and the average check test, depicted
in Fig. 9 and described next. Note that all tests are
performed in parallel for three LSBs (index n is set
to 0 to 2). The test process of the Frequency Monobit,
Runs, and Max average collapse check tests is described
next:

i. Frequency Monobit Test: During Frequency Mono-
bit test, the partial sum Su is first calculated
for each LSB under analysis and compared with
the desired range previously determined for the
sequence length u in Section III. Fig. 9(a)
shows the implementation procedure for the Fre-
quency Monobit test. Note that after 256 col-
lapses, pass_frequency variable indicates whether
the sequence passed (true) or not (false) the Fre-
quency Monobit test.

ii. Runs Test: This test accumulates the number of
ones (k) in the sequence under analysis (εi) and
calculates the number of observed runs (vobs)
checking if it satisfies the minimum and maximum
value constraints of the P-value comparing to the
results previously stored on LUT1. The imple-
mentation of the Runs test is shown in Fig. 9(b).
As in Frequency Monobit test, after 256 collapses,
pass_runs variable indicates whether the block
passed or not the Runs test.

iii. Maximum Average Collapse Check: This test
accumulates the number of cycles taken for

Authorized licensed use limited to: Washington State University. Downloaded on June 06,2020 at 16:48:23 UTC from IEEE Xplore. Restrictions apply.

1568 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 67, NO. 5, MAY 2020

Fig. 9. Hardware implementation of (a) NIST Frequency Monobit test,
(b) NIST Runs test, and (c) Maximum Average Check test.

32768 collapses and divide the outcome by
32768 to obtain the average collapse of the con-
figuration under test, storing it in the avg variable.
Increasing the number of cycles taken to collapse
also increases the number of random channels.
However, this approach can result in a bad configu-
ration to be stored if the collapse average of a con-
figuration sequence is very close to the maximum
value. This is because the RO may not collapse
when this collapse average is close to the maximum
and keep oscillating. So, we must guarantee that
learned configurations do not perform so close to
the lock condition. The implementation is shown

Fig. 10. (a) Check NIST stage, and (b) storage stage.

in Fig. 9(c) where pass_avg variable indicates if
avg is below the maximum allowed value avgmax .

3. Check NIST: For each LSB (channel), if both variables
pass_runs and pass_freq are true, a seq_pass variable
is incremented, accumulating the number of sequences
approved in the implemented NIST tests. After that,
the variables are reinitialized, and a new sequence is
evaluated. These steps are repeated every 128 sequences
of 256 collapses. The channel under test is considered
as approved in the NIST subtests if it has 123 (for
128 sequences) or more sequences approved on both
Frequency Monobit and Runs tests. Each one of the
3 LSBs (channels) flags an independent flag NISTpass[n]
if approved. The implementation procedure is shown
in Fig. 10(a).

4. Storage stage: After the analysis of the 128 sequences
of the configuration under test, the storage stage checks
if all the three LSBs have been approved in NIST i.e.
the variable NISTpass is true for all the three LSBs.

Authorized licensed use limited to: Washington State University. Downloaded on June 06,2020 at 16:48:23 UTC from IEEE Xplore. Restrictions apply.

CARREIRA et al.: LOW-LATENCY RECONFIGURABLE ENTROPY DIGITAL TRUE RANDOM NUMBER GENERATOR 1569

Fig. 11. Running mode algorithm.

If the calculated average of collapses is smaller than
the maximum predefined then the HP will store the
configuration in an internal RAM. The memory address
pointer is then incremented, and the LFSR is updated for
testing the next best configuration and the whole process
is repeated until the desired number of stored configura-
tions has been realized. The implementation procedure
is shown in Fig. 10(b). Future work will optimize the
configuration storage in an internal or external E2PROM
to avoid losing configurations if there are shutdown
problems.

