Reinforcement Learning and Beyond Part II: Transfer Learning in RL

Section 2: Transfer in Reinforcement Learning

Section Outline

- Introduction to RL
- The dimensions of transfer
 - task relatedness
 - transferred knowledge
 - learning algorithms
- Transfer between tasks with same state-action variables
 - From one source task to one target task
 - From many source tasks to one target task
 - Multitask learning: Learning a distribution of tasks
- Transfer between tasks with different state-action variables
 - No explicit mapping
 - Mapping state variables and actions between tasks
 - Learning the inter-task mapping

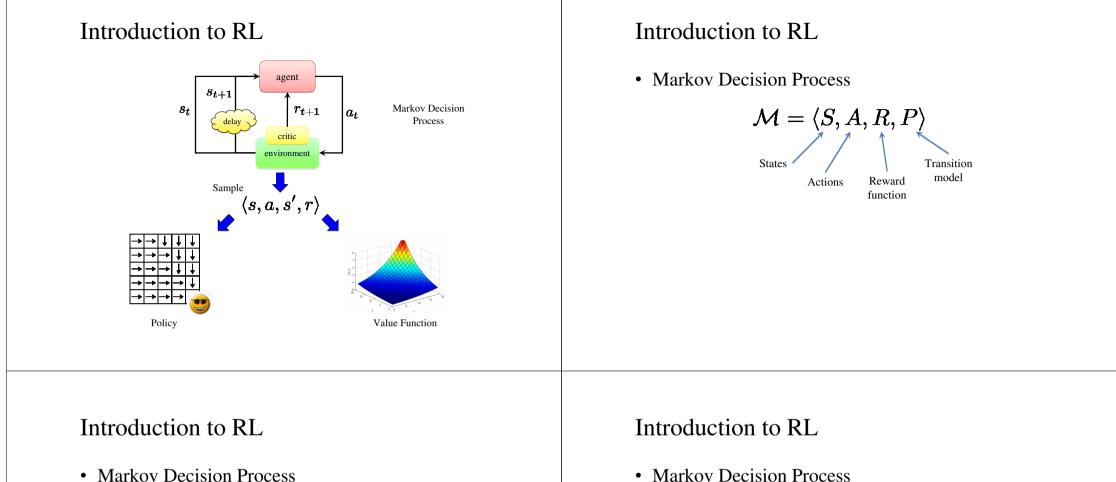
Section Outline

• Introduction to RL

- The dimensions of transfer
 - task relatedness
 - transferred knowledge
 - learning algorithms
- Transfer between tasks with same state-action variables
 - From one source task to one target task
 - From many source tasks to one target task
 - Multitask learning: Learning a distribution of tasks
- Transfer between tasks with different state-action variables
 - No explicit mapping
 - Mapping state variables and actions between tasks
 - Learning the inter-task mapping

Introduction to RL

- See *Part I* of the tutorial
- Here we briefly recall basic concepts and notation



 $\mathcal{M} = \langle S, A, R, P \rangle$ $P(s_{t+1}|s_t, a_t, \ldots, s_0, a_0) = P(s_{t+1}|s_t, a_t)$ Markov property

Markov Decision Process

 $\mathcal{M} = \langle S, A, R, P \rangle$

 $P(s_{t+1}|s_t, a_t, \dots, s_0, a_0) = P(s_{t+1}|s_t, a_t)$

- (Deterministic) Policy $\pi: S \to A$
- Value functions $V^{\pi}(s) = \mathbb{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, \pi(s_{t})) | s_{0} = s
 ight]$ $Q^{\pi}(s,a) = \mathbb{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t,\pi(s_t)) | s_0 = s, a_0 = a
 ight]$

Introduction to RL

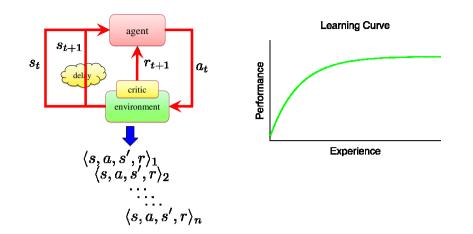
• Optimal value functions

$$V^{*}(s) = \max_{a \in A} \sum_{s'} P(s'|s, a) \left(R(s, a) + \gamma V^{*}(s') \right)$$
$$Q^{*}(s, a) = R(s, a) + \gamma V^{*}(s')$$

• Optimal policy

$$\pi^*(s) = arg \max_{a \in A} Q^*(s,a)$$

Introduction to RL



Introduction to RL

• On-line algorithms: learning as collecting samples

$$Q(s,a) \leftarrow (1-lpha)Q(s,a) + lpha \left(R(s,a) + \gamma \max_{a' \in A} Q(s',a')
ight)$$

