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ABSTRACT

This paper is motivated by some recent, intriguing research
results involving agent-organized networks (AONs). In AONs,
nodes represent agents, and collaboration between nodes are
represented by corresponding edges. Agents rewire edges,
i.e., change partners, to improve performance. The challenge
in these domains is the search and location of desirable in-
teraction or collaboration partners in a relatively large pop-
ulation. It was found that random selection of partners in
each time period produced better performance but incurred
larger search costs in a production and exchange economy
compared to gradual rewiring of edges in the network. We
propose an exponentially decaying exploration scheme that
produces similar utilities to random rewiring but with much
less rewiring costs. We evaluate the effects of the number of
trading partners on connections on the utilities obtained by
the agents. We hypothesize on the cause for the observed
performance differences and verify that by showing that the
observed performance differences with more realistic model
of the economy.

1. INTRODUCTION

As social networks and peer-to-peer (P2P) networks have
received widespread use, various forms of network topologies
and their associated properties have been studied in the lit-
erature [1]. In this paper, we focus on relationships between
producer and consumer agents in a distributed environment.
Agents in such an Agent Oriented Network (AON) are con-
nected, at any point in time, with a limited number of other
agents but can change their connections over time [4]. To ob-
tain utility, agents need to trade with other agents producing
complementary goods. A critical decision problem affecting
the viability and success of agents in such an economy is
their ability to identify beneficial trading partners. Gaston
and desJardins observed that randomly connecting to other
agents produced more profitable trades than using more sta-
ble wiring patterns [2]. This is a counter-intuitive result,
as in real economies we observe more stable and healthy
partnerships between organizations in supply chains [3]. We
wanted to explain this intriguing phenomena by a careful
analysis of the experimental results. More importantly, we
wanted to study the properties of such an AON under vary-
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ing network characteristics. In this paper, we evaluate the
relative effectiveness of an exponentially decaying rewiring
strategy in an enhanced production and exchange model
that incorporate more realistic constraints of stock limits
and minimum trade volumes.

2. DOMAIN MODELS
2.1 Production and Exchange M odel

Gaston and desJardins have studied a simple production
and exchange model to study strategies in AON exchange
economies [2]. An AON is a network of agents in which
the agents self-organize and can rewire their own connec-
tions to other agents [4]. The connections are unidirectional
(whether one agent can request to trade with another is sep-
arate from whether the second agent can request to trade
with the first) and determined unilaterally.

In the Production and Exchange Model used by Gaston
and desJardins [2] every agent starts with some supply of
two goods and a capacity to produce a fixed amount of only
one of them. At each iteration agents choose whether to
produce or exchange goods. Agents are greedy and attempt
to maximize the utility they gain at each time step. They are
also truthful and always provide correct information when
proposing a trade.

In this model there are n agents and two goods g1 and
g2. g1 is only traded in whole units while g is infinitely
divisible. g is the amount of good k that agent currently
possesses. The utility of agent i is given by the product of
its stock of the two goods:

U' = gigs.

In each round the agents are chosen in random order and
allowed to trade or produce. First, they have to calculate
how much utility they would gain by trading. Each agent
is linked to m other agents with whom it can trade. The
chosen agent checks its marginal rate of substitution (mrs)

against the mrs of each of the agents it is linked with. This
value is calculated as follows and truthfully revealed:

g5
91

2
mrs =

The agents may be able to gain by trading if their mrs’s
differ. The next step is to decide on the exchange price p;j,
which is computed as
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when agent i is negotiating with agent j. A tax 7 is applied
to every transaction. At this point a trade is simulated. No
actual goods are exchanged until agent 7 chooses one trading
partner. If agent ¢ is trading one unit of g1 for p;; units of
g2 with agent j and dg}, is the amount of good k traded by
agent 17
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This trade is repeated until the utility of neither agent will
not increase from further trading. The corresponding utility
gain is recorded. Once this simulation has been repeated for
every agent that agent ¢ can trade with the most profitable
partner, i.e., the trade that would gain ¢ the greatest utility
is chosen. The agent then checks if producing could provide
more gain in the current time period than gain from its best
trade.

Every agent has a production capacity Ag; uniformly dis-
tributed in the range [1, ¢] for one of the goods g1 or g2. If
i produces g1 its change in utility after production is

AU = Agigh.

Once an agent knows how much utility it can gain by
producing, it can choose whether to produce or trade with
its best partner. Once it has made this decision and carried
out the corresponding action, the agent can choose to rewire
its trading connections for the next iteration.