B. Running Mode

This mode represents the normal operation of the system
and detects any bias variations by calculating the autocor-
relation coefficient determined using 513 bits. Because the
three LSBs are concatenated as a single random output the
number of collapses needed to calculate a single autocorre-
lation coefficient are 171 (= 513/3). Though a single corre-
lation coefficient can be used to predict any bias variations,
we compare three consecutive autocorrelation coefficients as
shown in Fig. 11. A single autocorrelation coefficient being
a statistical variable will eventually fall outside the desired
range; hence, the selection of three consecutive correlation
coefficients ensures that false negatives are avoided. The
calculation of three correlation coefficients however results in
slightly higher cost requiring 513 (=171 × 3) collapses in
total for detection of bias variations and correction. The RO
configuration is changed, and an alarm is sent (using the stored
configuration) if the algorithm detects that none of the last
three correlation coefficients are within the desired range. The
random numbers generated are available at the output if and
only if this test was approved, complying with the total failure
test requirements of AIS-20/31 [19]. This test also fulfils the
requirements of the NIST health test considered as a require-
ment for NIST compliance. Because the correlation coefficient
checks the condition of the entropy source at the start up and
continuously thereafter during the device operation, it detects
any hardware malfunction and thus complies with the NIST
requirements. Compared to TRNG in [16], the proposed tests
are TRNG-architecture independent with the learning and the
running modes executing different tests to achieve faster bias
detection with higher probabilities of correction.

V. HP HARDWARE IMPLEMENTATION

Targeting fast data analysis and reusable HP platform,
the proposed circuit implementation was implemented on two
embedded boards – an Altera Cyclone V DE-10 FPGA imple-
menting the HP and an Altera Cyclone IV FPGA implement-
ing the TRNG. The choice of two separate boards not only
provides maximum flexibility for speed and memory capacity
but also allows capturing the effect of bias variations. Future
research work will replace the TRNG with a faster custom
integrated circuit design. The VHSIC Hardware Description
Language (VHDL) was used to program the circuits. The
DE10-Nano board contains a 50 MHz oscillator, hardware
processor system with a dual ARM, and 1 GB DDR3 SRAM
at 8 PSI. The hardware implementation of the learning mode
and the running modes in the HP is shown in Fig. 12(a) and
described in detail further.

The RO is implemented with two chains of 16 inverter
stages, followed by a 12-bits counter to calculate the number
of oscillations before the collapse and a 12-bits register used
to hold the counter output. The implementation of the HP
follows from the algorithmic design in Section IV and is
divided into two modules called as learning and running
respectively. These modules share common blocks such as the
clock generator, bit and sequence counters, and the memory.
The clock generator uses the main system clock, START,
to generate four different clocks with 12.5% duty cycle labeled
as Phi[3..0] as shown in Fig. 12(b). These clocks are used for
pipelining the internal registers ensuring any timing conflicts
are resolved. Two counters named as cnt_bit and cnt_seq
track the number of bits and sequences needed to execute the
Frequency Monobit and the Runs test. The cnt_bit_cout is
set to one when 256 collapses have been analyzed. Similarly,
processing 128 sequences sets the cnt_seq_cout to one.

A hardware processing system (HPS) is used to commu-
nicate with the ARM on the FPGA to acquire data in real-
time as shown in Fig. 12(c). Although not needed for actual
operation of the proposed algorithm, this data collection serves
to validate the algorithm by generating some of the results in
this work. The power and area for the HPS are not included
in the final metrics.

A. Learning Mode Module Implementation

The implementation of learning mode can be divided into
6 main modules: i) Frequency Monobit test, ii) Runs test,
iii) Maximum Average Check, iv) bit and sequence counter,
v) count sequences approved, and vi) storage config decision.
Note that the Frequency Monobit and Runs tests operate con-
currently until the entire 256-bit sequence has been analyzed
for each of the 3 LSBs.

i. The frequency test module increments (or decrements)
the output by one if a one (or zero) is detected. The final
output is then compared against the LUT2 stored range
(sl, sh). The pass_freq flag is set to one if the output
falls within this range. This process is repeated for each
of the three LSBs.

ii. The runs test module is implemented using a D Flip-
Flop and a comparator that compares the current TRNG

Authorized licensed use limited to: Washington State University. Downloaded on June 06,2020 at 16:48:23 UTC from IEEE Xplore. Restrictions apply.

