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Abstract—Emerging wireless standards aggregate information 

by selecting combinations of contiguous or non-contiguous 

channels, thereby enabling wider transmission bandwidths, and 

hence, higher data rates. Frequency-interleaved analog-to-digital 

conversion (FI-ADC) is an attractive emerging technique for 

carrier aggregation receivers because it facilitates an efficient way 

to dynamically vary the receiver bandwidth in order to address the 

many possible channel combinations. Compared to their time-

interleaved counterparts, the specifications of the samplers in the 

parallel channels in FI-ADCs are significantly relaxed, thereby 

resulting in lower overall power consumption in the receiver. This 

work extends the FI-ADC concept to the quadrature frequency-

interleaved oversampled data converter (QFI-ADC) to achieve 

greater aggregate data rates. Previously, digital-to-analog 

converter (DAC) and other inter-channel mismatches have limited 

the performance of QFI-ADCs. In this paper, we propose a low-

complexity element rotation algorithm (ERA) to mitigate DAC 

mismatches. The ERA is synthesized from the corresponding 

mismatch transfer function using a rigorous mathematical 

procedure which is shown to be applicable generally to low-pass, 

high-pass, band-pass and quadrature ERAs. Simulations confirm 

that the resulting low-complexity quadrature ERAs have 

advantages over previously proposed approaches in both 

performance and hardware complexity. An additional gain 

calibration technique alleviates image folding due to gain and 

timing mismatches between the quadrature DAC elements, which 

yields higher SNDR. 

Index Terms—Quadrature mismatch shaping, sigma-delta ADC, 

dynamic element matching, element rotation algorithm, gain 

calibration. 

I. INTRODUCTION 

loud technologies, the internet-of-things (IoT) and 

emerging multi-user multi-input multi-output (MU-

MIMO) standards, such as LTE-A and IEEE 802.16m, have 

increased data rate demands, which exacerbates crowding of the 

radio spectrum and complicates physical layer design. 

Spectrum usage efficiency has improved, but this alone cannot 

provide the targeted data rates. Carrier aggregation (CA) is 

proposed to overcome this limitation; it enables the 

simultaneous use of more than one carrier frequency (i.e., more 

than one channel), which increases the overall bandwidth. The  

channels may be selected from among contiguous or non-

contiguous intra- or inter-band options. Current state-of-the-art       

implementations require multiple transceivers, which adds cost 

and complexity, particularly to user terminals where space and 

power dissipation are key considerations.  

Wide-band ADCs have been identified as the primary 

performance limiters, especially in non-contiguous inter-band 

scenarios. Parallel channel sampling based on the generalized 

sampling theory is an effective method for high-speed A/D 

conversion. Parallel architectures including time-interleaved 

ADCs (TI-ADC) [1]-[6], quadrature mirror filter bank (QMFB) 

[7] and hybrid filter bank (HFB) structures [8]-[10], and hybrid 

frequency conversion architectures [11], have demonstrated 

impressive performance because of their simplicity in achieving 

parallelism and equalization. Many of these architectures (e.g., 

Fig. 1(a)) require high-speed sample-and-hold (S/H) stages, 

wherein gain and offset mismatches between parallel time-

interleaved channels cause distortion products, which 

necessitate spectral reconstruction using digital calibration 

techniques [12], [13]. 

A frequency-interleaved analog-to-digital converter (FI-

ADC) relaxes the requirements on each S/H stage by sampling 

the wideband input signal after it is decomposed into sub-bands 

[8], [11], [14] (Fig. 1 (a)). This approach increases flexibility in 

the frequency domain and reduces sensitivity to timing 

mismatches between parallel S/H stages. In the time-

interleaved approach, the Nyquist-rate ADCs must exhibit 

maximum precision at all frequencies even though it is required 

at only the highest signal frequency. On the other hand, noise-

shaping Σ-Δ converters feature an inherent trade-off between 

sampling frequency and resolution, which enables energy 

optimization of sampling rate versus quantization accuracy; i.e., 

only the frequencies of interest have suppressed quantization 

noise [15], [16]. A quadrature Σ-Δ modulator enables 

digitization of the in-phase and quadrature-phase components 

using two identical ADCs. The resulting complex converter 

architecture features several performance advantages over its 

real counterpart including immunity to DC offsets and flicker 

noise [17]-[19]. A parallel bank of quadrature ADCs enables 

the frequency-agile reception of narrowband signals in adjacent 

(or non-contiguous) concurrent bands (Fig. 1(a)) [8], [11], [14]. 