Introduction to RL

• Batch algorithms (FQI)

$$Q^{0}(\cdot, \cdot) = \arg \min_{Q \in \mathcal{F}} \sum_{i=1}^{n} \left[Q(s_{i}, a_{i}) - R(s_{i}, a_{i}) \right]^{2}$$
$$Q^{k}(\cdot, \cdot) = \arg \min_{Q \in \mathcal{F}} \sum_{i=1}^{n} \left[Q(s_{i}, a_{i}) - \left(R(s_{i}, a_{i}) + \gamma \max_{a' \in A} Q^{k-1}(s_{i+1}, a') \right) \right]^{2}$$

Section Outline

- Introduction to RL •
- The dimensions of transfer •
 - task relatedness
 - transferred knowledge
 - learning algorithms
- Transfer between tasks with same state-action variables .
 - From one source task to one target task
 - From many source tasks to one target task
 - Multitask learning: Learning a distribution of tasks
- Transfer between tasks with different state-action variables
 - No explicit mapping
 - Mapping state variables and actions between tasks
 - Learning the inter-task mapping

Task Differences

• Goal (reward function)

$$\mathcal{M}_1 = \langle S, A, \frac{R_1}{P}, P \rangle$$
 $\mathcal{M}_2 = \langle S, A, \frac{R_2}{P}, P \rangle$

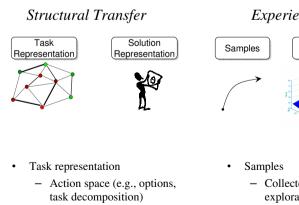
• Dynamics (transition model)

 $\mathcal{M}_2 = \langle S, A, R, \frac{P_2}{2} \rangle$ $\mathcal{M}_1 = \langle S, A, R, \mathbf{P}_1 \rangle$

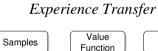
• Domain (state-action space / features)

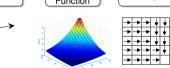
 $\mathcal{M}_1 = \langle S_1, A_1, R, P \rangle$ $\mathcal{M}_2 = \langle S_2, A_2, R, P \rangle$

Transferred Knowledge



- Reward function
- Solution representation
 - Basis function





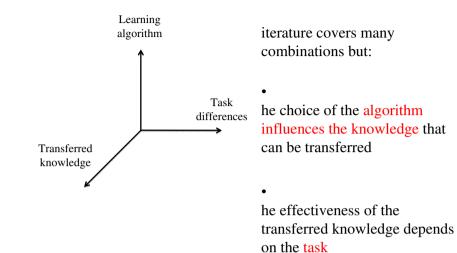
Policy

- Collected through direct exploration
- Value function / policy
 - Solution initialization

Type of Learning Algorithm

- Online vs. Offline (batch)
 - Online: bias the learning/exploration process
 - Offline: bias the approximation of the value function
- Model based (model learning) vs. Model free
 - Model based: high-level common structure among the MDPs
 - Model free: low-level similarities among the **MDPs**

The Dimensions of Transfer

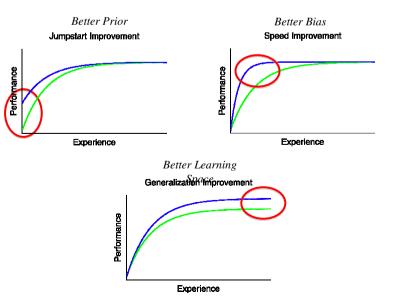


differences/relatedness

Transfer Metrics

- Domain Dependant
 - Asymptotic performance
 - Jumpstart
 - Total reward
 - Learning time
- Domain Independent
 ?

Transfer Metrics



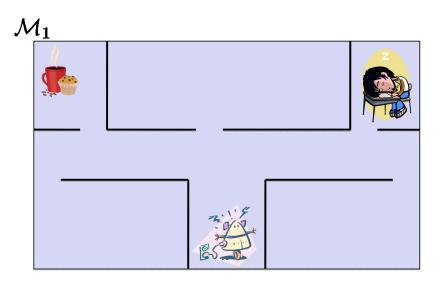
Section Outline

- Introduction to RL
- The dimensions of transfer
 - task relatedness
 - transferred knowledge
 - learning algorithms
- Transfer between tasks with same state-action variables
 - From one source task to one target task
 - From many source tasks to one target task
 - Multitask learning: Learning a distribution of tasks
- Transfer between tasks with different state-action variables
 - No explicit mapping
 - Mapping state variables and actions between tasks
 - Learning the inter-task mapping

