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1. Introduction 

Welcome to programming and the C language. As an introduction to programming and C family of 
programming languages there are several educational goals for CPTS121. These include: 

Master the syntax of a standard programming language 
Develop good programming skills and practices that will make this task easier. 
Accumulate design skills that assist you in problem solving and creating software solutions. 
Build up your understanding and ability with programming; start filling your programmer’s 
toolbox.  

2. Purpose 

This coding standard and guideline have been written up for several reasons which should help 
writing high quality code that is easy to understand and develop. We will apply code reviews to 
validate code quality, so it is important that all students use the same style of coding. Style in this 
sense means using common constructs, writing proper documentation and code comments, and 
organizing code to a common layout. 
 
Although complying with coding guidelines may seem to appear as unwanted overhead or limit 
creativity, this approach has already proven its value for many years in industry and here.  
 
Additional goals include: 
* Preventing common mistakes and pitfalls. 
* Preventing language constructs that are less comprehensive. 
* Promoting good design 
* Improving readability and extensibility of the code. 
* Facilitate the ease of learning to program 
* Help you develop superior coding skills and habits.  
 
This standard is a summary of known good habits and industrially accepted practices. It is a 
simplified version for Academic use.  
 
You Must Remember: 
Commenting and code layout is used as a mechanism (maybe the only reliable one) for the code 
writer (author) to effectively communicate purpose, functionality, logic, intent, decision processes, 
and motivation for any piece of code to the code reader. Anytime there is ambiguity, 
incompleteness, or obfuscation in the code there is the opportunity for mistakes and 
misunderstanding to occur. We hope to teach you how to minimize these types of problems and in 
that effort also help you learn to be a great software developer.  
 
 

3. Naming Conventions of programmer defined identifiers 

The naming and style conventions used can greatly enhance or reduce the ease with which a 
programmer can read and understand a piece of source code. It is amazing how even the simplest 
function or code block can be made completely obtuse by poor and thoughtless selection of names. 
Developing good naming habits early will help you write better code and solve problems faster and 
easier.  

3.1. General 

The selection of identifiers is crucial to understanding. Meaningful names should be selected for all 
identifiers. They should communicate the purpose and use in context with the problem being 
solved. In general, this means that you should use complete words in the construction of identifiers.  
For example, square is preferable to sq.    Single letter identifiers should be avoided. The only 



exception would be loop control variables that have NO OTHER PURPOSE.  Below are further 
examples of good and bad identifier names.  
 
Valid Identifiers in C: 
Valid identifiers in C are a sequence of one or more letters, digits or underscore characters (_). 
Neither spaces nor punctuation marks or symbols can be part of an identifier. Only letters, digits 
and single underscore characters are valid. In addition, variable identifiers always have to begin 
with a letter. They can also begin with an underline character ‘_’, but in some cases these may be 
reserved for compiler specific keywords or external identifiers, as well as identifiers containing 
two successive underscore characters anywhere. In no case they can begin with a digit. 
Another rule that you have to consider when inventing your own identifiers is that they cannot 
match any keyword of the C language or your compiler's specific ones, which are reserved 
keywords. 

3.1.1. Programmer defined type names 

 Names for user defined types will be in mixed case alpha-numeric. They will start 
with an uppercase letter. Each word in the identifier will be uppercase. 

Example UserName, Student, Line, SavingsAccount 
Justification This is the dominant method for naming types and entities in all of the C like 

languages. It uniquely labels the name as a user defined type. 
 
 

3.1.2. Variable names 

 Variable names are mixed case alpha-numeric and will start with a lowercase 
letter. Each subsequent word in the identifier will be uppercase. In C the variables 

Example userName, studentList, baseLine,  savingsAccountBalance 
Justification Common practice in the C development community. Makes variables easy to 

distinguish from types, and effectively resolves potential naming collision as in the 
declaration  
Line line; 

3.1.3. Named Constants 

 Named constants and enumeration values are uppercase alpha-numeric with the 
underscore separating words.  

Example MAX_ITERATIONS, COLOR_RED, PI 
Justification This is the dominant method for naming constants in all C like languages. It 

uniquely labels the name as a defined constant. 