1570 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 67, NO. 5, MAY 2020

Fig. 12. (Counter-clockwise) (a) Proposed system architecture of the TRNG with the HP implemented on the FPGA, (b) timing diagram, and (c) data
collection on a remote computer from the hardware processor system (HPS) on the Altera FPGA.

output with the previous cycle. A counter is incremented
when the comparator bit is set high. A second counter
is used to count the number of ones (k) in the sequence.
The first counter output is compared with the range of
values in LUT1 for the given k. The pass_runs flag is
set to one if the counter output falls within this range.
This process is also repeated for each of the three LSBs.
The internal variables for both the tests are reset after the
whole sequence has been analyzed. The count sequences
approved block then reads this data to update the number
of sequences and number of random channels passing
the Frequency Monobit and the Runs test.

iii. Maximum average collapse check uses an accumulator
that sums the collapse times of the 12-bit output from
the TRNG. The sum times are stored in an accumulator
and divided by 32,768 to obtain the average of collapses
by shifting right 16 bits. The obtained value is then com-
pared with the maximum allowed cycles as determined
empirically in Section VI. If the average is found to be
lower than the maximum, pass_avg is set to one.

iv. The bit and sequence counters module is used for both
the learning and running modes. The first counter in
this block counts the number of bits analyzed when
the system is processing a sequence setting cnt_bit_cout
to one each time 256 bits (one entire sequence) are
analyzed. At the end of each sequence, the sequence

counter is incremented by one. When all 128 sequences
are analyzed, the sequence counter sets cnt_seq_cout
flag to one.

v. The count sequences approved is implemented using a
single counter for each channel that is incremented by
one every time pass_freq and pass_runs are both one.
Each one of the 3 LSB (n[2..0]) are connected to a
separate counter. The counter output is compared to a
constant (=123). NISTpassing[n] flag is set to one if the
comparison is found positive.

vi. Lastly, the storage config decision module implements a
logical AND that outputs a high level if both the inputs
pass_avg and NISTpassing[n..0] are one.

After the designated memory for storing the configurations is
full, and the flag running_flag is set. The the frequency, runs
and maximum average collapse check modules are disabled
to save power. Only the correlation test module is enabled
leading to the start of the running mode.

B. Running Mode Module Implementation

The implementation modules in the running mode are
shown in Fig. 12(a). The correlation coefficient is calculated
for the random output vector by concatenating last 3 LSBs of
TRNG. As explained in section III, at least a 512-bit sequence
is needed to correctly calculate the correlation coefficient.

Authorized licensed use limited to: Washington State University. Downloaded on June 06,2020 at 16:48:23 UTC from IEEE Xplore. Restrictions apply.

CARREIRA et al.: LOW-LATENCY RECONFIGURABLE ENTROPY DIGITAL TRUE RANDOM NUMBER GENERATOR 1571

Fig. 13. Measured distribution of average of cycles to collapse for
650 configurations which will be used as possible candidates for storage.

The number of collapses needed to collapse is set greater than
512 to 513 (chosen to be a multiple of 3). This thus requires
171 (= 513/3) collapses. The count correlation seq module
counts number of collapses used. The parameter cnt_cout is
set to one when count is equal to 171. The correlation calc
module calculates the autocorrelation coefficient and compares
with the desired range as shown in Fig. 5 for a sequence
length of 513. If the calculated value is inside the desired
range corr_ok is set to one.

The determination of biased (or un-biased) configuration is
now done by ensuring that correlation_ok flag is one for at
least one of the three consecutive sequences analyzed. If this
is true, the configuration is un-biased and hence, valid_config
flag is set to one. Otherwise, valid_config flag is set to
zero adding the memory position vector by one. When this
condition occurs, a new configuration is read from memory.

VI. MEASURED RESULTS

A step-by-step procedure is described for measuring the
entropy during the proposed experimental testbed.