A drawback of complex-valued signal processing is I/Q 

imbalance caused by coefficient mismatches between the in-

phase and quadrature-phase channels.  This imbalance causes 
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Fig. 1. (a) Possible quadrature frequency-channelized receiver signal paths, and (b) the proposed M-channel quadrature frequency-interleaved 

ADC (QFI-ADC) architecture with mismatch shaping and m-bit feedback for gain calibration. 

 

in-band image-frequency interference which degrades the 

overall signal-to-noise ratio (SNR) of the receiver. In addition, 

process, voltage, and temperature (PVT) variations between the 

analog and the digital filter coefficients of the QFI-ADC limit 

the reconstruction accuracy, which introduces aliasing artifacts 

and reduces its advantages over TI-ADC architectures.  Recent 

works have described a digital post-compensation scheme to 

mitigate mirror-frequency interference and gain/offset 

mismatches for the synthesis filter bank for quadrature ADCs 

[11], [20]. Although impressive results are achieved, digital 

calibration is necessary and the higher throughput rates 

foreseen for wideband next-generation architectures may 

require high-fT CMOS processes. In this paper, a low-latency 

mismatch-shaping algorithm and a low-power multi-rate least-

mean-squares (LMS) digital calibration scheme [21] are 

combined to achieve greater efficiency. The mismatch-shaping 

algorithm, which features low hardware complexity, is 

embedded in the quadrature ADC to mitigate gain and offset 

I/Q mismatches as well as the intra- and inter-channel 

mismatches between frequency-interleaved channels. The low-

power LMS-based digital calibration scheme alleviates aliasing 

effects from the mirror frequencies.  

II. FREQUENCY CHANNELIZATION ARCHITECTURE AND 

QUADRATURE BAND-PASS Σ-Δ ADC 

A quadrature frequency-channelized receiver with several 

ADC options is shown in Fig. 1(a). This work aims at reducing 

the effects of mismatches on the QFI-ADC of Fig. 1(b), wherein 

a wideband signal is input to M = 4 channels centered 

symmetrically about fIF. Thus, the aggregate input bandwidth, 

 Ω𝐵 , is the sum of the individual channel bandwidths.  

Each of the four channels comprises two paths that frequency 

translate the input signal centered at carrier frequency f1, f2, f3, 

or f4 to corresponding in-phase and quadrature-phase 

components. The quadrature signals are analog band-pass 

filtered by H(s) and digitized using a quadrature Σ-Δ converter. 

The oversampled digital outputs are down converted to 

baseband, bandpass filtered, decimated by M, and recombined 

to reconstruct a digital representation of the wideband analog 

input signal.  

When fully deployed, the system functions as an ADC 

digitizing a wideband signal of bandwidth Ω𝐵; alternatively, 

some of the parallel channels may be turned off when less 

carrier aggregation is used. The M-channel architecture of Fig. 

1(b) has 2M identical band-pass filters and M identical 

quadrature band-pass oversampled Σ-Δ converters. Each 

converter operates at a sampling frequency of  2𝑂𝑆𝑅(Ω𝐵/𝑀), 

where OSR is the oversampling ratio.  

The analysis of complex data converters was treated by Tang, 

et al. [18] wherein a third-order complex band-pass modulator 

Fig. 2(a)) was synthesized from a third-order real band-pass 

modulator with each real integrator,   )1/( 11   zzzH N  

replaced by its complex counterpart,   )1/( 11   PzPzzHC ,  

with 𝑃 = exp (2𝜋𝑓𝐼𝐹/𝑓𝑠) as shown. Thus, 
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has a real signal transfer function, STF = 1, and a complex noise 

transfer function,  311  PzjNNNTF ir

The performance of complex modulators is sensitive to I/Q 

mismatches [18], which introduce differential-mode errors in 

the signal and noise transfer functions, which, in turn, corrupt 

the signal band and degrade SNR. Although SNR degradation 

can be reduced using a DSP solution [22], the concomitant 

folding of quantization noise into the signal band is 

problematic. This effect is mitigated by cascading an 

oversampled complex modulator in the first stage with a 

Nyquist-rate pipeline converter in the second stage followed by 

adaptive noise cancellation digital logic [18].  

This paper demonstrates techniques that shape DAC integral 

non-linearity errors similarly as the NTF of a Σ-Δ loop shapes 

quantization errors [23]-[27]. The mismatch transfer function 

(MTF) is made similar to the NTF to maximize SNR. One 

mismatch shaping method is the element rotation algorithm 

(ERA), implemented conceptually in Fig. 2(b). Other 

algorithms for high-order mismatch shaping are vector-based 

[26], [28] and tree-structured/butterfly-shuffler DAC-based 

methods [23], [27], [29], [30]. The hardware requirements for 

some of these techniques are compared below. 