Section Outline

- Introduction to RL
- The dimensions of transfer
 - task relatedness
 - transferred knowledge
 - learning algorithms
- Transfer between tasks with same state-action variables
 - From one source task to one target task
 - From many source tasks to one target task
 - Multitask learning: Learning a distribution of tasks
- Transfer between tasks with different state-action variables
 - No explicit mapping
 - Mapping state variables and actions between tasks
 - Learning the inter-task mapping

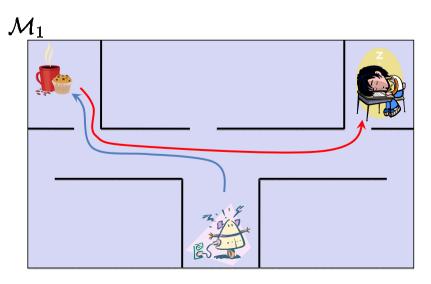
1-to-1: Example



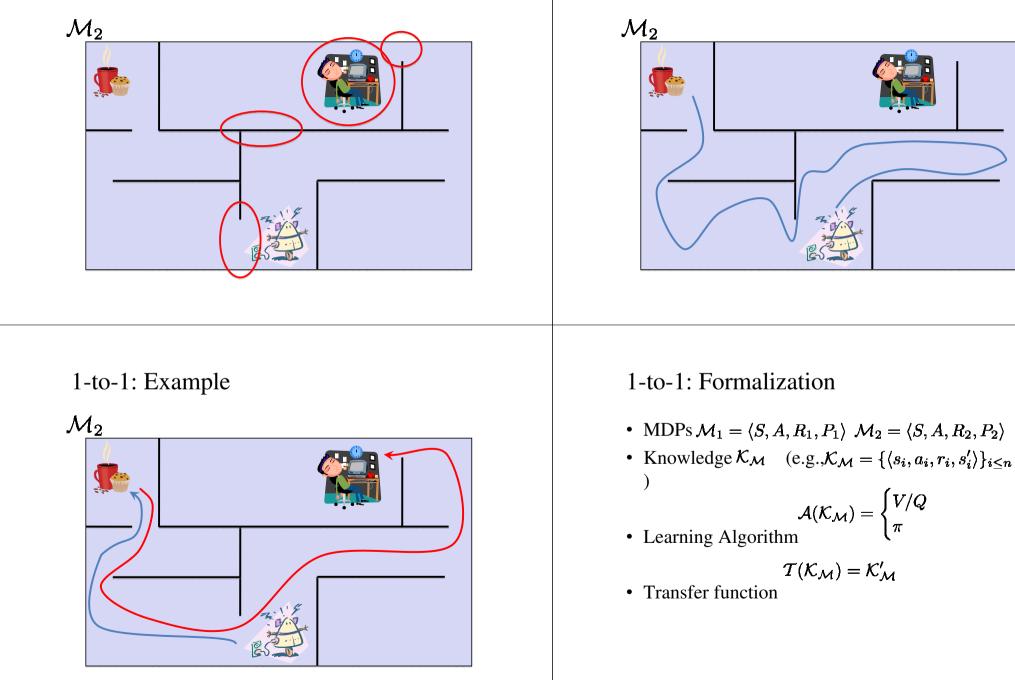
1-to-1: the Scenario

- One source task
 - Collect some knowledge (e.g., samples, solution, abstraction, ...)
- One target task
 - Very few information is available
- Assumption: same state-action space

1-to-1: Example



1-to-1: Example



1-to-1: Example

1-to-1: Formalization

- Transfer process
 - 1. Collect $\mathcal{K}_{\mathcal{M}_1}$ from the source task
 - 2. Collect $\mathcal{K}_{\mathcal{M}_2}$ from the target task
 - 3. Transfer $\mathcal{T}(\mathcal{K}_{\mathcal{M}_1}|\mathcal{K}_{\mathcal{M}_2}) = \mathcal{K}'_{\mathcal{M}_2}$
 - 4. Learn $\mathcal{A}\left(\mathcal{K}_{\mathcal{M}_2} \cup \mathcal{K}'_{\mathcal{M}_2}\right)$
 - 5. Evaluate the performance

Points 2. 3. 4. can be reiterated

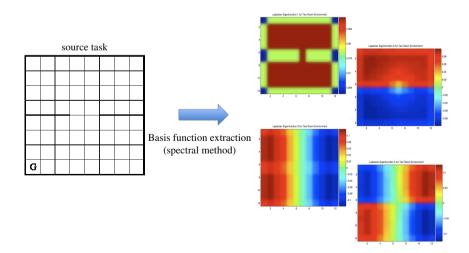
1-to-1: A Representative Algorithm (1)

