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ABSTRACT
Q-learning is a simple, powerful algorithm for behavior learn-
ing. It was derived in the context of single agent decision
making in Markov decision process environments, but its
applicability is much broader—in experiments in multia-
gent environments, Q-learning has also performed well. Our
preliminary analysis using dynamical systems finds that Q-
learning’s indirect control of behavior via estimates of value
contributes to its beneficial performance in general-sum 2-
player games like the Prisoner’s Dilemma.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Algorithms—
Intelligent Agents,Multiagent Systems

Keywords
Reinforcement learning, Multiagent learning, dynamical sys-
tems

1. INTRODUCTION
Q-learning [14] was one of the first algorithms for rein-

forcement learning [11] specifically designed to maximize
reward in multistage environments. Several authors have
shown that it converges to optimal values [12] and optimal
behavior [9] in Markov decision process environments.

General sum games provide a formal framework for defin-
ing and addressing important problems in agent interaction.
Q-learning has been used in multiagent environment and has
been shown to perform beyond expectations [8, 6, 2, 7]. In
the famous Prisoner’s dilemma game, for instance, a player
who cooperates gives a payoff of 3 to the other player and 0
to oneself, but defecting gives 0 to the other player and 1 to
oneself. Surprisingly, two Q-learning agents repeating this
game frequently arrive at an outcome where both choose to
cooperate, even when there is no explicit previous history in
the state information.

Positive theoretical results have been generalized to some
special multiagent environments, in particular when the re-
ward structures are purely cooperative or zero sum [5]. Al-
though Q-learning variants have been defined for general
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sum games [4], the very idea of representing multiagent
strategies using Q-values has been shown to be extremely
problematic [15]. Thus, positive theoretical results have
been lacking.

This state of affairs leads us to an enigma. Why is it
that Q-learning performs well in multiagent environments
even though existing analyses do not support its use in
this setting? In this paper, we start collecting clues in the
setting of 2-agent, 2-action games where the agents share
the same Q-table, which we call tethered Q-learning. Teth-
ered Q-learning, while not technically a system of multiple
agents, mimics the properties of two separate agents when
they start with the same values and learn slowly in the same
way. Therefore, it is a good starting point to analyze the
dynamics that come from the agents having more freedom
in the learning process.

The majority of our results are presented in the context
of the Iterated Prisoner’s dilemma or IPD [1] because of its
simplicity as well as its wide applicability, but still apply
to general games. In Section 2, we shed some light on the
algorithm’s behavior by casting tethered Q-learning into a
dynamical system framework and showing that high scoring
policies are stable, in some sense. In Section 3, we study
tethered Q-learning. We conclude with suggestions for how
these insights could be exploited in the design or analysis of
future multiagent learning algorithms.

1.1 Definitions
A game is a description of the interaction between two or

more agents. We focus on games with two players and two
actions, which jointly determine a payoff. In the iterated
or repeated games we study, at each step the environment
dispenses rewards to each agent according to the joint action
taken by all the agents in the game. A best response is a
strategy that chooses the action that maximizes the agent’s
payoff given a fixed specification of the action policies of all
the other agents. A Nash equilibrium is a joint strategy in
which each player’s action is a best response to the strategies
of its opponents.

Learning algorithms provide a sensible approach for fo-
cusing on defining agent behavior in a game from the per-
spective of a single agent. Many learning algorithms target
the generation of a best response, so that no matter what
behavior the other agent adopts, the learning agent will be
striving to maximize its reward.

1.2 Q-learning
Q-learning is a single-agent learning algorithm that has

been used in the multiagent setting. The Q-learner main-



tains a Q-table, which is a data structure that stores a value
for each state–action pair. In each state, for each action,
the state–action (or Q-) value represents the expected pay-
off that the agent receives from choosing the given action
from that state, then selecting actions in future states to
maximize expected payoff.

In a repeated game, the Q-table for each Q-learning agent
i consists of a vector of values, Qa

i , with one component for
each action a ∈ A. The Q-learning rule, simplified for this
setting, can be written

Qa
i ← Qa

i + α(r + γ max
a′∈A

Qa′

i −Qa
i ),

where α is a learning rate or step-size parameter, 0 ≤ γ < 1
is a discount factor weighting future rewards relative to cur-
rent rewards, and r is the payoff value received in response
to action a. Throughout this paper, we use an ǫ-greedy
method to choose between action a that maximizes Qa

i , and
a random action, chosen with probability ǫ.

