Reinforcement Learning and Beyond
Part II: Transfer Learning in RL

Section 2: Transfer in Reinforcement Learning

Section Outline

Introduction to RL

The dimensions of transfer
— task relatedness

— transferred knowledge

— learning algorithms

Transfer between tasks with same state-action variables
— From one source task to one target task
— From many source tasks to one target task
— Multitask learning: Learning a distribution of tasks

Transfer between tasks with different state-action variables
— No explicit mapping
— Mapping state variables and actions between tasks
— Learning the inter-task mapping

Section Outline

¢ Introduction to RL

Introduction to RL

* See Part I of the tutorial
* Here we briefly recall basic concepts and notation

Introduction to RL

ay Markov Decision
Process

critic

environment

Sample ‘

(s,a,s 1)

|||

VI |||«

VI =

VIV
VIV

Policy Value Function

Introduction to RL

* Markov Decision Process

M = SARm

States / / \ Transition

Actions Reward model
function

Introduction to RL

e Markov Decision Process
—(S. A R P

\My LRy L1y 2

~—

P(stt1lst, at, ..., 80,a0) = P(st41]st, ar)

T

Markov
property

Introduction to RL

e Markov Decision Process
(S AR

\M g LRy L1y 2

\/

P(si1|se,aey. ..y S0,a0) = P(st+1|s¢, at)

* (Deterministic) Policyr : S — A
* Value functions

Ex ZVtR(St,W(St))\So = 3]

t=0

V7Ti(s) =

E, Z’YtR(St,W(St)NSo =s,a0=a

t=0

Qﬂ(sv a) -

|

Introduction to RL

* Optimal value functions

acA

S
(e 7Y — Plec 4) L ~UF(
\z{ \o,w} JL\O,M}T)’V \O)

* Optimal policy

* o *
7" (s) = arg rgleaj(Q (s,a)

Introduction to RL

Learning Curve

St+1

St

Performance

Experience

Introduction to RL

* On-line algorithms: learning as collecting samples

Q(s,a) — (1 - 0)Q(s,0) + 0 (R<s, @)+~ max Q(s’,a/)>

Introduction to RL

* Batch algorithms (FQI)

Q) =arg ggg; (Q(s:,a:) = Rlsi, ai)]”

iy — - a = Ris a Sh=lio
Q" () a’f“gglelg;[Q(suaq,) (R(sl,a1)+7§g§(9 (mm)ﬂ

2

Section Outline

* The dimensions of transfer
— task relatedness
— transferred knowledge
— learning algorithms

Task Differences

* Goal (reward function)

M1:<57A7R17P> M2:<S7A7R27P>

* Dynamics (transition model)

Mi = (S, A, R, P,) Mo = (S, A, R, P»)

* Domain (state-action space / features)

My = (S1. AL, R, P) Ma = (Sy, Ay, R, P)

Transferred Knowledge

Structural Transfer

Experience Transfer

Task Solution Samples Value Polic
Representation Representation P Function Y

AN &

* Task representation
— Action space (e.g., options,
task decomposition)
— Reward function
Solution representation
— Basis function

o AY,(E\’,
: LN

v

Samples

— Collected through direct
exploration

* Value function / policy

— Solution initialization

Type of Learning Algorithm

* Online vs. Offline (batch)

— Online: bias the learning/exploration process

— Offline: bias the approximation of the value
function

* Model based (model learning) vs. Model free

— Model based: high-level common structure among
the MDPs

— Model free: low-level similarities among the
MDPs

The Dimensions of Transfer Transfer Metrics

Learning * Domain Dependant
algorithm iterature covers many A . £
combinations but: — Asymptotic performance
— Jumpstart
Task — Total reward
- he choice of the algorithm
differences _ : :
influences the knowledge that Learning time
Transferred can be transferred
knowledge .
* Domain Independent
3 ' _ ?
he effectiveness of the
transferred knowledge depends
on the task
differences/relatedness
Transfer Metrics Section Outline
Better Prior Better Bias
Jumpstart Improvement Speed Improvement
Y ‘ Y Y
5 g
£
G kel
& é
* Transfer between tasks with same state-action variables
Experience Experience
— From one source task to one target task
Better Learning — From many source tasks to one target task
Generalizatfiforovement — Multitask learning: Learning a distribution of tasks

Performance

-
CXpErience

Section Outline 1-to-1: the Scenario

* One source task

— Collect some knowledge (e.g., samples, solution,
abstraction, ...)