First, the max average constant (defined as avgmax
in Fig. 9(c)) is empirically initialized before the start of the
real operation (also shown in Fig. 12(c)). This constant enables
the designer to account for any environmental variations (such
as different oscillation frequencies) when the same hardware
is implemented on different FPGA boards. The max average
constant is thus defined by calculating the average of cycles
that each configuration took to collapse. A total of 21 million
collapses, thus 650 different configurations, were collected as
shown in Fig. 13. It is evident that the maximum cycles taken
by some configuration can be as high as 950 for our system. It
also indicates that a configuration that does not collapse will
lead to 950 oscillations at the TRNG output.

Second, the difference in core junction temperatures and
its effect on the collapse average during the learning and the
running modes needs to be accounted during the selection
and storage of configuration in the learning mode itself. For
example, as shown in Fig. 14, the same configuration stored
during the learning mode will present a slightly higher average

Fig. 14. Mean and standard deviation of the same stored configuration during
the learning and the runing modes.

Fig. 15. Measured results showing the configurations getting stored in the
memory on-the-fly after passing the Frequency Monobit and the Runs test for
each of the three LSBs, and the maximum average collapse check.

of collapse (mean) when reused during the running mode.
In other words, there is a higher probability of configurations
being selected and stored in memory for which a collapse
hasn’t occurred. This variation is found to be 25% and cap-
tured in Fig. 14. The above two tests enable the max average
constant to be optimized for the learning mode implemented
on different FPGA boards. Based on previous results our learn-
ing max average constant was defined as 75% × 950 = 712.

Third, the operation of the learning mode is validated by
collecting the memory position pointer (defined as position
in Fig. 10(b)) and the following output flags: NISTpass[2-0]
and pass_avg as shown in Fig. 12. The configuration is saved
if all these flags are one which indicates that all the 3 LSBs
passed the Frequency Monobit and the Runs tests and the
calculated maximum average is lower than the max constant
defined earlier. Fig. 15 shows the configuration selection and
storage in real-time. The memory position is incremented from
1 to 4 as four configurations passes the above tests as shown
in the inset in Fig. 15.

Fourth, after the successful selection and storage of con-
figurations, the proposed method using stored configuration

Authorized licensed use limited to: Washington State University. Downloaded on June 06,2020 at 16:48:23 UTC from IEEE Xplore. Restrictions apply.

1572 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 67, NO. 5, MAY 2020

Fig. 16. Measured results showing comparison of the proposed guided search
technique to a random search yielding higher success with significantly lower
number of collapses.

Fig. 17. System adaption in real-time when the supply voltage is reduced
from 1.25 V to 1.1V (around 12% change).

(from the learning mode) is compared against prior art
approach [16] using brute-force random search. The first
search uses randomly generated configuration bits to identify a
good configuration. The second search uses the configuration
bits learned using the proposed method. Fig. 16 shows the
results of this comparison confirming the latency improve-
ments of the proposed method over prior art. The use of
autocorrelation coefficient instead of average of collapses (as
a metric earlier adopted in [16]) yields higher success rates
with a significantly smaller number of collapses to validate a
configuration. Hence, the detection of any bias variations and
subsequent correction will need much less clock cycles being
much faster.

Fifth, the effect of bias variations is evaluated by intro-
ducing intentional supply variations. Figs. 17 and 18 shows
two experiments where the supply voltage is reduced by
12% and 33% respectively and the proposed method detects
the bias variations and find new stable configurations on-the-
fly successfully, where the entropy of the output became high
again. Fig. 18 also shows that the system does not stay stable
forever but will have stable moments where we can gather
random output, and it will always adapt to a more stable
configuration where high entropy bitstreams can be extracted
where they are stable. The above results are further confirmed
by reading the data off-line to a computer and evaluated
against a complete NIST test suite as shown in Table II.

Fig. 18. Real-time system reconfiguration when a supply voltage change
of 33% (1.2 V to 0.8 V) is detected.

TABLE II

NIST STATISTICAL TEST RESULTS

TABLE III

AIS-20/31 ONLINE TEST RESULTS

All recent TRNGs for cryptographic applications must com-
ply with both the AIS-20/31 and the NIST recommendations.
Hence the same data was evaluated using the AIS-20/31 tests
proposed by the German Federal Office for Information in
Security’s (BSI) for TRNG classification [19].