2. DYNAMICAL SYSTEMS APPROACH
IGA (Infinitesimal Gradient Ascent) was proposed as an

abstract algorithm for 2-player, 2-action games [10]. The al-
gorithm maintains an explicit policy for both players, which
can be summarized as a single probability for each player
specifying its chance of choosing the first action. These poli-
cies are updated by taking an infinitesimal step in the di-
rection of the gradient—each player modifies its choices to
maximally increase its expected reward. Using a dynami-
cal systems analysis, the authors showed that IGA players
converge to a Nash equilibrium or to a repeatedly traversed
orbit. In the latter case, the average reward along the loop
exactly matches that of a Nash equilibrium. Although IGA
is not directly realizable because of the need for arbitrarily
small learning rates, it did give rise to several practical al-
gorithms such as WoLF-IGA, GIGA, and GIGA-WoLF [3].

In this section, we view Q-learning in a similar way. We
define Infinitesimal Q-learning (IQL), a version of Q-learning
where value updates are made infinitely slowly and determin-
istically—updates based on exploratory actions are made
simultaneously. Q-learning was previously analyzed with
Boltzmann updating [13]. While seemingly similar (both ap-
proaches involve randomly choosing the greedy action with
higher probability), there are important differences. The
crucial distinction is that when the Q-values for both actions
approach parity, Boltzmann chooses each action with close
to equal probability while ǫ-greedy jumps between greedy ac-
tions creating two distinct regions each with its own greedy
action. Whereas IQL with Boltzmann exploration can only
converge to mutual best responses (Nash equilibria), we find
that IQL with ǫ-greedy includes non-Nash fixed points.

IQL for two-player, two-action games is defined as follows.
Let a∗ be the action that maximizes the Q-value for player
i, ā be the other action, b∗ be the action that maximizes
the Q-value for the opponent, and b̄ be the opponent’s other
action. Then,

Qa∗

i ← Qa∗

i +α(1− ǫ
2
)2 (Ra∗b∗

i + γQa∗

i −Qa∗

i )

+α(1− ǫ
2
) ǫ
2

(Ra∗b̄
i + γQa∗

i −Qa∗

i )

Qā
i ← Qā

i +α ǫ
2
(1− ǫ

2
) (Rāb∗

i + γQa∗

i −Qā
i )

+α ǫ2

4
(Rāb̄

i + γQa∗

i −Qā
i ).

The idea here is that the Q-values, for sufficiently small
values of the learning rate α, explore in all directions simul-
taneously, with the resulting update weighted by its proba-
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Figure 1: Performance (expected discounted re-
ward) of IQL and Q-learning in IPD for a range of
exploration rates.

bility. For example, with the maximum probability (1− ǫ)2,
both players will choose their greedy actions and update
their values in the direction of the resulting payoffs. But,
with smaller probability, one of the agents will explore, re-
sulting in a different update. The IQL update rule blends
these updates together based the exploration-rate parame-
ter ǫ. Note that two IQL agents, starting with identical Q-
functions, will remain synchronized as they make the same
series of updates. For the remainder of this paper, we com-
pletely synchronize the agents’ Q-values, so that they share
one decision function.

Figure 1 shows the result of IQL in IPD with a range
of exploration-rate parameters (discount γ = 0.9). In each
case, starting roughly from mutual cooperation Q-values,
IQL converges. As long as exploration stays low, the tempta-
tion of defection contributes very little to the update and the
higher values of cooperation keep the Q-values high. Once
the exploration rate is high enough, though, the values for
defection are updated frequently and overtake the values for
cooperation. Mutual defection then becomes the only sta-
ble solution. Note that, for the low exploration rates, the
converged value of cooperation and defection are equal.

3. DIRECT ANALYSIS OF TETHERED IPD
In this section we study tethered Q-learning and calculate

the fixed points of the learning algorithm in the space of
Q-values. We show that, in the tethered case, the Q-values
always converge to some fixed point.

In the tethered case, we distinguish two possibilities in
terms of the players’ preference for actions: either one of the
actions has a higher expected reward and the agents prefer
it over the other action, or the two actions have equal values.
If the payoff of one of the joint actions dominates all other
outcomes for either agent and that action also dominates the
other action, then the joint action is a Pareto efficient Nash
equilibrium. It will be an attractor for every assignment
of Q-values. Similar logic holds when there are two Nash
equilibria along the joint action diagonal, but there will be
two attractors whose regions depend on the exploration rate
as well as the starting points.

