Reinforcement Learning and Beyond Part II: Transfer Learning in RL Reinforcement To training, and Beyond! Dr. Alessandro Lazaric (Alex) Dr. Matthew E. Taylor (Matt)

Objectives

- Classification of approaches
- TL difficulties in RL domains
 - When: definition and discussion of different transfer problems in RL domains
 - What: overview of popular approaches
 - How: augmenting RL algorithms with TL
- · Future research directions

sequel.futurs.inria.fr/lazaric

teamcore.usc.edu/taylorm

Outline

- 1. Transfer in AI and Machine Learning
 - Matt
- 2. Transfer in Reinforcement Learning
 - Alex, Matt
- 3. Conclusions

Alex

ALA Workshop

Sutton and Barto

L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey. JAIR. 1996.

Reinforcement Learning and Beyond Part II: Transfer Learning in RL

Section 1: Transfer in AI and Machine Learning

Section Outline

- Historical Perspective
- An overview of transfer in Machine Learning
- · Challenges and Goals of TL
- How TL in RL relates to TL in general

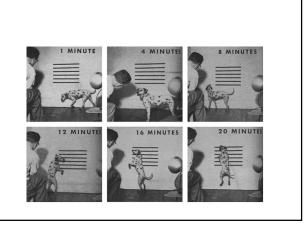
Psychology, Education

- B.F. Skinner
 - "Radical Behaviorism"
 - Schedules of reinforcement (+ or -)
 - from continuous reinforcement to extinction
- Instructional Scaffolding
 - late 50's: language acquisition
 - Sequence of well-timed tasks guide learning

The Theory of Transfer

"Transfer of learning occurs when learning in one context enhances (positive transfer) or undermines (negative transfer) a related performance in another context."

(D. Perkins, G. Salomon, Transfer of Learning, 1992, International Encyclopedia of Education)



Motivations for TL

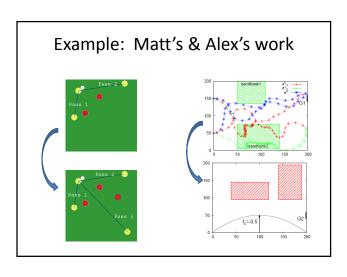
- Learning tabula rasa can be extremely slow
 - Lots of data / time may be needed
 - Every algorithm has biases: why use an uninformed bias?
- · Humans always use past knowledge
 - What knowledge is relevant?
 - How can it be effectively leveraged?

Example: Sebastian Thrun

- Explanation-Based Neural Network Learning:
 A Lifelong Learning Approach
 - PhD thesis, 1995
- Is Learning the nth Thing any Easier than Learning the First?
 - NIPS, 1996
- · Learning to Learn
 - Edited volume (with Lorien Pratt), 1998

Example: Rich Caruana

- Multitask Learning: A Knowledge-Based Source of Inductive Bias
 - ICML 1993
- Learning Many Related Tasks at the Same Time with Backpropagation
 - NIPS 1995
- Algorithms and Applications for Multitask Learning
 - ICML 1996
- · Multitask Learning
 - PhD thesis, 1997



Towards Transfer Learning

- ML-COLT '94 Workshop on Constructive Induction and Change of Representation
 - Towards autonomy
 - Generate / modify representations automatically
- NIPS '95 Workshop on Learning to Learn: Knowledge Consolidation and Transfer in Inductive Systems
 - Capitalize on previously acquired domain knowledge

Challenges and Goals

"Transfer [learning] is a sequential process that influences the performance of learning through the reuse of structured knowledge [collected on previous tasks] and improves the behavior of the agent on new related tasks."

Pat Langle

(Workshop on Structural Knowledge Transfer for Machine Learning, ICML 2006)

More recent TL workshops

- Inductive Transfer: 10 Years Later
 - NIPS 2005
- Structural Knowledge Transfer for Machine Learning
 - ICML 2006
- Transfer Learning for Complex Tasks
 - AAAI 2008

Challenges

- Structured Knowledge
 - Definition
 - Collection
 - Reuse
- Transfer process
- Task-independent Metrics
- Task Relatedness
- · Negative Transfer

An Overview of TL in ML

- Many names
 - Learning to Learn
 - Meta-learning
 - Lifelong Learning
 - Continual Learning
 - Multi-task Learning
 - Inductive Transfer Learning

Hierarchical Bayes

- All the tasks are generated according to a fixed distribution
- Define a hyper-distribution over the task distribution
- Compute the distribution parameters according to the samples collected over all the tasks

An Overview of TL in ML

- Techniques
 - Hierarchical Bayes
 - Regularized Regression
 - Neural Networks
 - Graph Integration

Hierarchical Bayes

- Multi-Task Gaussian Processes
 - Linear functions $f_t(x) = w_t^T x$
 - Task distribution $w_t \sim \mathcal{N}(\mu_w, C_w)$
 - Hyper-prior $(\mu_w, C_w) \sim \mathcal{N}\left(0, \frac{1}{\pi}\right) \mathcal{IW}(\tau, I)$
 - Inference problem: given *m* samples from *n* tasks
 - Posterior $\widehat{w}_t, \widehat{C}_t$
 - Parameters μ_w, C_w
 - Given the parameters it can be used also to improve the performance on new tasks

Hierarchical Bayes

- MTL with Dirichlet Process (DP) priors
 - Tasks often are not homogeneous and belong to different classes
 - Dirichlet Process automatically clusters tasks into classes
 - Define hyper-priors over the DP parameters
 - Use all the samples to refine the DP parameters
 - Given the parameters it can be used also to improve the performance on new tasks

Regularized Regression

- Linear Multi-Task Regularization
 - Independent learning
 - Task clustering (Evgeniou, 2005)

$$\sum_{c=1}^{C}\sum_{t=1}^{T_c}\|w_t-w_{0c}\|^2+\|w_{0c}\|^2$$
 — Graph regularization (Evgeniou, 2005)

$$\sum_{t,\mu}||w_t-w_s||^2A_{t,s}$$

- Common feature space (Argyriou, 2007)

$$\sum_{i}^{d}||w^{i}||_{2}^{2}$$

Regularized Regression

• Single-task Regularized Regression

$$\sum_{i=1}^{n} loss(y_i, f(x_i)) + \lambda ||f||_{STL}$$

where $\|\cdot\|_{STL}$ is a suitable norm (e.g., L2 for linear regression)

• Multi-task Regularized Regression

$$\sum_{t=1}^{T} \sum_{i=1}^{n} loss(y_{i,t}, f_{t}(x_{i,t})) + \lambda ||\boldsymbol{f}||_{MTL}$$

where $\|\cdot\|_{MTL}$ forces the tasks to be *similar*

Related Paradigms

- · Lifelong Learning
 - Less clear task boundaries (spatial / temporal)
 - Prepare for anything
- · Imitation / Demonstration Learning
 - Watching a similar agent or human
- Direct Human Advice
 - Action suggestion
 - Direct knowledge injection
- Shaping
 - Reward function
 - Human modifies reward function over time

Goals • Improve performance over non-transfer learning — Sample Complexity — Jumpstart — Learning speed — Final performance — Asymptotic Performance — Asymptotic Performance

Reinforcement Learning and Beyond Part II: Transfer Learning in RL

Section 2: Transfer in Reinforcement Learning

How TL in RL relates to TL in general

- RL is the most general learning paradigm
 - Approximation
 - Exploration/exploitation
- · More challenging than in supervised
 - Large number of scenarios
 - Many different types of knowledge can be transferred
 - Difficult to asses the contribution of transfer to the learning performance
- Many possible goals
- Many possible applications