3.1.4. Function Names 

 Names representing functions must be verbs and written in mixed case starting 
with lower case.   

Example getName(), computeTotalWidth() 
Justification This is the dominant method for naming types and entities in all of the C like 

languages. It uniquely labels the name as a user defined variable. 

3.1.5. Abbreviations and acronyms  

 Abbreviations and acronyms must not be uppercase when used as name [ 
Example exportHtmlSource(); // NOT: exportHTMLSource(); 

openDvdPlayer();    // NOT: openDVDPlayer(); 
Justification Using all uppercase for the base name will give conflicts with the naming 



conventions given above. A variable of this type whould have to be named dVD, 
hTML etc. which obviously is not very readable. Another problem is illustrated in 
the examples above; When the name is connected to another, the readbility is 
seriously reduced; the word following the abbreviation does not stand out as it 
should. 

3.1.6. English Language 

 All names should be written in English. 
Example fileName;   // NOT: filNavn 
Justification English is the preferred language for international development. 

 

3.2. Specific Recommendations 

3.2.1. Name compute 

 The term compute can be used in functuins where something is computed. 
Example computeAverage(); 

computeInverse() 
Justification Give the reader the immediate clue that this is a potential time consuming 

operation, and if used repeatedly, he might consider caching the result. Consistent 
use of the term enhances readability. 

3.2.2. Name find 

 The term find can be used in funcitons where something is looked up. 
Example findNearestVertex(); 

findMinimumElement(); 
Justification Give the reader the immediate clue that this is a simple look up method with a 

minimum of computations involved. Consistent use of the term enhances 
readability. 

3.2.3. Name initialize 

 The term initialize can be used where an object or a concept is established. 
Example initializeFontSet(); 
Justification The American initialize should be preferred over the English initialise. 

Abbreviation init should be avoided. 

3.2.4. Name is 

 The prefix is should be used for flag (Boolean) variables and predicate functions. 
Example isSet, isVisible, isFinished, isFound, isOpen 

isEven(), isOdd(), isPrime() 
Justification Common practice in the C development community and partially enforced in Java.  

Using the “is” prefix solves a common problem of choosing bad boolean names 
like status or flag. isStatus or isFlag simply doesn't fit, and the programmer is 
forced to choose more meaningful names.  
 
There are a few alternatives to the “is” prefix that fits better in some situations. 
These are the has, can and should prefixes:  
 
 
  int hasLicense(); 



  int canEvaluate(); 
  int shouldSort(); 

3.2.5. Names that are written as plural 

 Plural form should be used on names representing a collection of objects. 
Example int  values[];  // array names 
Justification Enhances readability since the name gives the user an immediate clue of the type 

of the variable and the operations that can be performed on its elements. 
 
 

3.2.6. Iteration 

 Iteratoration variables should be called i, j, k, m, n 
Example for (int i = 0; i < numberOfTables); ++i)  

{ 
  : 
} 

Justification The notation is taken from mathematics where it is an established convention for 
indicating iterators.  
Variables named j, k etc. should be used for nested loops only. 

 

3.2.7. Use of abbreviation 

 Abbreviations in names should be avoided. 
Example computeAverage();   // NOT: compAvg(); 
Justification There are two types of words to consider. First, the common words listed in a 

language dictionary. These must never be abbreviated. Never write:  
cmd   instead of   command 
cp    instead of   copy 
pt    instead of   point 
comp  instead of   compute 
init  instead of   initialize 
etc. 
 
Then there are domain specific phrases that are more naturally known through their 
abbreviations/acronym. These phrases should be kept abbreviated. Never write:  
 
HypertextMarkupLanguage  instead of   html 
CentralProcessingUnit    instead of   cpu 
etc. 

 

3.2.8. Function names 

 Functions returning something should be named after what they return and 
procedures (void functions) after what they do. 

Example  
Justification Increase readability. Makes it clear what the unit should do and especially all the 

things it is not supposed to do. This again makes it easier to keep the code clean of 
side effects. 