2.2 Enhanced Production and Exchange M odel

In many real world examples, goods are consumed or
agents gain utility through consuming goods rather than by
just possessing them. These agents also often have a limited
space available for storage which can be expensive. There-
fore we propose a system of clearing. Whenever an agent has
both types of goods, it combines them to create a product.
Thus, no excess goods are stored. However, some agents
are more efficient at this than others. Every agent must use
some multiple, G, units of the good they do not produce for
every unit of good that they can produce. Thus, if an agent
is a producer of good 1 its new utility gain function would
be:

The agent loses the corresponding amounts of goods 1 and
2 and gains utility times the parameter (.

The agents have a limited S, and the maximum amount
of the produced good that can be stored is S times the pro-
duction rate. Agents also have a lower bound on the amount
of good they have to have before they can try trading. If, at
the beginning of their turn, they have less than S times their
production rate then they do not look for a trading partner.
However, an agent may still end up trading even if it has
less than S goods. Another agent may still initiate a trade
with it. Trading can be an expensive operation. So we do
not want the agents to make a huge number of small trades.
S and S comprise an optimal trading window for the agents.
If the agent cannot find a trading partner before it reaches
S then it will start losing production as the produced goods
in excess of the capacity must be disposed.

As a final change to the production and exchange model
we allowed continuous production. Agents could produce

every turn, even if they had traded. Because of the S lower
limit for trading, the agents will not attempt to trade every
iteration.

3. REWIRING STRATEGIES

In this paper we evaluate three rewiring strategies ran-
dom mixture, random selection, and exploration. The
first two were used by Gaston and desJardins [2]. Random
mixture (RM) is the simplest strategy. At each iteration
agents randomly reinitialize every connection.

In random selection (RS) the agent first decides whether
it should adapt. It keeps an exponential weighted moving
average, V, of the utility gained in each iteration. The utility
agent i expects to gain in the next iteration, ¢, is

Vi = Vi 4+ (AU — Vi),

If Vi < © then the agent chooses to adapt. a € [0,1] is a
learning parameter and © a threshold.

If it chooses to adapt, it still must choose which connec-
tions to adapt. This decision is also based on an exponen-
tially weighted moving average of connection strengths rep-
resented by connection weights. Agent ¢ then updates its
connection weight W;7 for the connection to agent j:

Wtij = Wtii1 + ﬂ(AUtiil - Wtizl)v

where AUZZ ; is the change in utility that agent ¢ could have
received by trading with agent j on iteration t. 8 € [0,1] is
a learning parameter. The agent rewires every connection
where W7 < ®, where @ is a threshold parameter. New con-
nection weights are initialized to the average of the current
connection weights.

We introduce a third rewiring strategy to reduce search
and exploration over time. When using the exploration
(RE) strategy, each agent has an initial exploration rate
zo € (0,1]. This rate exponentially decays at a rate n such
that z; = nzi—1. The rewiring rate is based on this z; as
well as V¥ as described above and the base expected utility,
Vg. In the exploration strategy the probability of an agent
rewiring a connection is

pizmt*(l—%).
The base expected utility is initialized as the average ex-
pected utilities for other agents this agent connects to.

Just as in the RS strategy, the agents keep track of a
weight, W,”7, for each connection. However, an agent only
rewires the connection with the lowest weight, and only if
the connection satisfies the constraint W;7 < ®.

4. EXPERIMENTAL RESULTS

We now discuss our experimental results. Due to space
constraints, we only present results from the Enhanced Pro-
duction and Exchange Model. The parameters used in the
model are as follows: n=300, ¢=30, 7=0.05, and m was
varied from 2 to 10 in steps of 2. The agent’s learning pa-
rameters were set at « = 8 = 0 = ¢ = 0.1 and both the
initial expected utility, Vg, and at the beginning of each run,
the initial valuation of every connection, Wy’, were set to 1
following Gaston and desJardins[2]. The exploration strat-
egy began with an exploration rate of x¢g = 0.3. The decay
rate was 17 = 0.996. For this model we use Minimum Trade
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Figure 1: Effect of m in homogeneous populations
using the enhanced production and exchange model
for non-continuous production.

Volume(S)=3 and Storage Capacity(S)=4. All results are
based on random generated initial network structures.

4.1 Homogeneous Populations

The first set of experiments was run with homogeneous
agent populations. In a homogeneous population, there is
significant and interesting effect on the performance of RF,
RS and RM strategies when varying other domain charac-
teristics like continuous and non continuous production, S,

S, number of links, etc.

Non-Continuous Production.

The effect of number of connections on the agent util-
ities for the non-continuous production environment (see
Figure 1) shows the advantage of the judicious exploration
scheme. In contrast to the basic production and exchange
model, the order of performance is RE followed by RS fol-
lowed by RM. In this model all agents have to accumulate
sufficient stock and maintain minimum trade volume before
trading. Hence the agents are making less trades, which
lower their overall utility somewhat, but this decline is more
pronounced for RS and particularly RM agents compared
to RE agents. RM suffers more because in contrast to the
basic model randomly selected agents are less likely to be
available for trading at each time instant. Since RE iden-
tifies better trading partner and repeatedly uses the same
trading partner unless required to change, RE out performs
RS and RM. Similarly RS also out performs RM because
it identifies some good partners but not to the extent RE is
able to do. When m was increased from 2 to 10 in steps of
2 the performance of RE, RM and RS strategies improve
but their performance difference is maintained throughout.

