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Theoretical Foundation

• RL is more complex than supervised learning

• Transfer in RL introduces specific scenarios and 
issues

• Recent theoretical results in RL shows that it has 
strong connections with statistical learning theory 
results (see (Munos&Szepevari, 2008))

• Recent theoretical results in TL in supervised 
learning shows the effectiveness of TL w.r.t. 
single task learning

– Inductive bias learning

– Multi-task learning  

State of the Art

Supervised Learning Reinforcement Learning

Single Task (Vapnik&Chervonenkis, 1971)
(Munos&Szepesvari, 2008)

(Farahmand et al., 2008)

Multi Task
(Baxter, 2000)

(Ben-David&Shuller, 2008)
Nothing!



Inductive Bias Learning

• “A model of inductive bias learning” (Baxter, 

2000)

• Scenario

– Distribution     over task space

– Training set m samples from each of n tasks

• Objective: find a hypothesis space H which 

contains good hypotheses for all the tasks in     on 

average (according to distribution    )

Inductive Bias Learning

Extension of complexity measures (e.g., VC, covering numbers) 

to the set of hypothesis spaces

Inductive Bias Learning

• If

– enough tasks are provided to the learner and

– enough samples per task are collected

– the set of hypothesis spaces is not too big

• Then

– The generalization error of the hypothesis space H 
can be bounded on new tasks drawn from

– The generalization performance is better than 
learning independently

– The number of samples decreases with the number 
of tasks

Inductive Bias Learning in RL

• Pros

– The scenario could be easily adapted to RL 

domains (distribution of MDPs/value functions)

– RL could be decomposed in a sequence of 

supervised learning problems (e.g., FQI)

• Cons

– Not straightforward generalization of Baxter’s 

result across different iterations (e.g., FQI, policy 

improvement)

– Similar MDPs does not imply similar solutions



Transformation-Based MTL

• “A Notion of Task relatedness Yielding Provable 

Multiple-task Learning Guarantees” (Ben-David 

&Shuller, 2008)

• Scenario

– Multi-task learning on n tasks

– Training set: m samples from each of n tasks

– Assumption: all the tasks pair-wise f-related, with f a 

transformation in a set of possible transformations

• Objective: given a target task, use all the samples to 

find the high-level characteristics of the solution and 

use the target samples to learn the task-specific 

solution

Transformation-Based MTL

Transformation-Based MTL Transformation-Based MTL

• Phase1: use all the samples to identify which class 

the target task belongs to

• Phase2: use only samples of the target task to identify 

the best solution



Transformation-Based MTL

• If

– enough samples per task are collected

– enough target samples are collected

– if the set of transformations is not too big

• Then

– The performance for (any!) target task is better 

than learning independently

– The number of samples decreases with the number 

of tasks

Transformation-Based MTL in RL

• Pros

– RL could be decomposed in a sequence of 

supervised learning problems (e.g., FQI)

• Cons

– Not straightforward definition of transformation in 

RL domains 

– Not straightforward generalization of Ben-David’s  

bounds across different iterations

Theoretical Foundation 

• Similarities of RL and supervised learning

• Promising line of research

• Several issues still unsolved (even in TL in 

supervised learning!)
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Fully Autonomous Transfer

• The full transfer problem

– Different SxA

– N-to-1 transfer

• Challenges

– Learn the mapping

– Select source tasks

– Transfer effectively

Constructing Task Sequences [Taylor, 2009]

• Humans can selecting a training sequence

• Results in faster training / better performance

• Meta-planning problem for agent learning

MDPMDP MDPMDP

MDPMDP ?MDP



Useful Information for Sequence Construction

• Common Sense

– Soccer balls roll after being kicked

– Friction reduces an object’s speed

• Domain Knowledge

– It is easier to complete short passes than long passes

• Algorithmic Knowledge

– State space size can impact learning speed