Section III gives a brief survey of mismatch shaping 

techniques for quadrature band-pass and frequency-interleaved 

ADCs. Section IV introduces a general approach for deriving 

an ERA, and extends it to quadrature applications. Section V 

describes mismatch shaping in an FI-ADC. Simulation results 

for a single-channel quadrature ADC and a two-channel FI-

ADC are presented in Section VI, and hardware versus 

performance trade-offs for state-of-the-art ERAs versus the 

proposed algorithm are given in Section VII. Section VIII 

considers the inverse objective of finding the MTF for a given 

ERA, and Section IX concludes this contribution.  

III. MISMATCH SHAPING 

The proposed MTF is evaluated first for a single-channel 

quadrature band-pass Σ-Δ converter [19] and then for a dual-

channel FI-ADC. A conceptual model of the mismatch-shaping 

ERA is depicted in Fig. 2(b). The ADC output, c1(n), is pre-

filtered by the inverse of MTF with digital output, c2(n). The 

DAC output, c3(n), is then post filtered by MTF, with analog 

output, c4(n). Ideally, the input signal is unaltered, but errors 

introduced by the DAC, δ, are shaped by the MTF. A literal 

implementation of Fig. 2(b) is problematic because the input to 

the DAC, c2(n), may grow without bound for certain MTFs.  

Several approaches are functionally equivalent to the 

conceptual implementation including ERAs for low-pass [31], 

[32], real band-pass [33] and quadrature modulators [34], [35]-

[36]. Maurino and Papavassiliou [35] used quadrature mixers 

to frequency translate the input/output signals into low-pass 

mismatch shaping DACs with good results. But, that approach 

exhibits high latency and is relatively complex. Prior-art 

quadrature ERAs require less hardware but do not faithfully 

represent the quadrature MTF [34], [36].  

The systematic derivation of an ERA for a desired MTF 

starting from Fig. 2(b), or from given knowledge, has not been 

developed for advanced architectures such as a quadrature FI-

ADC. This paper extends the approach in [19] to synthesize an 

optimum quadrature ERA with less hardware than more general 

mismatch shaping schemes [24]. Behavioral simulations 

confirm the advantages of the proposed ERA over the previous 

implementations used for single- or multi-channel frequency-

channelized quadrature receivers [20], [34]. The general 

approach is also applicable to low-pass, high-pass and real 

band-pass architectures [19].   

Energy efficiency is increased using a gain calibration 

technique that works with the multi-band quadrature ERA to 

mitigate image-frequency interference; specifically, a multi-

rate implementation of a sign-sign LMS algorithm is employed 

[21]. The extra DSP circuitry adds latency in the Σ-Δ loop, 

which reduces the available amplifier settling time. The 

additional switches in the unit cells reduce the bandwidth and 

increase layout challenges. These issues are critical in the 

design of high-speed wideband multi-band Σ-Δ converters for 

LTE-Advanced and other future WiFi standards. The 

combination of analog mismatch shaping and digital calibration 

enables complex quadrature receivers with relatively low 

hardware complexity.  

IV. ELEMENT ROTATION ALGORITHMS 

A. General Approach 

An MTF(z) = 1 + bz-k, where k is an integer and b ∈ {±1,±j}, 

is chosen so that the DAC can be realized using two-level 

elements. The output in Fig. 2(b) is [19]: 

 
(a) 

 

 

 

 
(b) 

 
(c) 

 

 

 

 

(d) 

Fig. 2.  (a) The third-order ΣΔ modulator used in this work, and (b) a 

conceptual and (c) a detailed realization of the mismatch-shaping 

ERA; (d) spectral distribution before down conversion.  
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A corresponding ERA is deduced using a two-step process: 

 Step 1: Ideally, c4(n) is equal to c1(n). Thus, (2) is solved 

for c3(n) terms of the input sequence: 
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 Step 2: Eqn. (3) is used to calculate the pointer, c3(n), at 

each time step using the input values, c1. Assume an initial 

value of c3(n) = U. Based on the value of c1(n) (e.g., u1), 

the selected DAC elements start from U ± u1 where each 

selected cell adds ± 1 to the output for the (n+1)st time step. 

Assuming a random deviation, δi, from the ideal for each 

cell, an additional error term, +sgn(u1)(δi), is also added 

which eventually limits the performance of the mismatch-

shaping algorithm. By evaluating (2) for several time steps, 

the usage pattern of the DAC elements is determined, 

which yields the element usage algorithm. The rotational 

part of the ERA arises from realizing the linear array in a 

circular form with a limited number of DAC cells. After 

the element usage is determined, (2) is used to find the error 

introduced by DAC mismatches at each time step. 