Continuous Production.

When agents are allowed to produce and trade in the same
time period, there is a significant increase in the performance
of RE, RS and RM strategies over the non-continuous pro-
duction situation. This is because the agents could produce
every turn, even if they had traded, and hence gain higher
utility from these additional stocks. The relative perfor-
mance of the three strategies follow trends similar to the
non-continuous production case. With increase in the value
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Figure 2: Effect of m in homogeneous populations
using the enhanced production and exchange model
with continuous production.
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Figure 3: Effect of increasing S while holding S
constant in homogeneous populations using the en-
hanced production and exchange model with contin-
uous production.

of m the difference between RE and RS increases. On the
other hand the difference between RS and RM reduces and
stabilizes for 6 or more connections.

Minimum Trade Volume and Storage Capacity Effects.

We next observe the effect of change in value of the Stor-
age Capacity (S) and Minimum Trade Volume (S) on the
performance of the rewiring strategies.

We hold S constant at 6 and increase the value of S from
2 to 6 in steps of 1. This variation significantly affects agents
utility (see Figure 3). With increase in value of S, the overall
performance of agents gradually decreases. When S=2 and
S5=6, agents can produce till they find good trading partner
to trade. With increase in value of S, the trading window
computed as the difference between S and S reduces. If an
agent cannot find good trading partners within the trading
window, it loses production opportunity as maximum stor-
age limit is reached.

We have observed similar effects when we keep S constant
and vary the value of S.
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Figure 4: Effect of m in heterogeneous populations
using the enhanced production and exchange model
for non-continuous production..

We performed an additional experiment to compare the
effects of different S and S while keeping the trading win-
dow, i.e., S—S5, the same. We used two configurations: C1
with S= 3 and S=5, and C2 with S= 4 and S=6. In both
cases the trading window is 2. We found that going from
C1 to C2 increases the performance advantage of RE over
RS and that of RS over RM. Also, with the increase in
the number of connections, m, the performance of RE im-
proves further compared to that of the performance of RS
and RM.

4.2 Heterogeneous Populations

In the next set of experiments we experimented with het-
erogeneous agent populations. We included equal propor-
tions of RM, RS, and RFE strategies in a population of 300
agents.

Non-Continuous Production.

In this configuration, when m = 2, the utilities produced
by all the strategies RE, RS and RM are almost equal (see
Figure 4). But with increase in the value of m, e.g., when
m = 4, agents have more trading partners per iteration when
compared with m = 2, and able to locate desirable partners
with less exploration. RE strategy produces higher utility
than RS and RM strategies. For lower values of m, more
exploration is necessary to locate compatible trading part-
ners. For sufficiently high m values, therefore, the utilities
of RE agents increase significantly over RS and RM.

When we compare the results of the heterogeneous pop-
ulation to the corresponding number of trading partners in
the homogeneous population results (see Figure 1), we find
that the RFE strategy actually benefits at the expense of RM
and RS strategy.

Continuous Production.

We also performed experiments with continuous produc-
tion for heterogeneous populations. The trends are similar
to the case of non-continuous production. The primary dif-
ference is that the agent utilities are higher as they have
more stock to trade with.

5. DISCUSSIONS

We investigated the effects of introducing exploration into
a rewiring strategy for locating effective trading partners

within networks in production and exchange economies. Though

random rewirings in each round can produce more utilities,
it incurs significant cost for changing connections. The pro-
posed decaying exploration rewiring strategy and a more
patient random selection strategy incurs significantly lesser
rewiring costs. Additionally, the exploration strategy pro-
vides certain benefits over random selection: it smooths
out the rewirings over time and decreases the number of
rewirings required. The performance advantage of the ran-
dom rewiring strategy diminishes with higher number of con-
nections per agent and when agents are allowed to produce
while trading. Interestingly, however, the performance ad-
vantage is regained by the random rewiring strategy when
all agent types are present in a heterogeneous society.

We believe that the basic production and exchange econ-
omy model is oversimplified and does not adequately rep-
resent real-life scenarios. We therefore evaluate the perfor-
mance of the three rewiring strategies in an enhanced pro-
duction and trade model that includes constraints on min-
imum trade volumes and storage capacities. In contrast to
the basic model, the decaying exploration mechanism out-
performs the more random rewiring strategies in this more
realistic environments. This performance advantage also
suggests the need for investigating smarter learning mecha-
nisms for identifying preferred trading partners.
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