* One target task

* Transfer between tasks with same state-action variables — Very few information is available
— From one source task to one target task
— From many source tasks to one target task o Assumption: same state-action space

— Multitask learning: Learning a distribution of tasks

I-to-1: Example 1-to-1: Example
My My

=\

2\ F
BSZ &=

I-to-1: Example

I-to-1: Example

1-to-1: Formalization

« MDPs M, = (S, A, Ry, P) Ma = (S, A, Ry, P5)
i Knowledge Km (e.g.,ICM = {(bq, a;,ri, S/>}7S'n

)
v
AKa) = {W/ ©
* Learning Algorithm
T("Cf\"{) = "C.//‘vi

e Transfer function

1-to-1: Formalization

* Transfer process

1. Collect Kaq, from the source task
Collect K, from the target task
Transfer 7 (K g, [Kat,) = Kl
Learn A (K, UK)y,)

5. Evaluate the performance

Ll

Points 2. 3. 4. can be reiterated

I-to-1: Challenges

* Which knowledge to transfer?

— The choice depends on the task relatedness (e.g.,
similar optimal policy, similar optimal value
function, etc.) and on the learning algorithm (e.g.,
batch algorithms cannot be initialized)

* How to transfer the knowledge?

— Direct transfer: use source knowledge in the target
task as it is (e.g., Q-table initialization)

— Transformation of source knowledge according to
target structure

I-to-1: A Representative Algorithm (1)

“Proto-Transfer Learning in Markov Decision
Processes Using Spectral Methods” (Mahadevan,
Ferguson, 2006)

e The idea: extract basis functions from the source
task and reuse them in tasks with similar “graph”

» Task difference: goal and dynamics (and domain)
* Transferred knowledge: solution representation
* Learning algorithm: model-free batch

* Metric: generalization

I-to-1: A Representative Algorithm (1)

source task

Basis function extraction -

(spectral method)

Q

I-to-1: A Representative Algorithm (1) I-to-1: A Representative Algorithm (1)

target task

Knowledge (input of LSPI)
K= {{<Si7 i, Ty, S;>}7 ‘70}

/

Samples

functions

Collect K, = {{{si, @i, 74, 8;) bi<n, 0}

©

Vector of basis

Transfer of basis

functions arcet task
= * Transfer 7 (K,) = {0, ¢} = Ky,
° COHCCtICM2 ey {{<3]7a]7TJ78,7>}j§1717®} m<<n
T * Run A (ICMz U Iq\/lz)
I-to-1: A Representative Algorithm (1) 1-to-1: A Representative Algorithm (1)
* Pros
— Proto-value functions can be reused in many
ﬁﬁ’rel)'a % m g‘("r;& ﬁ;%%;\k different tasks independently from how similar the
Prob. of success | 100% __[|/100% _ \|A00% \|A00% \ f00% optimal value functions are
Avg. # of steps || 14.8+2.1 || 13.6+2.1 | 14.9+3.0 \J73+£12 |74+£12
Min/Max steps || [5,27] [4,22] 5, 24] [3,13] [2,11] e Cons
Avg. total 26.2£5.6 | 30.0£7.1) 29.2+88 | 53.5£6.5 ||53.1+£7.3
discounted rew. || __ - - - 5 — The ““shape” of the optimal value function depends
convergence / \ \ \ / also on the reward function (see (Ferrante et al.,

2008))

I-to-1: A Representative Algorithm (2)

“Metrics for finite Markov decision processes”
(Ferns et al., 2005)

* The idea: define a metric on the MDPs that can be
used to bound the transfer performance

» Task difference: goal and dynamics
* Transferred knowledge: (optimal) policy
* Learning algorithm: model-based

* Metric: learning time (in terms of computational
cost)

I-to-1: A Representative Algorithm (2)

* Assumption: both models are available but they

are computationally expensive to solve

* Compute a (nearly-optimal) policy on the source

task and reuse it in the target task

* How far is the transfer performance from the
optimal one given the (low-level) difference
between the two MDPs?