B. Mismatch-shaping ERA for Quadrature Band-pass ADC 

The approach described above is now extended to an ERA for 

the quadrature MTF(z) = 1 - jz−1 which has a zero only at +fs/4 

(and not at -fs/4). Eqns. (2) and (3) are re-written for the 

quadrature case of Fig. 2(c) as [19]: 
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where c1 = s1 + jt1, c3 = s3 + jt3 and c4 = s4 + jt4.  

 Step 1: Values of the complex-valued pointer, c3 = s3 + jt3, 

are calculated using (5) for the complex-valued inputs, 

c1=s1 + jt1 (Table 1). 

 Step 2: The real and imaginary parts of c4(n) are first 

evaluated using Table 1 and then (5) to sum the 

contributions of the DAC elements using the indices given 

by s3 and t3. Note that there are two DACs (DAC1 and 

DAC2), and, hence, two different sets of unit cells with 

mismatches, δ1i and δ2i. An additional assumption, δ1i = δ2i 

(for all i), has been made in Step 2 in Table 1. This 

assumption states that the DAC1 and DAC2 paths are 

identical and only inter-element mismatches within each 

DAC are addressed by the quadrature ERA. This 

assumption is necessary to avoid contention—the 

simultaneous use of a single DAC element by both DAC1 

and DAC2. It is essential to note that this assumption is 

needed only to derive the proposed quadrature ERA; it also 

works in realistic cases where δ1i ≠ δ2i so long as digital 

calibration is added to equalize the random DAC gain 

mismatches. This issue is addressed later.  

Step 2 in Table 1 yields the required element usage patterns 

as exemplified in Fig. 3(a). Note that the DAC indices are 

assumed to be increasing (decreasing) to the right (left). For 

example, when the DAC1 index moves from V in cycle n to 

V−u1+1 in the next cycle, the index moves to the left (since 

V−u1+1 ≤  V) as indicated by the left-pointing arrow. 

Two essential aspects of the proposed ERA should be 

emphasized: The element usage in each DAC changes direction  

after every two cycles, and, thus repeats after four cycles. 

And, there is a one cycle time difference (i.e., a 90o phase 

difference),  

between the direction changes in the two DACs. This is a key 

difference from previous quadrature ERAs [35]-[36]. Another 

key aspect of this ERA is the per-cycle DAC swapping; i.e., if 

DAC1 (DAC2) is used in the I-path (Q-path) in the current cycle, 

Table I: Quadrature ERA calculation: Step 1 

Cycle s1 + jt1 c3  = s3 + jt3 

n  U + jV 

n+1 u1 + jv1 - (V - u1) + j(U + v1) 

n+2 u2 + jv2 - (U + v1 - u2) - j(V - u1 - v2) 

n+3 u3 + jv3 (V - u1 - v2 + u3) - j(U + v1 - u2 - v3) 

n+4 u4 + jv4 
(U + v1 - u2 - v3 + u4) + j(V - u1 - v2 

+ u3 + v4) 

Quadrature ERA calculation: Step 2 
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DAC2 (DAC1) will be used in the I-path (Q-path) in the next 

cycle. Further insight is gained from Fig. 3(b) where a critical 

frequency is identified from the DAC cell selection direction of 

movement for two traditional ERAs and the proposed 

quadrature ERA. Specifically, a low-pass ERA has a zero at DC 

(no direction changes in dom) and a high-pass ERA has a zero 

at fs/2 (dom changes every clock cycle). In the proposed ERA 

algorithm, dom alternates after every two clock cycles which 

corresponds to a zero in the MTF at fs/4.  

C. Proposed Mismatch Shaping ERA for FI-ADC 

The quadrature ERA algorithm is now extended to FI-ADCs. 

Analog mismatch shaping mitigates intra-channel mismatches 

because the ERA swaps the roles of the DACs from one cycle 

to the next. However, this creates a cycle-to-cycle gain 

mismatch; i.e., if GDAC1 and GDAC2 are the DAC gains with 

GDAC1 ≠ GDAC2, then GDAC1 + jGDAC2 in one cycle is not equal to 

GDAC2 + jGDAC1 in the next. Thus, LMS digital gain calibration 

is used so that GDAC1 ≈ GDAC2.  

For a multi-channel FI-ADC, it is necessary to extend these 

techniques for more than two DACs. For example, in a two-

channel implementation (at FC1 and FC2), there are four DACs 

with independent mismatches; i.e., GDAC1,Fc1 ≠ GDAC2,Fc1 ≠ 

GDAC1,Fc2 ≠ GDAC2,Fc2.  The proposed ERA shapes these intra-

DAC mismatches for both channels with an MTF = (1 - jz-1). 