- "Proto-Transfer Learning in Markov Decision Processes Using Spectral Methods" (Mahadevan, Ferguson, 2006)
- *The idea*: extract basis functions from the source task and reuse them in tasks with similar "graph"
- Task difference: goal and dynamics (and domain)
- Transferred knowledge: solution representation
- Learning algorithm: model-free batch
- Metric: generalization

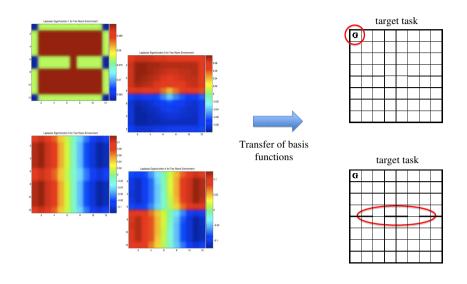
1-to-1: Challenges

- Which knowledge to transfer?
 - The choice depends on the task relatedness (e.g., similar optimal policy, similar optimal value function, etc.) and on the learning algorithm (e.g., batch algorithms cannot be *initialized*)
- How to transfer the knowledge?
 - Direct transfer: use source knowledge in the target task as it is (e.g., Q-table initialization)
 - Transformation of source knowledge according to target structure

1-to-1: A Representative Algorithm (1)



1-to-1: A Representative Algorithm (1)



1-to-1: A Representative Algorithm (1)

- Knowledge (input of LSPI) $\mathcal{K} = \{\{\langle s_i, a_i, r_i, s'_i \rangle\}, \varphi\}$ $\mathcal{K} = \{\{\langle s_i, a_i, r_i, s'_i \rangle\}, \varphi\}$ Vector of basis functions
- Collect $\mathcal{K}_{\mathcal{M}_1} = \{\{\langle s_i, a_i, r_i, s'_i \rangle\}_{i \leq n}, \emptyset\}$
- Transfer $\mathcal{T}(\mathcal{K}_{\mathcal{M}_1}) = \{\emptyset, \varphi\} = \mathcal{K}'_{\mathcal{M}_2}$
- Collect $\mathcal{K}_{\mathcal{M}_2} = \left\{ \{ \langle s_j, a_j, r_j, s'_j \rangle \}_{j \le m}, \emptyset \right\} \ m \ll n$
- Run $\mathcal{A}\left(\mathcal{K}_{\mathcal{M}_{2}}\cup\mathcal{K}_{\mathcal{M}_{2}}'\right)$

1-to-1: A Representative Algorithm (1)

	1				
	Exp 1.a	Exp 1.b	Exp 1.b	Exp 1.c	Exp 1.c
	(pure)	(pure)	(transfer)	(pure)	(transfer)
Prob. of success	100%	100%	100%	100%	100%
Avg. $\#$ of steps	14.8 ± 2.1	13.6 ± 2.1	14.9 ± 3.0	7.3 ± 1.2	7.4 ± 1.2
Min/Max steps	[5, 27]	[4, 22]	[5, 24]	[3, 13]	[2, 11]
Avg. total	26.2 ± 5.6	30.0 ± 7.1	29.2 ± 8.8	53.5 ± 6.5	53.1 ± 7.3
discounted rew.				λ.	X I
Iterations to	19	16	11	12	12
convergence		\land			\backslash

1-to-1: A Representative Algorithm (1)

- Pros
 - Proto-value functions can be reused in many different tasks independently from how similar the optimal value functions are
- Cons
 - The "shape" of the optimal value function depends also on the reward function (see (Ferrante *et al.*, 2008))

1-to-1: A Representative Algorithm (2) 1-to-1: A Representative Algorithm (2) • "Metrics for finite Markov decision processes" • Assumption: both models are available but they are computationally expensive to solve (Ferns *et al.*, 2005) • *The idea*: define a metric on the MDPs that can be • Compute a (nearly-optimal) policy on the source used to bound the transfer performance task and reuse it in the target task • *Task difference*: goal and dynamics • *How far is the transfer performance from the* optimal one given the (low-level) difference • *Transferred knowledge*: (optimal) policy between the two MDPs? • Learning algorithm: model-based • *Metric*: learning time (in terms of computational cost) 1-to-1: A Representative Algorithm (2) 1-to-1: A Representative Algorithm (2) • MDP distance • Pros - Given the model difference provides a bound over $d(s) = \max_{a \in A} \left(|R_1(s, a) - R_2(s, a)| + cT_K(d)(P_1(s, a), P_2(s, a)) ight)$ the transfer performance • Cons Distance Kantorovich in state s distance

• Transfer performance

$$||V_{2}^{\pi_{1}} - V_{2}^{*}|| \leq \frac{2}{1 - c} \max_{s \in S} d(s) + \frac{1 + c}{1 - c} ||V_{1}^{\pi_{1}} - V_{1}^{*}||$$
Performance
of π_{1} in M_{2}