In the second case, there may or may not be a Nash equi-
librium for joint action (a1, a1), but for player i, Ra1b2

i >

Ra2b2
i , and Ra2b2

i > Ra1b1
i . In this situation, there is some

fixed point where the shared Q-values are equal, because



the updates for either greedy action near this point will be
pushing the values back towards it. This fixed point will
be considered stable. There may also be an unstable point,
which features two opposing updates pulling away in oppo-
site directions. In the analysis that follows, we provide a
formula for finding these points for general two-player two-
action symmetric games, if they exist along the diagonal.

• Raxby : average value of reward for row player of action
ax when the other player plays by

• Rxy: expected rate of reward for action x when x is
selected but the greedy action for both players is y

• Q(a∗

x) = Qa∗

x
: Q-value of greedy action ax

• Q(āy) = Qāy
: Q-value of non-greedy action ay

• Qa∗

y
(t) : Q-value of greedy action ay at time t

• t: number of time steps according to Q-learning with
learning rate approaching 0, after starting at t = 0.

We find these points where the two following equations can-
cel each other by row to produce zero change in the update.
The rewards arrive at the following rates:

R11 = (1− ǫ

2
)[(1− ǫ

2
)Ra1b1 +

ǫ

2
Ra1b2 ]

R21 =
ǫ

2
[(1− ǫ

2
)Ra2b1 +

ǫ

2
Ra2b2 ]

R12 =
ǫ

2
[(1− ǫ

2
)Ra1b2 +

ǫ

2
Ra1b1 ]

R22 = (1− ǫ

2
)[(1− ǫ

2
)Ra2b2 +

ǫ

2
Ra2b1 ].

The first equation updates the greedy action on top, and in
the second the greedy action is on the bottom row. 1

[

∂Q(a∗

1
)

∂t
∂Q(ā2)

∂t

]

=

[

(1− ǫ
2
)(γ − 1) 0
γ ǫ

2
− ǫ

2

] [

Q(a∗

1)
Q(ā2)

]

+

[

R11

R21

]

[

∂Q(ā1)
∂t

∂Q(a∗

2
)

∂t

]

=

[

− ǫ
2

γ ǫ
2

0 (1− ǫ
2
)(γ − 1)

] [

Q(ā1)
Q(a∗

2)

]

+

[

R12

R22

]

If we consider the right side of the above equations to be of
the form Mx+b, then the solution to the following equation
will find a fixed point:

M1

[

Qa1

Qa2

]

+

[

R11

R21

]

= −c

(

M2

[

Qa1

Qa2

]

+

[

R12

R22

] )

.

The left side is the equation for greedy action a∗

1, while the
right is for greedy action a∗

2. The point will be fixed where
the two vectors balance each other, scaled by a constant fac-
tor because one of the updates occurs more frequently. That
is, any mixed strategy within the bounds of exploration is
feasible on this line, but only one will keep the Q-values
equal. In the tethered case, all Q-values are identical be-
cause the desired point is on the Qa1

= Qa2
diagonal:

µ = (1− ǫ

2
)(1− γ)

−µQa1
+ R11 = −c((γ − 1)

ǫ

2
Qa1

+ R12)

c =
µQa1

−R11

(γ − 1) ǫ
2
Qa1

+ R12

(γ − 1)
ǫ

2
Qa2

+ R21 = −c(−µQa2
+ R22).

1Thank you to Satinder Singh for help with these insights.

Substituting for c, and setting Qa2
= Qa1

:

(γ − 1)
ǫ

2
Qa1

+ R21 = − µQa1
−R11

(γ − 1) ǫ
2
Qa1

+ R12
(−µQa1

+ R22)

A = µ2 − (γ − 1)2
ǫ2

4
= (1− γ)2(1− ǫ)

B = −(γ − 1)
ǫ

2
(R12 + R21)− µ(R11 + R22)

C = R11R22 −R12R21

Qa1
=
−B ±

√
B2 − 4AC

2A

Qa1
=
− ǫ

2
(R12 + R21) + (1− ǫ

2
)(R11 + R22)

2(1− γ)(1− ǫ)
±

√

B2−4AC

(1−γ)2

2(1− γ)(1− ǫ)

B2

(1− γ)2
= ((1− ǫ

2
)(R11 + R12)−

ǫ

2
(R21 + R22))

2

4AC

(1− γ)2
= 4(1− ǫ)(R11R22 −R12R21).