As a consequence of the extended ERA, and before digital 

calibration, the two-channel FI-ADC has different DAC gains 

in alternate odd/even cycles (Table II). Digital LMS gain 

calibration makes GDAC1,Fc1 ≈ GDAC2,Fc1 ≈ GDAC1,Fc2 ≈ GDAC2,Fc2.  

Table II. Two-channel FI-DAC Gains with Mismatches 

Clock Cycle Effective Gain  

Even GDAC1,Fc1 + jGDAC2,Fc1 

GDAC1,Fc2 + jGDAC2,Fc2 

Odd GDAC2,Fc1 + jGDAC1,Fc1 

 GDAC2,Fc2 + jGDAC1,Fc2 

 

V. CLOCK JITTER AND INTER-CHANNEL MISMATCHES 

All of the frequency-interleaved channels are sampled using 

clock signals derived from the same reference; thus, there is less 

sensitivity to clock jitter than in a TI-ADC [11]. However, the 

local oscillator used to perform the down-conversion (Fig. 1(b))  
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 Fig. 3 (a) Proposed quadrature ERA details, demonstrated with numerical example using equations from Step2 of Table I, (b) Direction of 

movement (dom) summary for different ERAs, and (c) Implementation of the proposed ERA with m-bit gain calibration through LMS algorithm.  
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must generate multi-band quadrature clock signals with low 

jitter. Such LO jitter can be modeled as sinusoidal tones as 

described by Ding, et al. [37]   

            













)(2 tjitter

T

t
kj

k

K
ietLO



                    (6) 

An analysis of the effects of jitter for square-wave-like LO 

generators used with harmonic-reject mixers in frequency-

channelized receivers is detailed by Forbes and Gharpurey [38].  

The mismatch noise shaping due to the odd/even cycle 

swapping of the DACs along with the digital LMS gain 

calibration techniques described above also can be used to 

correct input I/Q timing errors. That is, the effects of 

mismatches at the inputs to the quadrature ADC are analyzed 

with the same mismatch errors moved into the feedback DACs.  

Suppose the even samples (I-phase) in Fig. 1(b) occur at the 

correct times while the odd samples (Q-phase) have a timing 

error, 𝜃. Begin the analysis of the effects of this timing error 

when multiplexing the even and odd streams by considering an 

input signal sampled at f0:  

   0cos 2 where 1/s s s sS nT n f f f T             (7) 

Next, extract the odd and even components of (7) and up sample 

both by 2X. Only the terms between 0 and 2π are considered in 

the extracted terms assuming f0 < fs/2; it is important to note that 

two of the terms are due to aliasing. With the assumed phase 

error between even and odd samples, 𝜃, where 𝜃 = 2𝜋𝑓𝑜Δ𝑡, the 

even and odd parts are  

      00 2 /2 /2 /
0.5 [ ]s ss j n f f fj nf f

e sS nT e e
 

                 (8) 

      0 00 0 2 /2 / 2 /2 / 2 /
0.5 [ ]s s ss s j n f f f f fj nf f f f

o sS nT e e
        

    

Thus, the image terms are aliases of the desired signal. Given

     sso TnSTnS 12/1 0  , the equivalent sampled output at t = 

nTs is 

      soses TnSnTSnTS 1  

where 

 

 
 
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2 / 2 / 2 /

0 2 /2 / 2 /
1 0.5
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e
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e

   

  

  

  

 
      

  

 

    00 2 /2 /2 /
0.5 [ ]s ss j n f f fj nf f

e e
 

 


      

Combining Se(nTs) and So((n-1)Ts) with ejθ ~ (1+jθ) (for small  

θ) yields  

          
jejenTS sss fffnjfnfj

s
)/2/2()/2( 00 5.025.0


  (9) 

The second term in (9) dominates the image signal error owing 

to the phase mismatch between the even and odd sampling 

instants. The resulting total distortion is tf  05.0  . Also  

note that the image is rotated by π/2 relative to the image present 

in the odd-even sequences. Thus, this error can be corrected 

using either a narrow-band I/Q digital calibration technique 

[11], [20], or the same digital LMS gain calibration as shown 

above in Section VI.B. 

 
(a) 

 
(b) 

Fig. 4. (a) Comparison of the reconstructed noise floors: no ERA 

(brown), ERA [36] (blue), and proposed ERA (black); (b) 

combined output of the two-channel FI-ADC with 0.5% 

mismatch. An 8192-point FFT was performed to capture the 

entire baseband bandwidth of 50 MHz. 