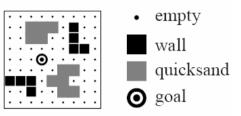
- It is not a transfer algorithm (direct transfer of the policy)
- The MDP metric can be computationally expensive

1-to-1: A Representative Algorithm (3)

- "Improving Action Selection in MDP's via Knowledge Transfer" (Sherstov and Stone, 2005)
- *The Idea*: in problems with large/infinite number of actions, only few are really necessary (e.g., the Baker Task), then transfer of the action set from source to target
- Task differences: goal and dynamics
- *Learning algorithm*: model-free, online (any?)
- *Metric*: learning time

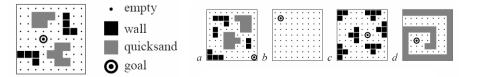
1-to-1: A Representative Algorithm (3)

• Few actions are really useful to solve the problem



1-to-1: A Representative Algorithm (3)

- The source task could be *not representative* enough
- Random Task Perturbation (RTP)
 - Generates series of source tasks
 - Guard against misleading source tasks
- Extended by Leffler et al. (2007) to speed up single task learning



1-to-1: A Representative Algorithm (3)

• Optimal policies in the perturbed sources

$$\mathcal{K}_{\mathcal{M}_1} = \{\pi_i^*$$

• Extract an optimal action space

$$\mathcal{T}(\mathcal{K}_{\mathcal{M}_1}) = A$$

1-to-1: A Representative Algorithm (3)

• Pros

- Bias the learning towards "useful" actions
- Can be used with any learning algorithm

• Cons

 Removing actions could prevent from learning the optimal policy (but the loss could be bounded)

1-to-1: Conclusion

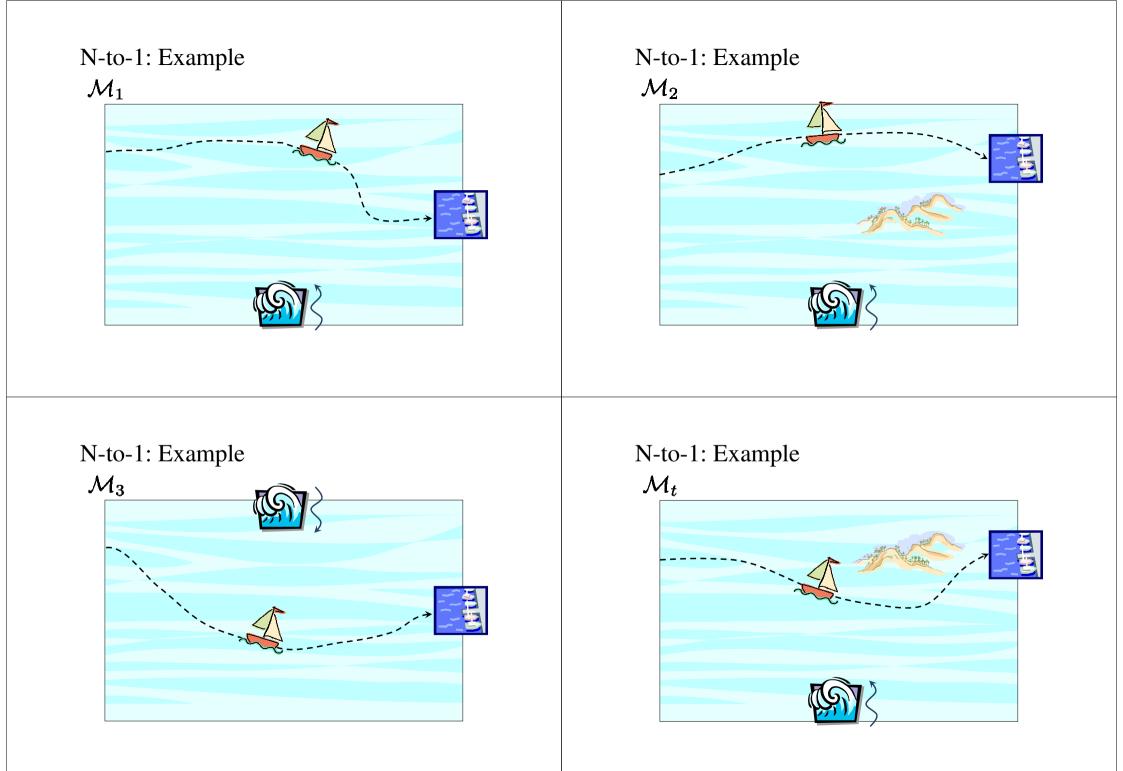
- Most straightforward type of transfer
- The transfer mechanism is strictly related with the learning algorithm
- Open Problems
 - How task similarity influences the performance of transfer
 - Proof of transfer advantage over learning from scratch
 - Connections with domain adaptation in (semi-)supervised learning