3.2.9. Enumeration constants 



 Enumeration constants can be prefixed by a common type name. 
Example enum Color  

{ 
  COLOR_RED, 
  COLOR_GREEN, 
  COLOR_BLUE 
}; 
 

Justification The notation is taken from mathematics where it is an established convention for 
indicating iterators.  
Variables named j, k etc. should be used for nested loops only. 

3.2.10. Negated boolean variable names  

 Negated boolean variable names must be avoided. 
Example int isError; // NOT: isNoError 

int isFound; // NOT: isNotFound 
Justification The problem arises when such a name is used in conjunction with the logical 

negation operator as this is a double negative. It is not immediately apparent what  
!isNotFound means. 

 
 

4. Statements 

4.1. Types 

4.1.1. Type Conversion 

 Type conversions must always be done explicitly. Never rely on implicit type 
conversion. 

Example int x; 
float y = 4.3; 
x = (int) y;    // explicit type conversion. 

Justification By this, the programmer indicates that he is aware of the different types involved 
and that the mix and conversion is intentional. 

 

4.2. Variables 

4.2.1. Initialization 

 Variables should be initialized where they are declared. 
Example float y = 4.3; 
Justification This ensures that variables are valid at any time. Sometimes it is impossible to 

initialize a variable to a valid value where it is declared:  
In these cases it should be initialized to a non-valid value. 

 

4.2.2. Dual Meaning 

 Variables must never have dual meaning. 
Example  



Justification Enhance readability by ensuring all concepts are represented uniquely. Reduce 
chance of error by side effects. 

4.2.3. Global Variables  

 Use of global variables should be minimized. 
Example  
Justification In C, there is no reason global variables need to be used at all. The same is true for 

global functions or file scope (static) variables. 

4.2.4. Pointer Declaration 

 C pointers have their reference symbol next to the type rather than to the name. 
Example float* x; // NOT: float *x; n 
Justification The pointer-ness of a variable is a property of the type rather than the name.  

4.2.5. Implicit test for 0 

 Implicit test for 0 should not be used other than for boolean variables and pointers. 
Example if (nLines != 0)  // NOT: if (nLines) 

if (value != 0.0) // NOT: if (value) 
Justification By using explicit test the statement give immediate clue of the type being tested.  

It is common also to suggest that pointers shouldn't test implicit for 0 either, i.e. if 
(line == 0) instead of if (line).  

4.3. Loops  

4.3.1. Control  

 Only loop control statements must be included in the for() construction. 
Example sum = 0;      

for (i = 0; i < 100; i++)                 
{ 
   sum += value[i]; 
} 
// NOT: for (i = 0, sum = 0; i < 100; i++)   
// sum += value[i]; 

Justification This ensures that variables are valid at any time. Sometimes it is impossible to 
initialize a variable to a valid value where it is declared:  
In these cases it should be initialized to a non-valid value. 

4.3.2. Loop control Variable  

 . Loop variables should be initialized immediately before the loop. 
Example isDone = FALSE;            

while (!isDone)  
{          
  :      
}       

Justification  
 

4.3.3. break and continue in loops  

 These statements should not be used. 



Example  
Justification  

4.4. Conditionals 

4.4.1. Complex Expressions  

 Complex conditional expressions must be avoided.  
Example if ( year % 400 == 0 ) 

{  
   isLeap = TRUE; 
} 
else if ( year % 100 == 0 ) 
{ 
   isLeap = FALSE;  
} 
else if ( year % 4 == 0 ) 
{ 
   isLeap = TRUE 
} 
else 
{ 
   isLeap = FALSE; 
} 
 
 
/* Not: 
if( year%400 ==0 || ( year%100 != 0 && year%4 == 0 ) ) 
    { 
        isLeap = TRUE; 
    } 
    else 
    { 
        isLeap = FALSE; 
    } 
*/ 

Justification Simple code is always better. 

4.4.2. Nominal case          

 The nominal case should be put in the if-part and the exception in the else-part of 
an if statement. 

Example isOk = readFile (fileName); 
if (isOk)  
{ 
  : 
} 
else  
{ 
  : 
} 

Justification Makes sure that the exceptions don't obscure the normal path of execution. This is 
important for both the readability and performance. 