 

VI. SIMULATION RESULTS 

Experimental results are obtained using Matlab/Simulink® 

simulations with the proposed ERA applied to the 3rd-order, 4-

bit, quadrature band-pass Σ-Δ ADC of Fig. 2(a). The same 

architecture is then extended to a two-channel FI-ADC as in 

Fig. 1(b). Detailed simulations are performed to illustrate the 

effects of I/Q gain and phase mismatches along with the 

improved performance obtained using digital gain calibration. 

An example frequency allocation of intra-band contiguous 

channels is shown in Fig. 2(d). For this work, fc1 and fc2 

represent the center frequencies of two adjacent 25 MHz bands 

at the output of the first RF down-conversion mixer. Two CW 

tones are chosen at arbitrary frequencies within these bands 

given by fin = (k/2N)fs where N is the N-point Fast Fourier 

Transform (FFT), and k is chosen to be a prime number (where 

k < 2N-1) to avoid repetitive patterns in the output, and fs is the 

ADC sampling frequency.  

A. Proposed ERA for Two-channel Quadrature ADC  

Behavioral simulations for the 3rd-order 4-bit two-channel 

FI-ADC based on the architecture in Fig. 1(b) are shown in Fig. 

4. The digital reconstruction comprises digital multipliers, 

adders, up-samplers and FIR filters. Selecting the FI-ADC 
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center frequency as fs/4 enables multiplication coefficients for 

the the digital mixers of either 0 or ±1. Thus, no multipliers are 

required for the digital mixers. Quadrature bandpass filters are 

the main source of implementation complexity in the digital 

block. An 8th-order infinite-impulse-response reconstruction 

filter is used for power-efficiency in MATLAB’s Filter Design 

Analysis and automatic synthesis tools. 

For simulations, two contiguous 20 MHz bands with an 

aggregate bandwidth of 40 MHz and a transition band of 5 MHz 

were chosen. The chosen sub-bands are centered at f1 = 212.5 

MHz and f2 = 237.5 MHz. Again, the third-order quadrature 

band-pass Σ-Δ modulator of Fig. 2(a) is used. Each 20 MHz 

input band is mixed down to the same IF frequency, fIF =100 

MHz, which enables the use of the same quadrature converter 

design for each. Fourth-order band-pass channel-select filters 

are used to provide > 40 dB adjacent channel attenuation to 

negate any in-band image artifacts. Note that a mirror image 

implementation would allow even lower filter orders due to the 

intrinsic band-pass nature of its signal transfer function as 

shown by Schreier and Temes [28].  

The power spectral density (PSD) plots show the simulated 

noise floor (Fig. 4(a)) and the reconstructed output of the two-

channel QFI-ADC (Fig. 4(b)). The image frequencies are 

intentionally notched out by the DSP to allow comparison of 

the noise floors for the three cases: no ERA, ERA in [36] and 

the proposed ERA. It can be seen that for the same mismatch 

(1%), the noise floor after decimation for the proposed ERA has 

a marked improvement over the other techniques.  

A significant decrease in the noise floor and a corresponding 

increase in SNDR is achieved using the proposed ERA for a 

quadrature band-pass Σ-Δ ADC assuming equal inter-element 

mismatches (i.e., δ1i = δ2i for all i). The SNDR improvement is 

maintained for a wide range of OSR values [19]. With δ1i ≠ δ2i 

for all i, an image tone appears at |fs/4 - fin| due to the 

DAC1/DAC2 swapping. Its magnitude depends on the gain 

imbalance, so it can degrade the overall SNDR even though it 

and the noise floor are substantially reduced using the proposed 

ERA along with the digital LMS gain calibration presented in 

the next section. Note that this image tone also appears in a 

similar manner in previous ERAs [35]-[36]. Herein, mismatch 

alters the effective gains of DAC1 and DAC2 as highlighted by 

the analysis in the previous section.   

Based on the results of Fig. 4(b), it is important to use layout 

techniques that maximize the matching of the DACs in an FI-

ADC; such techniques are highlighted by Kundu, et al. [19]. 

Perfect matching is statistically impossible so the resulting 

residual image tone is removed using auxiliary m-bit DACs to 

equalize the gains of DAC1 and DAC2, as shown schematically 

in Fig. 3(c). The implementation of the LMS algorithm based 

on a multi-rate polyphase filter for Σ-Δ converters is presented 

in [21]. 