Authorized licensed use limited to: Washington State University. Downloaded on June 06,2020 at 16:48:23 UTC from IEEE Xplore. Restrictions apply.

CARREIRA et al.: LOW-LATENCY RECONFIGURABLE ENTROPY DIGITAL TRUE RANDOM NUMBER GENERATOR 1573

TABLE IV

COMPARISON OF THE PROPOSED EMBEDDED ON-THE-FLY TRNG / HP ALGORITHM WITH STATE-OF-THE-ART

The BSI methodology recommends that the physical
TRNGs fulfill the requirements of PTG.2 class [19]. The class
PTG.2 requires that the RNG passes a total failure test that
detects a total failure of entropy source when the RNG has
started. If detected the TRNG should not output any random
number. Also, if a total failure occurs while the device is being
operated the same test must prevent that any output is passed
on to TRNG dependent devices. This requirement was fulfilled
by the proposed topology in this work. At the beginning of
the Running mode, the autocorrelation coefficient is also used
as a total failure test. The output is thus buffered if and only
if the analyzed sequence was approved.

Further, PTG.2 requires that an online test is applied on
the raw random sequence (in absence of any post-processing)
both during the start and normal operation of the TRNG.
The online tests detect non-tolerable statistical defects of the
internal random numbers. Because the application developed
here is not integrated in a large system where the online
test could be called, we have performed all the tests offline
using BSI’s test suite [19]. The same data used in the
NIST test suite was evaluated and passed all online tests
(T1-T8) required for an AIS-20/31 compliant device aiming
PTG.2 certification. Table III shows the obtained results.
Finally, the PTG.2 certificate requires that the average Shannon
entropy per internal random bit exceeds 0.997. The proposed

TRNG obtained a Shannon entropy of 0.999 after bias
correction and stabilization (from the data in Fig. 17).

Finally, we observe the behavior of the correlation coeffi-
cient to prove that the proposed system is highly adaptable.
As shown in Fig. 19(a). the proposed approach works because
some configurations keep producing high entropy bits even
though the collapse average has shifted due to process, tem-
perature or voltage variations as their correlation coefficient is
in the desired range, differently of what was proposed in [16]
where a narrow average shift was the metric for bias detection.

The other configurations (shown in Fig.18(b).) however may
lock to the maximum collapse value or decrease it oscillation
average to a much smaller value unable to produce the three
random channels. Their output will thus be biased causing the
correlation coefficient to shift outside the desired range.

Table IV compares the proposed work to state-of-the-art.
The measured power consumption of the TRNG and the HP
is 10.96mW and 10.22mW respectively at 1.25V supply at a
throughput of 18 kHz for three random channels. As higher
throughputs are limited by the internal delays of the RO
currently implemented using Cyclone V FPGA, we used
Altera Powerplay Power Analyzer [28] and Modelsim-
Intel [29] software tools to estimate the scalability and
power consumption of the proposed architecture for different
simulated throughputs.

Authorized licensed use limited to: Washington State University. Downloaded on June 06,2020 at 16:48:23 UTC from IEEE Xplore. Restrictions apply.

1574 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 67, NO. 5, MAY 2020

Fig. 19. Response to the supply variations with (a) strong, and (b) weak
configurations.

Fig. 20(a) shows that the proposed architecture is scalable
with the dominant power consumption due to the leakage
power. The energy efficiency of the proposed architecture at
18kB/s throughput is 1mJ/bit. Fig. 20(b) presents the normal-
ized power breakdown by entity with the 32-stage RO being
the main power constraint. The RO power consumption can
be improved using an ASIC implementation as in [16]. Given
that the focus of the proposed work is the bias detection and
correction, it can be observed that there is only 4.5% increase
in power consumption when the simulated throughput is
scaled more than 600×. The area and the power consumption
will be further optimized in further works using an ASIC
implementation.