Section Outline

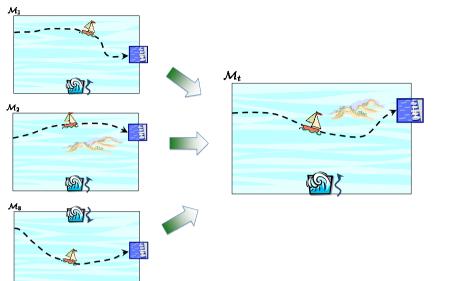
- Introduction to RL
- The dimensions of transfer
 - task relatedness
 - transferred knowledge
 - learning algorithms
- Transfer between tasks with same state-action variables
 - From one source task to one target task
 - From many source tasks to one target task
 - Multitask learning: Learning a distribution of tasks
- Transfer between tasks with different state-action variables
 - No explicit mapping
 - Mapping state variables and actions between tasks
 - Learning the inter-task mapping

N-to-1: the Scenario

- Set of source tasks
 - Collect knowledge from each of them
- One target task
- Selectively transfer source knowledge to the target task
- Assumption: same state-action space



N-to-1: Example



N-to-1: Challenges

- Merge different sources of knowledge
- Select sources similar to the target task
- Avoid negative transfer

N-to-1: Formalization

- Source MDPs: $\mathcal{M}_i = \langle S, A, R_i, P_i \rangle, \ 1 \le i \le N$
- Target MDP: $\mathcal{M}_t = \langle S, A, R_t, P_t \rangle$
- Selection function: $\mathcal{F}(\{\mathcal{K}_{\mathcal{M}_i}\}) = \{\mathcal{K}'_{\mathcal{M}_i}\}$
- Transfer function: $\mathcal{T}(\mathcal{K}'_{\mathcal{M}_i}) = \mathcal{K}^i_{\mathcal{M}_t}$
- Learning algorithm:

$$\mathcal{A}\left(igcup_{i=1}^{N}\mathcal{K}^{i}_{\mathcal{M}_{t}}\cup\mathcal{K}_{\mathcal{M}_{t}}
ight)$$

N-to-1: Formalization

- Transfer process
 - 1. Collect $\mathcal{K}_{\mathcal{M}_i}, \ 1 \leq i \leq N$
 - 2. Collect $\mathcal{K}_{\mathcal{M}_t}$
 - 3. Select sources and knowledge $\mathcal{F}(\{\mathcal{K}_{\mathcal{M}_i}\}) = \{\mathcal{K}'_{\mathcal{M}_i}\}$
 - 4. Transfer $\mathcal{T}(\mathcal{K}'_{\mathcal{M}_i}) = \mathcal{K}^i_{\mathcal{M}_t}$

5. Learn
$$\mathcal{A}\left(\bigcup_{i=1}^{N}\mathcal{K}_{\mathcal{M}_{t}}^{i}\cup\mathcal{K}_{\mathcal{M}_{t}}\right)$$

The process can be reiterated

N-to-1: A Representative Algorithm

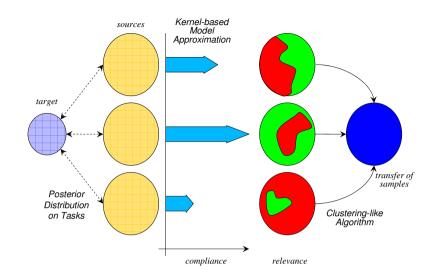
- *"Transfer of samples in batch reinforcement learning"* (Lazaric et al., 2008)
- *The idea*: selectively reuse samples on the basis of their likelihood in the target task
- Task difference: goal and dynamics
- Transferred knowledge: samples
- Learning algorithm: model-free batch
- Metric: learning time

N-to-1: A Representative Algorithm

- Knowledge $\mathcal{K} = \{\langle s_j, a_j, r_j, s'_j \rangle\}$
- Collect $\mathcal{K}_{\mathcal{M}_i}, \ 1 \leq i \leq N$
- Collect $\mathcal{K}_{\mathcal{M}_t}$
- Compute compliance/relevance for each source
- Select knowledge $\mathcal{F}(\{\mathcal{K}_{\mathcal{M}_i}\}) = \{\mathcal{K}'_{\mathcal{M}_i}\}$
- Transfer samples as they are $\mathcal{K}'_{\mathcal{M}_i} = \mathcal{K}^i_{\mathcal{M}_t}$