I-to-1: A Representative Algorithm (2)

« MDP distance

(](S’) = max (!R}(S,, ﬂ) - RQ(S’/ (7)! + Tk \d) \Pl (Sa a‘)a Py 5 n)))
T a€A \
Distance Kantorovich
in state s distance
* Transfer performance
IV = Vil < o maxd(s) + 1oV — 7|
~ 1—c ses l1-c

/

Performance
of m, in M,

1-to-1: A Representative Algorithm (2)

* Pros
— Given the model difference provides a bound over
the transfer performance
e Cons
— It is not a transfer algorithm (direct transfer of the
policy)
— The MDP metric can be computationally
expensive

I-to-1: A Representative Algorithm (3) I-to-1: A Representative Algorithm (3)

¢ Few actions are really useful to solve the problem

“Improving Action Selection in MDP’s via
Knowledge Transfer” (Sherstov and Stone, 2005)

e The Idea: in problems with large/infinite number of e w. » empty
actions, only few are really necessary (e.g., the Baker : ' X =i 1 I wall
Task), then transfer of the action set from source to O B quicksand
target ——=Iif :
: R e e e @© goal
» Task differences: goal and dynamics
* Learning algorithm: model-free, online (any?)
* Metric: learning time
I-to-1: A Representative Algorithm (3) 1-to-1: A Representative Algorithm (3)
* The source task could be not representative * Optimal policies in the perturbed sources
enough Kam, = {n}}
* Random Task Perturbation (RTP) o
_ » Extract an optimal action space
— Generates series of source tasks
T(Kam,) = A

— Guard against misleading source tasks

» Extended by Leffler et al. (2007) to speed up
single task learning

......... e cmptly
R Em I wan

...{ : . quicksand
WP @ goal

I-to-1: A Representative Algorithm (3) 1-to-1: Conclusion

* Pros * Most straightforward type of transfer
— Bias the learning towards “useful” actions * The transfer mechanism is strictly related with the
— Can be used with any learning algorithm learning algorithm
* Cons * Open Problems
— Removing actions could prevent from learning the — How task similarity influences the performance of
optimal policy (but the loss could be bounded) transfer
— Proof of transfer advantage over learning from
scratch
— Connections with domain adaptation in (semi-
)supervised learning
Section Outline N-to-1: the Scenario

Set of source tasks
— Collect knowledge from each of them

One target task

Selectively transfer source knowledge to the

* Transfer between tasks with same state-action variables
target task
— From one source task to one target task
— From many source tasks to one target task
— Multitask learning: Learning a distribution of tasks

Assumption: same state-action space

N-to-1: Example N-to-1: Example
M Mo

N-to-1: Example N-to-1: Challenges

My

----- < * Merge different sources of knowledge

 Select sources similar to the target task

* Avoid negative transfer

N-to-1: Formalization N-to-1: Formalization
* Source MDPs: M; = (S, A, R;, P;), 1 <i<N * Transfer process
e Target MDP:M; = (S, A, Ry, P;) 1. Collect Kpq,, 1 <i< N
* Selection function: F ({Ku, }) = {Ky, } 2. Collect K,
* Transfer function: 7 (K'y,,) = Kiy,, 3. Select sources and knowledge F ({Ku,}) = {Ky, }
* Learning algorithm: 4. Transfer T (Kiy,) = Kl
[N \ N \
AKU /Cﬁ\/ltU/CMt) 5. LearnAkU}Cj\AtulCMt)
i=1 i=1

The process can be reiterated

N-to-1: A Representative Algorithm

“Transfer of samples in batch reinforcement
learning” (Lazaric et al., 2008)

