Curricula for Learning Agents

Matthew E. Taylor

http://eecs.wsu.edu/~taylorm

This Session's Focus

- Idea-focused
- Participation Encouraged

2004: Real Life Reinforcement Learning

Where's My Adaptive & Learning Agent?

Our goal (for the sake of discussion)

We want to have a deployed, consumer learning agent in the next 5 years.

- Assume
 - If an embodied agent, assume someone else is building the (right) hardware
 - An MBA can make it profitable
- What task(s) should it achieve?
- What are we missing to make this technically feasible?

- I'm ignoring it (spam filter, amazon): cloud/ server side
- Siri
- Preference, recommender
- Don't trust agents: sensible exploration
- Serve my interests
- NEST
- Multi-agent?
- Trading agents: bidding for adwords, etc.
- HCI
- Trust in "physical type things"

Learning

Real life agent learning

- Reliability
- Speed

How do agents get a better prior?

- Better learning algorithms
- Leverage past experience
- Human knowledge

Leveraging Past Experience

- Lifelong Learning
 - Sebastian Thrun
 - Mark Ring
 - Sutton+: Critterbot, Horde Architecture
- Multi-task Learning
 - Fernandez, Lazaric
- Transfer Learning
 - Re-use past knowledge
 - Use to set bias
 - Automatically learn how tasks are similar

Leveraging Past Experience

- Determining how tasks are related
- How past info is used
 - Q-values
 - Policy
 - Model
 - Options
 - Reward functions
 - High-level rules/advice
 - Features

Multi-step Transfer

Sequential learning can outperform direct learning: can take ½ the time!

Programmer Knowledge

- Algorithm, parameters, function approximator, etc.
- Smart feature selection

- Clever actions
 - Macro actions, options, etc.

- Reward shaping
 - Andrew Ng
 - Sam Devlin+

Goals for Human Interaction?

- How to get knowledge from human
 - Limited effort
 - Non-optimal
 - Non-technical

HCI/HRI

Human Interaction

- Learning from Demonstration
 - Brenna Argall+: Survey
- Imitation learning
 - Price & Boutilier: Implicit Imitation
- Learning from Feedback
 - Brad Knox: TAMER

- Giving NLP Advice
 - Rich Maclin: RATLE

- Demonstration is critical: grandma!
- Good for Human to Robot
 - Robot having model of people? Quirky way people will respond
- GIANT problem
 - Psych / Econ: agent shrinks
 - Why doing what they're doing?
 - Don't need to look at your perspective: sit in robot's shoes
- BUT human shouldn't have more involvement than wanted

Curriculum Learning

 Assisting Transfer-Enabled Machine Learning Algorithms: Leveraging Human Knowledge for Curriculum Design (2009)

- Multiple possible goals
 - General knowledge
 - Specific final task

Curriculum Learning

- ML, HCI/HRI, education?
 - Thomaz & Breazeal: Teachable Robots: Understanding Human Teaching Behavior to Build More Effective Robot Learners
 - Roberts & Littman+: Human Experiments
 - Knox+: Understanding Human Teaching Modalities in Reinforcement Learning Environments: A Preliminary Report

Curriculum Learning

- Isbell & Thomaz+ (2010)
 - Training regimens
- Bengio+ (2009)
 - Supervised Learning
- Stanley+
 - Nero Video Game
- Consumer level?
 - How do humans want to pick tasks?
 - Can normal people do this well?

Instructional Scaffolding (1950s)

- Soft scaffolding
 - circulating around room and answering questions / providing feedback
- Hard scaffolding:
 - identify hints/cues before assigning problem

Picking Tasks

Zone of Proximal Development

- Expert state: What learner can do on own
- Pedagogical State: Can be achieved with the support of a instructor

Automatic Curriculum Design?

Meta-planning problem for agent learning

- Post-hoc analysis: determine "optimal curriculum"?
- Model the student essential?

Other Ideas

- Task relatedness measures
 - Bou Ammar+: MDP similarity for TL usefulness

- Intentionality of task sequence:
 - Roberts, Littman+: Dog learning

Helpful?

- Learn the right state features
- How should the state be represented (function approximation)
- Learn a prior over reward functions, policies, etc.
- Build up a library of policies
- Bias action selection
- Set a decent learning rate / tune learning params
- •

Summary

- Leveraging past knowledge sets biases
- Easy way for humans to help agents learn
- Automate curricula creation

- Non-RL applicability?
- Other challenges?
- Where to start?
- Weaknesses in ideas/approach?

- MDP: needs bias. But MDP is a limitation? How do we go beyond by rethinking s/a/timing
- Some easy cases fail: negative transfer
 - What are the steps to go from trivial to complex
 - How can we make this more reliable?
- Disagree that learning is the problem
 - Not good at mobile/manipulate
 - Blame Willow Garage
- Hard to get enough data though from humans....
- Giving a good context for learning (even hard for humans to learn with proper context)
- Training happening in home or in factory/lab?
 - Home: Might require human involvement human isn't prepared
 - Factory: Could be OK if better performance than engineering....

Agents Teaching Agents

- Nick Carboni
 - A few minutes from now
- Lisa Torrey
 - Thursday, F4 Learning 1
 - Teaching on a Budget: Agents Advising Agents in Reinforcement Learning