• Run
$$\mathcal{A}\left(\bigcup_{i=1}^{N}\mathcal{K}_{\mathcal{M}_{t}}^{i}\cup\mathcal{K}_{\mathcal{M}_{t}}\right)$$

N-to-1: A Representative Algorithm



N-to-1: A Representative Algorithm

- Source tasks selection
- Likelihood of target samples to be generated by the source tasks (compliance)

$$egin{aligned} \lambda_j &= P(\mathcal{M}_i | au_j) & \propto & P(au_j | \mathcal{M}_i) P(\mathcal{M}_i) \ &= & P_{\mathcal{M}_i}(s_j' | s_j, a_j) R_{\mathcal{M}_i}(r_j | s_j, a_j) P(\mathcal{M}_i) \end{aligned}$$

where
$$au_j = \langle s_j, a_j, s'_j, r_j \rangle \in \mathcal{K}_{\mathcal{M}_t}$$

$$\Lambda_{\mathcal{M}_i|\mathcal{K}_{\mathcal{M}_t}} = \frac{1}{|\mathcal{K}_{\mathcal{M}_t}|} \sum_{j=1}^{|\mathcal{K}_{\mathcal{M}_t}|} \lambda_j P(\mathcal{M}_i)$$

N-to-1: A Representative Algorithm

• *Compliance*: task similarity in terms of likelihood of target samples to be generated by source tasks

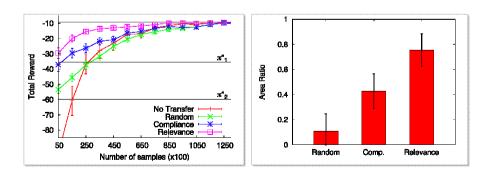
$$\Lambda_{\mathcal{M}_i} = rac{1}{|\mathcal{K}_{M_t}|} \sum_{j=1}^{|\mathcal{K}_{M_t}|} \lambda_j P(\mathcal{M}_i)$$

• The higher the compliance (probability of target samples to be generated by the source task), the higher the probability to be transferred

N-to-1: A Representative Algorithm

- Source samples selection
- Among source samples select those which are more similar/informative to the target task

N-to-1: A Representative Algorithm



N-to-1: A Representative Algorithm

- Pros
 - Effective method to select sources and samples
 - Avoid negative transfer
- Cons
 - Difficult to relate the difference between the samples and the difference between the solutions
 - Tasks may have different models but similar solutions

N-to-1: Conclusions

- The selection of source tasks is critical
- Not all the types of knowledge can be easily merged among different tasks
- Open problems
 - Towards an open-ended transfer process
 - Tasks with different state-action space
 - Transfer from very different tasks may result in positive transfer

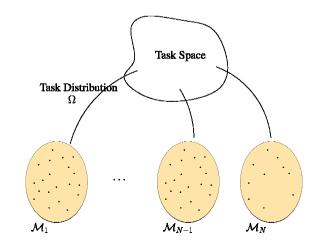
Section Outline

- Introduction to RL
- The dimensions of transfer
 - task relatedness
 - transferred knowledge
 - learning algorithms
- Transfer between tasks with same state-action variables
 - From one source task to one target task
 - From many source tasks to one target task
 - Multitask learning: Learning a distribution of tasks
- Transfer between tasks with different state-action variables
 - No explicit mapping
 - Mapping state variables and actions between tasks
 - Learning the inter-task mapping

MTL: the Scenario

- A set of tasks is given (e.g., drawn from a fixed distribution)
- Compute a solution for each of them trying to exploit their similarity

MTL: Example



MTL: Challenges

- Definition of similarity/relatedness
 - Similar solutions (e.g., weights of the linear function approximator)
 - Similar structure (e.g., similar reward functions)
 - Common generative model
- Definition of an algorithm able to exploit the relatedness (e.g., *if the tasks are G-related then the algorithm is able to improve the performance*)

MTL: Formalization

- MDPs: $\mathcal{M}_i = \langle S, A, R_i, P_i \rangle, \ 1 \le i \le N$
- Similarity function (the definition is highly dependent on the algorithm):

 $\mathcal{G}(\{\mathcal{M}_i\})$

• Joint learning algorithm:

 $\mathcal{A}(\{\mathcal{K}_i\}|\mathcal{G})$

MTL: Formalization

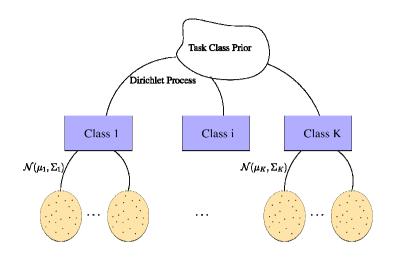
- Transfer process
 - 1. Collect $\mathcal{K}_{\mathcal{M}_i}, \ 1 \leq i \leq N$
 - 2. Compute similarity $\mathcal{G}(\{\mathcal{M}_i\})$ using $\{\mathcal{K}_i\}$
 - 3. Learn $\mathcal{A}(\{\mathcal{K}_i\}|\mathcal{G})$