* The idea: selectively reuse samples on the basis of
their likelihood in the target task

* Task difference: goal and dynamics
* Transferred knowledge: samples
* Learning algorithm: model-free batch

* Metric: learning time

N-to-1: A Representative Algorithm

Kernel-based
sources Mode/
Q Approximation
target
transfer of
samples
Posterior
Distribution m o
on Tasks Clustering-like
Algorithm
_ >

compliance relevance

N-to-1: A Representative Algorithm

* Knowledge K = {(s;,a;,75,57)}
e Collect Cprq,, 1<i<N

* Collect Ky,

* Compute compliance/relevance for each source
* Select knowledge F ({Ku,}) = {K)\, }

* Transfer samples as they are K/, = K’

N
* Run 4 <U K, U/CMt>

i=1

N-to-1: A Representative Algorithm

* Source tasks selection
* Likelihood of target samples to be generated by
the source tasks (compliance)
Aj=PWMilr;) o P(ri| M) P(M;)
= Pm,(8)ls5:a5) R, (1555, aj) P(M;)

_ ’
where 7; = (sj,a;,5;,7;) € K,

-

1 ‘]CMt|
YRTE oI Z A P(M,)

Jj=1

N-to-1: A Representative Algorithm

* Compliance: task similarity in terms of likelihood
of target samples to be generated by source tasks

A = !
My —
’/C]Vh‘

|’C Tf,l
: AY TY/ A 4 N\
=1

M

)

* The higher the compliance (probability of target
samples to be generated by the source task), the
higher the probability to be transferred

N-to-1: A Representative Algorithm

* Source samples selection

* Among source samples select those which are
more similar/informative to the target task

Total Reward

N-to-1: A Representative Algorithm

]
S K o
301 /[(.
1.4 ay
40] 7 b
/ ©
/ o
-50 o/ @
* @
60 T/ T2 <
/ No Transfer —+—
70 1/t Random
/ Compliance © %
80/ Relevance —3—

50 250 450 650 850 1050 1250
Number of sampies (x100)

Random Comp. Relevance

N-to-1: A Representative Algorithm

* Pros
— Effective method to select sources and samples
— Avoid negative transfer

* Cons

— Difficult to relate the difference between the
samples and the difference between the solutions

— Tasks may have different models but similar
solutions

N-to-1: Conclusions

* The selection of source tasks is critical

* Not all the types of knowledge can be easily
merged among different tasks

* Open problems
— Towards an open-ended transfer process
— Tasks with different state-action space

— Transfer from very different tasks may result in
positive transfer

Section Outline

» Transfer between tasks with same state-action variables
— From one source task to one target task
— From many source tasks to one target task
— Multitask learning: Learning a distribution of tasks

MTL: the Scenario

* A set of tasks is given (e.g., drawn from a fixed
distribution)

* Compute a solution for each of them trying to
exploit their similarity

MTL: Example

O

> Task Space \

Task Distribution

AN - e - e \ " 4
My My My

MTL: Challenges

* Definition of similarity/relatedness

— Similar solutions (e.g., weights of the linear
function approximator)

— Similar structure (e.g., similar reward functions)
— Common generative model
* Definition of an algorithm able to exploit the

relatedness (e.g., if the tasks are G-related then
the algorithm is able to improve the performance)

MTL: Formalization

* MDPs: M, = <S,A,RZ‘,PZ‘>, 1< <N

 Similarity function (the definition is highly
dependent on the algorithm):

G({M:})

 Joint learning algorithm:

AKi}HG)

MTL: Formalization

* Transfer process
I. Collect Kpy,, 1<i <N

2. Compute similarity G({M;}) using{i;}
3. Learn A({K;}|G)

The process can be reiterated

MTL: A Representative Algorithm (1)

“Multi-Task Reinforcement Learning: A

Hierarchical Bayesian Approach” (Wilson et al.,
2007)