This equation gives two fixed points. In both, the forces on
either side of the Qa1

= Qa2
line are equal and opposite.

However, the fixed points on this line may not be stable.
We know that a point is stable if the updates surrounding
it push towards the point. Since the Qa1

= Qa2
line has a

slope of 1, the direction of a line crossing through the point
will depend on whether the new line has a slope greater than
1. In general, the following theorem applies.

Theorem 1. Test of Stable Points: At the fixed points
given above, the slope of the update below the line Qa1

=

Qa2
, where Qa∗

1
> Qā2

, is defined by k =
∂Q

a
∗

1

∂t
/

∂Qā2

∂t
. If

both or neither of the following conditions hold, then the
examined point is stable. Otherwise, if only one holds, the
point is unstable:
(1) k > 1

(2)
∂Q

a
∗

1

∂t
> 1.

An analogous test exists for updates above the line.

3.1 Finding the Boundary Between Regions of
Attraction

Not all stable points are found on the Qa1
= Qa2

line.
If the game we’re considering has a pure Nash equilibrium,
the Q-values for the actions that constitute the Nash will
represent a stable fixed point. All points in the space of
Q-values will be attracted by some stable point, and we
can bound the different regions in space where points are
attracted to each stable point. Consider the case where there
is one on-diagonal and one off-diagonal stable point, like in
the Prisoner’s Dilemma. One of them is on the Qa1

= Qa2

line. The gradient at this point will necessarily be tangent
to the Qa1

= Qa2
line. If we project away from this point

for t < 0 to find the contour leading into it, the projection
defines the boundary between two basins of attraction:

M2

[

Qa1

Qa1

]

+

[

R12

R22

]

=

[

k
k

]

−(1− γ)(1− ǫ

2
)Qa1

+ R22 = (γ − 1)
ǫ

2
Qa1

+ R12

Qa1
=

R22 −R12

(1− γ)(1− ǫ)
.

The equation that defines the dynamics for both Q-values
above the Qa1

= Qa2
line will show how the values behave
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when Qa2
> Qa1

. Qa2
as a function of t is given by the

following differential equation, when Qa2
= Qa2

(0) at t = 0:

Ra∗

1
= (1− ǫ

2
)R(a∗

1, b
∗

1) +
ǫ

2
R(a∗

1, b̄2)

Ra∗

2
= (1− ǫ

2
)R(a∗

2, b
∗

2) +
ǫ

2
R(a∗

2, b̄1)

∂Qa2

∂t
= δa2

= (1− ǫ

2
)((γ − 1)Qa2

(t) + Ra∗

2
)

Qa2
(t) = (Qa2,0 −

Ra∗

2

1− γ
)e−µt +

Ra∗

1

1− γ
.

Using this information, we can compute Qa1
, with the same

methods. A quick check will confirm that substituting cor-
responding values and taking the derivative of the Q values
will give the same answer:

∂Qa1

∂t
= δa1

=
ǫ

2
(γQa2

−Qa1
+ Ra∗

1
)

q =

ǫ
2
γ(Qa2,0 −

R
a
∗

2

1−γ
)

ǫ
2
− µ

ρ = Qa1,0 − q − γ
Ra∗

2

1− γ
−Ra∗

1

Qa1
(t) = ρe−

ǫ

2
t + qe−µt + γ

Ra∗

2

1− γ
+ Ra∗

1
.

These equations and the point from above will provide the
trajectory passing through the fixed point.

4. CONCLUSIONS AND FUTURE WORK
In this work, we showed how to find the fixed points where

Q-values for actions were equal in the tethered multiagent
case, as well as one way to find the regions attracted to these
points. Q-learning with ǫ-greedy exploration is clearly dif-
ferent from Boltzmann exploration, as the actions shift dis-
continuously in the former case. We would like to provide a
precise characterization of the behavior of IQL when the val-
ues are not tethered across agents. Does it converge for some
initial Q-values, or is it always chaotic? Can we characterize
the range of values encountered during the chaotic oscilla-
tions? We are interested in applying tools from non-linear
dynamics to modify IQL to make it behave consistently. An
appropriate tool could be inserted into Q-learning to modify

the exploration or learning rate to produce a more robust
algorithm. It is apparent that the seeds of a powerful ap-
proach already exist in the simple form of Q-learning and
we would like to provide a more reliable alternative.
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