B. Gain Mismatch Calibration  

For a multi-channel FI-ADC, it is necessary to calibrate the 

gains of each DAC against a common value to maximize 

overall SNDR and reduce/eliminate image tones from the signal 

bands. It is important to note that the calibration method 

mentioned here also corrects for I/Q phase mismatch (Eqn. (9)) 

and intra- and inter-channel mismatches in the signal path in 

addition to DAC gain mismatches by applying a gain correction 

only to the feedback DACs. However, for simplicity, we will 

refer to all of these mismatches collectively as “DAC gain 

mismatches” in this section since they all produce a tone at the 

same image frequency. An offline version of the gain 

calibration is implemented here, while an online version is 

equally feasible albeit with more hardware. 

The calibration method requires choosing any one DAC as a 

reference DAC (DACREF) from among all of the 2M DACs 

available in the M FI-ADC channels. The calibration method 

sets the gains of all the other DACs equal to that of the reference 

DAC; i.e., GDACx,Fci ≈ GDAC,REF for x = 1:2 and I = 1:M. Without 

loss of generality, DAC1Fc1 is chosen as the reference DAC. 

The calibration steps are outlined in Fig. 5. 

The calibration method is demonstrated first through the 

simulation of a one-channel FI-ADC. Fig. 6(a) shows how 

|GainDAC1,Fci(k)−GainDAC,REF| varies with GCORR,DAC1(k) where 

GCORR,DAC1(k) is the gain correction applied to DAC1 and k 

denotes the LMS iteration number. It also shows the settling 

behaviors of the gain correction and the error terms. Next, 

GCORR,DAC1 is fixed at 0.999654, the optimum value found, and 

the calibration continues to determine the optimum value for 

GCORR,DAC2. As GCORR,DAC2 moves towards its optimum value, 

the SNR(single channel) of the i-th channel increases as the 

image tone decreases. This behavior is illustrated in Fig. 6(b). 

Apply the complex training tone to the input of all channels of the FI-
ADC i.e. cos(2*pi*ftraining*t) to all I-inputs and sin(2*pi*ftraining*t) to all 
Q-inputs (sampling clock: cos(2*pi*fs*t)). (defined as Default state)

Calculate DAC1gain. GainDAC1,Fci=σ(real(OutFci(0:2:N))

Run LMS to find the required gain ctrl code for DAC1,Fci which drives 
e(k)=(GainDAC1,Fci(k)-GainDAC,REF) to zero i.e. minimize | GainDAC1,Fci(k)-

GainDAC,REF |. k is the iteration number of the LMS update

Re-assign the training tone such that cos(2*pi*ftraining*t) goes to all Q-
inputs and −sin(2*pi*ftraining*t) to all I-inputs of the FI-ADC (sampling 

clock: cos(2*pi*fs*t)). (Switched state)

As a result of the proposed ERA, at every even cycle, DAC1 processes 
I-data (real path) and DAC2 processes Q-data (imaginary path)

Calculate DAC2 gain. GainDAC2,Fci=σ(imag(OutFci(0:2:N))

Run LMS to find the required gain ctrl code for DAC2,Fci which drives 
e(k)=(GainDAC2,Fci(k)-GainDAC,REF) to zero i.e. minimize | GainDAC1,Fci(k)-

GainDAC,REF |. k is the iteration number of the LMS update

DAC1 of 1st channel chosen as reference DAC and the FI-ADC is in 
Default state. Calculate Standard deviation (σ) of the 1st channel FI-

ADC output by taking only even cycles and real (I-data) output. This is 
a measure of the DAC1 gain i.e GainDAC,REF=σ(real(OutFc1(0:2:N))

Start with i-th channel of the FI-ADC in Default state

Now, GainDAC1,Fci ≈ GainDAC2,Fci ≈ GainDAC,REF

Repeat this block for all i’s

Block: Reference Gain calculation

Block: Gain calibration

 
Fig. 5. Proposed gain calibration algorithm steps.  
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The LMS-optimized SNR (96.27 dB at OSR = 32) is close to 

the single-channel maximum SNR (97.71 dB) as determined by 

sweeping GCORR,DAC2 (Fig. 6(b)), which verifies the efficacy of 

the proposed approach.  

Fig. 7(a) shows simulated SQNR in the presence of intra-

DAC (DACI/DACQ) mismatches for a two-channel FI-ADC. 

The effect of the image due to mismatch is studied for the three 

ERA cases as shown; generally, the proposed ERA performs 

better showing about a 15 dB increase in SQNR. For large 

mismatches, the SQNR is only 8 bits, but an extra bit is 

recovered using the digital LMS gain calibration algorithm as 

shown in Fig. 7(b). The proposed scheme operates with 

mismatches up to 10% but the increase in the quantization noise 

floor and incomplete image cancellation limits the SQNR with 

digital calibration at higher mismatches. Techniques for 

improvement are under investigation including the use of a 

multi-rate LMS algorithm to correct mismatches between the 

analysis and synthesis filters [20]. 