* The idea: tasks belong to different classes drawn
from a fixed distribution

 Task difference: goal and dynamics
* Transferred knowledge: task structure
* Learning algorithm: model-based batch

* Metric: learning time

MTL: A Representative Algorithm (1)

Task Class Prior "
T

@hlet Process

Class 1 Class i Class K
N (g1, 21)/ \ N{px, E;% }
|
N AN
A A A N

MTL: A Representative Algorithm (1)

e Similarity function G
— Hierarchical generative model

— Define a prior over the distribution of the
(parameters of the) tasks

* Algorithm
— Use all the samples to refine G
— Use task-specific samples to learn the model

MTL: A Representative Algorithm (1)

* Given a suitable parameterization of the MDPs

Given the hierarchical model parameters

Collect enough samples from each

Compute the parameters and the MDP with an
EM-like algorithm

— E-step M, «— SampleMAP(Pr(M|K;, 7))
— M-step ¥ — SampleMAP(Pr(\I/]M\L e ,./T/I\N))

MTL: A Representative Algorithm (1)

156x15 Map, Fixed Goal Location 20x20 Map,4 Locations,8 Colors

120 | X10
1
n . G - i * T A |
122 4 S e g A A e o VAN AT S A, AP W LA
iR T |2 | [Sy RVl
f prrton F T Y ¥+ uw#"'
T R
124 ¢ = |
g 4 |
H
z 1
-126 B
B
g |
1) el
128 < |
: g7 |
#— 0 MDPs i) - — - Single Task RL
_130 4 MDPs 8t | —— HB MTRL Algorithm
&— B MDPs 1
]
16 MDPs | 9 Tu‘
132 “)‘1
-10
0 5 10 15 20 25 30 35 40 45 50 o 20 40 60 80
Number of Steps X 50 # Experienced Environments

MTL: A Representative Algorithm (1)

* Pros

— Once the hyper-parameters are tuned, it can be
used also in the N-to-1 scenario

— Tasks can belong to different classes
e Cons

— The complexity of the generative model requires
many samples to estimate the hyper-parameters

— Focus on the MDPs but does not relate their
solutions

MTL: A Representative Algorithm (2)

“Knowledge transfer in Reinforcement Learning”
(Lazaric, 2008)

The idea: tasks share the same underlying feature
space

Task difference: goal and dynamics

Transferred knowledge: solution representation

Learning algorithm: model-free batch

Metric: generalization

MTL: A Representative Algorithm (2)

Navigation problem
5 features
30 tasks

Multi-Task
Feature Learning

5 10 15 20 25 30
Tasks

No Multi-Task learning
is possible!

0.8
- -06

0.2
-0.2
-0.4

-0.6
-0.8

5 10 15 20 25 30

MTL: A Representative Algorithm (2)

* Multi-task feature learning (Argyriou, 2008)
T m
s(W,U) = loss(yu, (wi, Ul () + AMWI[5,
t=1 =1
* Learn features and weights such that each task
share the same feature space
* Integration into a FQI algorithm at each iteration

MTL: A Representative Algorithm (2)

Colored Grid World Problem

]

I VTFL-1

I TFL-2

IV TFL-5

[MTFL-10

ERMTFL-15
I III II IEIMTFL-20
i |

3.5

o w

2.

MSE
- l_); n

0.5

0

50 100 150 200 250 300 350 2 3
Number of samples Number of variables

MTL: A Representative Algorithm (2)

Boat Problem

il

Total Reward

/
/

L o 4 v ow oA o

Independent ——
MTFL-4

250 500 750 1000 1250 1500 1750 2000
Number of samples

MTL: A Representative Algorithm (2)

e Pros

— Automatically change the feature space in order to
take advantage the most the task similarity

— Improve the generalization capabilities
* Cons

— The feature space may be different at each iteration

MTL: Conclusions

* Many possible models of relatedness
* Most common perspective in supervised learning
* Open problems

— Difference between similarity of models and of
solutions

— Find and exploit relationships with supervised
learning literature

— Definition of algorithms provably able to exploit
task relatedness and to avoid negative transfer

