Reinforcement Learning and Beyond Part II: Transfer Learning in RL Section 3: Conclusions and Future Work	 Outline Selection of future challenges Towards a theoretical foundation of transfer in RL Enabling fully autonomous transfer Constructing effective task learning sequences Concluding summary
 Theoretical Foundation RL is more complex than supervised learning Transfer in RL introduces specific scenarios and 	State of the Art
issues	Supervised Learning Reinforcement Learning
 Recent theoretical results in RL shows that it has strong connections with statistical learning theory 	Single Task(Vapnik&Chervonenkis, 1971)(Munos&Szepesvari, 2008) (Farahmand et al., 2008)
results (see (Munos&Szepevari, 2008))	Multi Task(Baxter, 2000) (Ben-David&Shuller, 2008)Nothing!

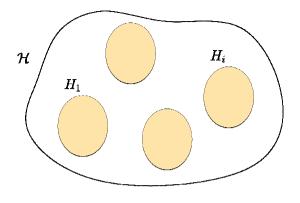
(Ben-David&Shuller, 2008)

- results (see (Munos&Szepevari, 2008)) • Recent theoretical results in TL in supervised learning shows the effectiveness of TL w.r.t. single task learning
 - Inductive bias learning
 - Multi-task learning

Inductive Bias Learning

- *"A model of inductive bias learning"* (Baxter, 2000)
- Scenario
 - Distribution $\mathcal Q$ over task space $\mathcal P$
 - Training set *m* samples from each of *n* tasks
- Objective: find a hypothesis space H which contains good hypotheses for all the tasks in P on average (according to distribution Q)

Inductive Bias Learning



Extension of complexity measures (e.g., VC, covering numbers) to the set of hypothesis spaces \mathcal{H}

Inductive Bias Learning

- If
 - enough tasks are provided to the learner and
 - enough samples per task are collected
 - the set of hypothesis spaces is not too big
- Then
 - The generalization error of the hypothesis space H can be bounded on new tasks drawn from O
 - The generalization performance is better than learning independently
 - The number of samples decreases with the number of tasks

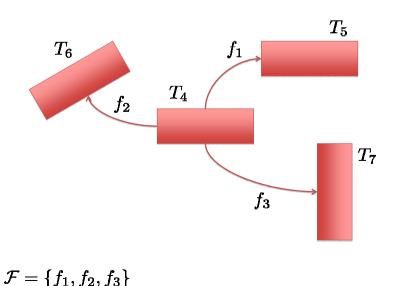
Inductive Bias Learning in RL

- Pros
 - The scenario could be easily adapted to RL domains (distribution of MDPs/value functions)
 - RL could be decomposed in a sequence of supervised learning problems (e.g., FQI)
- Cons
 - Not straightforward generalization of Baxter's result across different iterations (e.g., FQI, policy improvement)
 - Similar MDPs does not imply similar solutions

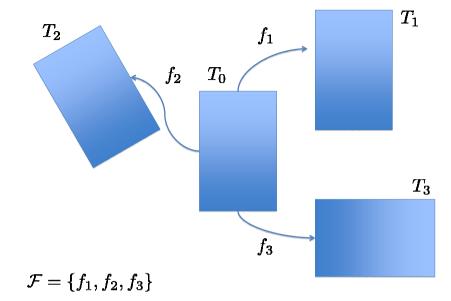
Transformation-Based MTL

- "A Notion of Task relatedness Yielding Provable Multiple-task Learning Guarantees" (Ben-David &Shuller, 2008)
- Scenario
 - Multi-task learning on *n* tasks
 - Training set: *m* samples from each of *n* tasks
 - Assumption: all the tasks pair-wise *f*-related, with *f* a transformation in a set of possible transformations \mathcal{F}
- *Objective*: given a target task, use all the samples to find the *high-level* characteristics of the solution and use the target samples to learn the *task-specific* solution

Transformation-Based MTL



Transformation-Based MTL



Transformation-Based MTL

• *Phase1:* use all the samples to identify which class the target task belongs to

• *Phase2*: use only samples of the target task to identify the best solution

Transformation-Based MTL

• If

- enough samples per task are collected
- enough target samples are collected
- if the set of transformations is not too big
- Then
 - The performance for (any!) target task is better than learning independently
 - The number of samples decreases with the number of tasks

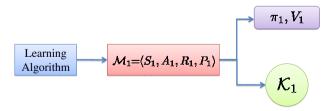
Transformation-Based MTL in RL

- Pros
 - RL could be decomposed in a sequence of supervised learning problems (e.g., FQI)
- Cons
 - Not straightforward definition of transformation in RL domains
 - Not straightforward generalization of Ben-David's bounds across different iterations

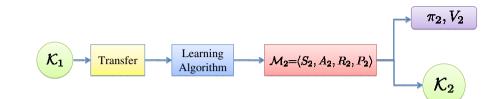
Theoretical Foundation

- Similarities of RL and supervised learning
- Promising line of research
- Several issues still unsolved (even in TL in supervised learning!)

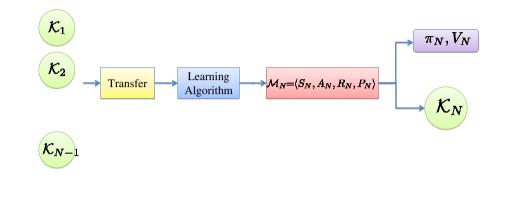
Fully Autonomous Transfer



Fully Autonomous Transfer



Fully Autonomous Transfer

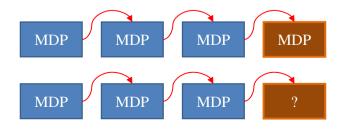


Fully Autonomous Transfer

- The full transfer problem
 - Different SxA
 - N-to-1 transfer
- Challenges
 - Learn the mapping
 - Select source tasks
 - Transfer effectively

Constructing Task Sequences [Taylor, 2009]

- Humans can selecting a training sequence
- Results in faster training / better performance
- Meta-planning problem for agent learning



Useful Information for Sequence Construction

Common Sense

- Soccer balls roll after being kicked
- Friction reduces an object's speed

- It is easier to complete short passes than long passes
- Algorithmic Knowledge
 - State space size can impact learning speed