Further the actual processing latency will vary substantially
between an ASIC and a FPGA architecture that makes it
extremely difficult to compare. The choice for FPGA imple-
mentations over ASIC comes with tradeoffs (consumption
versus flexibility) [30]. Hence, Table IV uses the number of
cycles as a metric because it is technology independent. Also,
it is important to note that none of the other FPGA imple-
mentations in Table IV use any bias detection and correction
mechanism, and recovery latency is up to 120 times faster
when compared with [16], which are the main contributions
of this work.

VII. CONCLUSIONS AND FUTURE WORKS

This work demonstrates on-the-fly bias detection and
correction using a reconfigurable TRNG with significant

Fig. 20. (a) System power consumption for different throughputs classified
by leakage, dynamic and routing power breakdown, and (b) normalized power
breakdown by entity in percentage for three throughputs.

improvement in probability of bias correction over prior art
and at low-latency. This is accomplished by a lightweight test
suite that implements on an FPGA a subset of NIST tests
for learning and autocorrelator function for bias detection and
correction with large bias variations. The proposed algorithmic
steps further account for supply and temperature variations on-
the-fly and is highly portable to other digital TRNG architec-
tures.

The presented architecture is highly scalable and thus
extensible to several directions in future including autonomous
sensor networks, sparse signal processors and IoT devices.
The selection and storage of configuration bits in memory
during the learning mode can be extended to encompass
different environmental behaviour. In addition, a memory
sorting algorithm can be designed that leverages additional
information on PVT variations from the on-chip sensors to
make an integrated system. The experimental testbed can be
further scaled to increase the number of random channels and
apply towards key authentication and reconfiguration for edge
computing applications.

REFERENCES

[1] D. Evans. The Internet of Things: How the Next Evolution of the Internet
is Changing Everything. Accessed: Sep. 13, 2018. [Online]. Available:
https://www.cisco.com

[2] M. Rostami, F. Koushanfar, and R. Karri, “A primer on hardware
security: Models, methods, and metrics,” Proc. IEEE, vol. 102, no. 8,
pp. 1283–1295, Aug. 2014.

Authorized licensed use limited to: Washington State University. Downloaded on June 06,2020 at 16:48:23 UTC from IEEE Xplore. Restrictions apply.

CARREIRA et al.: LOW-LATENCY RECONFIGURABLE ENTROPY DIGITAL TRUE RANDOM NUMBER GENERATOR 1575

[3] H. Kumarage, I. Khalil, A. Alabdulatif, Z. Tari, and X. Yi, “Secure
data analytics for cloud-integrated Internet of Things applications,” IEEE
Cloud Comput., vol. 3, no. 2, pp. 46–56, Mar. 2016.

[4] C. O’Flynn and Z. D. Chen, “ChipWhisperer: An open-source platform
for hardware embedded security research,” in Constructive Side-Channel
Analysis and Secure Design. Springer, 2014, pp. 243–260.

[5] S. K. Mathew et al., “μRNG: A 300-950mV, 323Gbps/W all-digital
full-entropy true random number generator in 14nm FinFET CMOS,”
IEEE J. Solid-State Circuits, vol. 51, no. 7, pp. 1695–1704, Jul. 2016.

[6] N. Liu, N. Pinckney, S. Hanson, D. Sylvester, and D. Blaauw, “A True
Random Number Generator using time-dependent dielectric breakdown,”
in Symp. VLSI Circuits—Digest Tech. Papers, Jun. 2011, pp. 216–217.

[7] C. Tokunaga, D. Blaauw, and T. Mudge, “True random number generator
with a metastability-based quality control,” IEEE J. Solid-State Circuits,
vol. 43, no. 1, pp. 78–85, Jan. 2008.

[8] B. Sunar, W. J. Martin, and D. R. Stinson, “A provably secure true
random number generator with built-in tolerance to active attacks,” IEEE
Trans. Comput., vol. 56, no. 1, pp. 109–119, Jan. 2007.

[9] Y. Liu, R. C. C. Cheung, and H. Wong, “A bias-bounded digital true
random number generator architecture,” IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 64, no. 1, pp. 133–144, Jan. 2017.

[10] G. Taylor and G. Cox, “Behind Intel’s new random-number generator,”
in Proc. IEEE Spectrum, Aug. 2011.