The process can be reiterated

MTL: A Representative Algorithm (1)

- "Multi-Task Reinforcement Learning: A Hierarchical Bayesian Approach" (Wilson et al., 2007)
- *The idea*: tasks belong to different classes drawn from a fixed distribution
- Task difference: goal and dynamics
- Transferred knowledge: task structure
- Learning algorithm: model-based batch
- *Metric*: learning time

MTL: A Representative Algorithm (1)



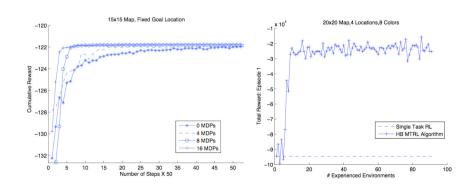
MTL: A Representative Algorithm (1)

- Similarity function G
 - Hierarchical generative model
 - Define a prior over the distribution of the (parameters of the) tasks
- Algorithm
 - Use all the samples to refine G
 - Use task-specific samples to learn the model

MTL: A Representative Algorithm (1)

- Given a suitable parameterization of the MDPs
- Given the hierarchical model parameters
- Collect *enough* samples from each
- Compute the parameters and the MDP with an EM-like algorithm
 - $-\operatorname{E-step}\widehat{\mathcal{M}}_i \leftarrow \operatorname{SampleMAP}(Pr(\mathcal{M}|\mathcal{K}_i, \Psi))$
 - M-step $\Psi \leftarrow \text{SampleMAP}(Pr(\Psi | \widehat{\mathcal{M}}_1, \dots, \widehat{\mathcal{M}}_N))$

MTL: A Representative Algorithm (1)



MTL: A Representative Algorithm (1)

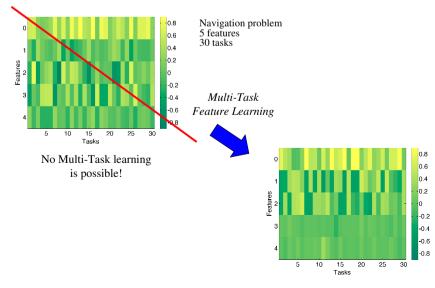
• Pros

- Once the hyper-parameters are tuned, it can be used also in the N-to-1 scenario
- Tasks can belong to different classes
- Cons
 - The complexity of the generative model requires many samples to estimate the hyper-parameters
 - Focus on the MDPs but does not relate their solutions

MTL: A Representative Algorithm (2)

- *"Knowledge transfer in Reinforcement Learning"* (Lazaric, 2008)
- *The idea*: tasks share the same underlying feature space
- Task difference: goal and dynamics
- Transferred knowledge: solution representation
- Learning algorithm: model-free batch
- Metric: generalization

MTL: A Representative Algorithm (2)



MTL: A Representative Algorithm (2)

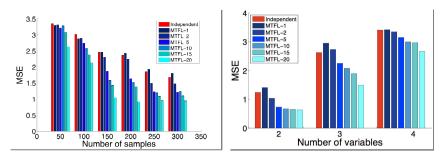
• Multi-task feature learning (Argyriou, 2008)

$$\varepsilon(W,U) = \sum_{t=1}^{T} \sum_{i=1}^{m} loss(y_{ti}, \langle w_t, U^T \varphi(x_{ti}) \rangle) + \lambda ||W||_{2,1}^2$$

- Learn features and weights such that each task share the same feature space
- Integration into a FQI algorithm at each iteration

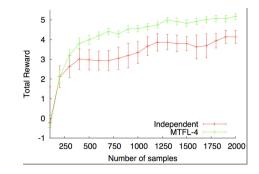
MTL: A Representative Algorithm (2)

Colored Grid World Problem



MTL: A Representative Algorithm (2)

Boat Problem



MTL: A Representative Algorithm (2)

• Pros

- Automatically change the feature space in order to take advantage the most the task similarity
- Improve the generalization capabilities
- Cons
 - The feature space may be different at each iteration

MTL: Conclusions

- Many possible models of relatedness
- Most common perspective in supervised learning
- Open problems
 - Difference between similarity of models and of solutions
 - Find and exploit relationships with supervised learning literature
 - Definition of algorithms provably able to exploit task relatedness and to avoid negative transfer