VII. HARDWARE OVERHEAD VS. PERFORMANCE 

The extra digital signal processing in the DAC adds latency 

in the Σ-Δ loop, which reduces the available settling time. Also, 

the additional switches within the DAC unit cells required in a 

complex DAC reduce bandwidth and create layout difficulties. 

These issues are critical in high-speed Σ-Δ converters [39]. 

 Table III compares the proposed ERA for a 4-bit Σ-Δ ADC 

(including calibration hardware with M = 8) to a first-order 

reduced-complexity butterfly shuffler and a first-order tree-

structured complex DAC [23], [30]. Note that hardware 

reduction techniques [40] have been applied to the latter, where 

appropriate, in order to make a fair comparison. The proposed 

scheme is superior in terms of hardware complexity, and, 

therefore, better suited to high-speed modulators while 

achieving similar first-order mismatch shaping performance. 

[35]-[36] have similar hardware complexity and latency, but 

their performance is inferior to the proposed scheme. Although 

it employs digital calibration to mitigate mismatches between 

the I and Q path gains, the significant performance advantages 

outweigh the additional hardware in many practical cases.  

VIII. REVERSE PROBLEM: DEDUCING MTF FROM ERA  

The significance of the previous systematic approach is 

enhanced by solving the reverse problem; i.e., deriving the MTF 

from a given ERA. Note that it is not always possible to obtain 
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Fig. 6. (a) Variation of |GainDAC1,Fci(k)−GainDAC,REF| with 

GCORR,DAC1(k) and its LMS convergence; (b) optimized SNR after 

calibration with OSR = 32 for a 3rd-order 4-bit ADC. 

 

 
 

 
 

 

 
(a) 

 
(b) 

Fig. 7. (a) Reconstructed two-channel SQNR versus inter-element 

I/Q mismatches (prior to back-end DSP) for different ERA schemes 

(image tones are notched out); (b) Gain coefficient correction 

enables up to a 2-bit performance improvement for the case with 

unequal DAC mismatches.  
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a closed-form expression from a given ERA. The approach is 

applied here to the quadrature ERA of Kurosawa, et al. [36] to 

derive its MTF, which shows its sub-optimal nature compared 

to the quadrature ERA proposed herein. 

By retracing the two-step process in reverse, one set of 

difference equations for every alternate step can be written for 

the quadrature ERA of [36]: 

)1()()(  ntnsns 334
 

(10) 
)1()()(  nsntnt 334
 

1)1()()(  ntnsns 334
 

(11) 
1)1()()(  nsntnt 334

 

Eqn. (10) represents MTF = 1 - jz−1 (like (4)) whereas (11) 

approximates MTF = 1 + jz−1. Since the ERA uses the MTFs on 

alternate cycles, it apparently realizes a real band-pass MTF 

(i.e., product of the two) albeit sub-optimally as shown by the 

results in Fig. 8; SNDR for an ADC with NTF = (1 − jz−1)3 is 

about equal to that with NTF = (1 + jz−1)3. However, the 

proposed ERA truly implements MTF = 1 − jz−1 (i.e., with a 

zero at +fs/4) to achieve an increase of almost 25 dB in SNDR. 

However, it does not perform well, as shown, when used with 

NTF = (1 + jz−1)3 (i.e., with a zero at -fs/4).  

IX. CONCLUSIONS AND FUTURE WORK 

This paper describes mathematical procedures for deriving 

DAC element rotation algorithms from given general mismatch 

transfer functions for quadrature Σ-Δ data converters in 

frequency channelized receivers. An optimal quadrature ERA 

is derived and applied in multi-channel frequency-channelized 

data converters for wide-bandwidth applications such as LTE-

Advanced. Gain mismatches between I and Q DACs are 

mitigated by combining analog mismatch shaping and digital 

LMS gain calibration algorithms with minimal hardware 

overhead. The proposed system shows significant SNDR 

improvements over earlier approaches for both intra- and inter-

DAC element mismatches. Future work will investigate 

reducing the image artifacts, executing the calibration loops 

with separate localized coefficients for each channel, the impact 

of convergence of the LMS calibration loops on the overall 

SNDR using the proposed approach and implementation in 

silicon. A detailed comparison of the hardware and 

performance trade-offs compared to conventional approaches 

confirms the reduced area and latency advantages that are 

attractive for wide-bandwidth low-latency closed-loop 

architectures.  
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