[11] J. D. J. Golic, “New methods for digital generation and postprocessing
of random data,” IEEE Trans. Comput., vol. 55, no. 10, pp. 1217–1229,
Oct. 2006.

[12] A. Cherkaoui et al., “A very high speed true random number gen-
erator with entropy assessment,” in Proc. Int. Workshop Crytograph.
Hardw. Embedded Syst. (CHES), in Lecture Notes in Computer Science,
vol. 8086. Springer, 2013, pp. 179–196.

[13] V. Fischer and M. Drutarovský, “True random number generator embed-
ded in reconfigurable hardware,” in Proc. Int. Workshop Cryptograph.
Hardw. Embedded Syst. (CHES), in Lecture Notes in Computer Science,
vol. 2523, Santa Barbara, CA, USA, Springer, 2002, pp. 415–430.

[14] M. Epstein et al., “Design and implementation of a true random number
generator based on digital circuit artifacts,” in Proc. Int. Workshop
Cryptograph. Hardw. Embedded Syst. (CHES), in Lecture Notes in
Computer Science. Berlin, Germany: Springer, 2003, pp. 152–165.

[15] T. Amaki, M. Hashimoto, and T. Onoye, “A process and temperature
tolerant oscillator-based True Random Number Generator with dynamic
0/1 bias correction,” in Proc. IEEE Asian Solid-State Circuits Conf. (A-
SSCC), Nov. 2013, pp. 133–136.

[16] K. Yang, D. Blaauw, and D. Sylvester, “An all-digital edge racing true
random number generator robust against PVT variations,” IEEE J. Solid-
State Circuits, vol. 51, no. 4, pp. 1022–1031, Apr. 2016.

[17] M. Dichtl, “Bad and good ways of post-processing biased physical
random numbers,” in Proc. Int. Workshop Fast Softw. Encryption. Berlin,
Germany: Springer, 2007, pp. 137–152.

[18] E. Barker and J. Kelsey. (Nov. 07, 2016). NIST Draft Special Pub-
lication 800-90C. [Online]. Available: http://csrc.nist.gov/publications/
drafts/800-90/draft-sp800-90c.pdf

[19] W. Killmann and W. Schindler, “A proposal for: Functionality classes
for random number generators,” Ph.D. dissertation, Bundesamt für
Sicherheit der Informationstechnik, Berlin, Germany, 2011.

[20] A. A. Abidi, “Phase noise and jitter in CMOS ring oscillators,” IEEE
J. Solid-State Circuits, vol. 41, no. 8, pp. 1803–1816, Aug. 2006.

[21] Security Requirements for Cryptographic Modules. Standards FIPS 140-
2, Federal Information Processing Standards, 2001.

[22] V. B. Suresh, D. Antonioli, and W. P. Burleson, “On-chip lightweight
implementation of reduced NIST randomness test suite,” in Proc. IEEE
Int. Symp. Hardw.-Oriented Secur. Trust (HOST), Jun. 2013, pp. 93–98.

[23] F. Veljković, V. Rožić, and I. Verbauwhede, “Low-cost implementations
of on-the-fly tests for random number generators,” in Proc. Design
Automat. Test Eur. Conf. Exhib. (DATE), Mar. 2012, pp. 959–964.

[24] B. Yang, V. Rožić, N. Mentens, W. Dehaene, and I. Verbauwhede,
“TOTAL: TRNG on-the-fly testing for attack detection using lightweight
hardware,” IEEE Design, Autom. Test Europe Conf. Exhibit. (DATE),
Mar. 2016, pp. 127–132.

[25] M. Abramowitz and I. A. Stegun, Eds. “Repeated Integrals of the Error
Function,” in 7.2 Handbook of Mathematical Functions: With Formulas,
Graphs, and Mathematical Tables, 9th ed. New York, NY, USA: Dover,
1972, pp. 299–300.

[26] Q. Tang, B. Kim, Y. Lao, K. K. Parhi, and C. H. Kim, “True
random number generator circuits based on single- and multi-phase
beat frequency detection,” in Proc IEEE Custom Integr. Circuits Conf.,
Sep. 2014, pp. 1–4.

[27] A. P. Johnson, R. S. Chakraborty, and D. Mukhopadyay, “An improved
DCM-based tunable true random number generator for Xilinx FPGA,”
IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 64, no. 4, pp. 452–456,
Apr. 2017.

[28] Powerplay Analyzer. Intel Quartus Prime Standard Edition User Guide:
Power Analysis and Optimization. Accessed: Sep. 28, 2019. [Online].
Available: https://www.intel.com/content/www/us/en/programmable/
documentation/xhv1529966780595.html

[29] Modelsim-Intel. Intel FPGA Simulation—ModelSim–Intel FPGA.
Accessed: Sep. 28, 2019. [Online]. Available: https://www.intel.com/
content/www/br/pt/software/programmable/quartus-prime/model-
sim.html

[30] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 26, no. 2,
pp. 203–215, Feb. 2007.

Leonardo Bosco Carreira received the B.Sc.
degree in electrical engineering from the University
of São Paulo, São Carlos, Brazil, in 2019. He is
currently pursuing the M.S. degree in electrical engi-
neering with Washington State University, Pullman,
WA, USA. His current research interests include
integrated hardware security techniques using ran-
dom number generators for IoT systems, mixed-
signal IC design, and robust adaptive control.

Paige Danielson received the B.S. degree in elec-
trical engineering from Washington State Univer-
sity, Pullman, WA, USA, in 2019. She is currently
pursuing the Ph.D. degree in electrical engineering
with the University of Colorado at Boulder with a
focus in electromagnetics, RF, and microwaves. She
worked in the Systems on Chips Lab, Washington
State University, from 2018 to 2019. Her current
research interests are wireless communication and
RF, and millimeter wave front end systems.

Arya A. Rahimi received the B.S. and M.S. degrees
from Washington State University in 2013 and 2019,
respectively. He is currently pursuing the Ph.D.
degree with the School of Electrical Engineering
and Computer Science, Washington State Univer-
sity, Pullman. His research is focused on Wireless
Body Sensor Networks (WBSNs), bio-signal acqui-
sition, ultralow power analog signal processing, and
adaptive sampling architectures using classification
algorithms.

Maximiliam Luppe received the B.S. degree in
computational physics and the M.S. and Ph.D.
degrees from the University of São Paulo, São
Carlos, Brazil, in 1994, 1997, and 2003, respectively.
He is currently a Doctor Professor with the Electrical
and Computer Engineering Department, Engineering
School of São Carlos, University of São Paulo. His
research interests include ASIC and FPGA digital
design implementations, architectures for low level
image processing, and the application of image
processing in precision agriculture.

Subhanshu Gupta (S’03–M’11–SM’16) received
the B.E. degree from the National Institute of
Technology (NIT), Trichy, India, in 2002, and
the M.S. and Ph.D. degrees from the University
of Washington in 2006 and 2010, respectively.
From 2011 to 2014, he was with the RFIC Group,
Maxlinear, Inc., where he worked on silicon
transceivers and data converters. He is currently
an Assistant Professor of electrical engineering and
computer science with Washington State University.
His research interests include ultra-low-power

circuits and systems, wideband wireless transceivers, and stochastic hardware
optimization techniques.

He was a recipient of the Analog Devices Outstanding Student Designer
Award in 2008, the IEEE RFIC Symposium Best Student Paper Award
(3rd place) in 2011, and the National Science Foundation CAREER Award
in 2020. He served as a Guest Editor for the IEEE TRANSACTIONS OF
CIRCUITS AND SYSTEMS—I: REGULAR PAPERS and the IEEE Design and
Test Magazine in 2019. He will serve as the Associate Editor for the IEEE
TRANSACTIONS OF CIRCUITS AND SYSTEMS—I: REGULAR PAPERS from
2020 to 2021.

Authorized licensed use limited to: Washington State University. Downloaded on June 06,2020 at 16:48:23 UTC from IEEE Xplore. Restrictions apply.