4.4.3. Complex Expressions  



 Complex conditional expressions must be avoided.  
Example  
Justification  

Header files are named with extension .h and source files with extension .c This is expected by 
the compiler.  

5. Coding style, white space, code formatting 

5.1. Layout 

5.1.1. Indentation 

 Indentation should be 3 spaces, tabs should be replaced by spaces.  
Example for (i = 0; i < nElements; i++) 

{ 
   a[i] = 0; 
} 

Justification Improves blocking and is easily accomplished by sets in the IDE. 
 

5.1.2. if - else  

 The if-else class of statements should have the following form: 
Example if (condition)  

{ 
   statements; 
} 
 
if (condition)  
{ 
   statements; 
} 
else  
{ 
   statements; 
} 
 
if (condition)  
{ 
   statements; 
} 
else if (condition)  
{ 
   statements; 
} 
else  
{ 
   statements; 
} 

Justification  

5.1.3. for 

 A for statement should have the following form:   
Example for ( initialization; condition; update )  



{ 
   statements; 
} 

Justification  

5.1.4. while 

 A while statement should have the following form:   
Example while ( condition )  

{ 
  statements; 
} 

Justification  

5.1.5. do while 

 A do-while statement should have the following form: 
Example do  

{ 
   statements; 
} while (condition); 

Justification  

5.1.6. switch 

 A switch statement should have the following form: 
Example switch (condition)  

{ 
   case ABC : 
      statements; 
      // Fallthrough 
 
   case DEF : 
      statements; 
      break; 
 
   case XYZ : 
      statements; 
      break; 
 
   default : 
      statements; 
      break; 
} 

Justification  
 

5.1.7. function definitions 

 A switch statement should have the following form: 
Example int myFunction( float ) 

{ 
  : 
} 

 

5.2. White space 



5.2.1. In lines 

 
 - Conventional operators should be surrounded by a space character.  

- C  reserved words should be followed by a white space.  
- Commas should be followed by a white space.  
- Colons should be surrounded by white space.  
- Semicolons in for statements should be followed by a space character. 

Example a = (b + c) * d; // NOT: a=(b+c)*d 
 
while (true)   // NOT: while(true)  
{ 
   ... 
} 
 
doSomething(a, b, c, d);  // NOT: doSomething(a,b,c,d); 
 
case 100 :  // NOT: case 100: 
 
for (i = 0; i < 10; i++)    // NOT: for(i=0;i<10;i++) 
{ 
   ... 

5.2.2. Logical code sections. 

Logical units within a block should be separated by one blank line. 
Functions should be separated by three blank lines. 
Variables and initialization should be line left aligned. 
Use alignment when ever it enhances readability (makes the code pretty). 
 

6. Commenting, writing useful comments 

While the importance of properly documenting work cannot be over emphasized, it is important to 
properly comment code in order to get the expected benefits. First of all, realize that a comment is 
no different than any other programming statement. Once it is created, it has to be maintained and 
since a comment is not a functional part of the code, it is the last thing to be changed, if changed at 
all. Comments are not inherently good and if incorrect can be detrimental. 
 
When the time comes to document your code (before you write it) try to answer the following 
questions: 
 
What does the code do? 
In general, nothing documents what code does better than the code itself. Therefore, be careful 
when adding comments that describe what the code does. These types of comments can be helpful 
when the code is difficult to read or understand. But if the code is difficult to read or understand 
you should also think about the possibility that it should be rewritten in a clearer more readable 
way. 
Also, these types of comments are subject to becoming obsolete quickly as the code changes with 
time. 
 
Why was the code written? 
This is probably the most useful type of comment. Every piece of code has a purpose and every 
piece of code should have a comment that explains that purpose. Sometimes the purpose is due to a 
business need, in other times the purpose is purely technical. 
Typically, the purpose of a routine is constant no matter how many different ways are used to 
implement the purpose. This makes these types of comments much more stable. 



 
If a routine has multiple purposes it is a good candidate for splitting into separate routines. 
 
Who wrote the code? 
There is no better way to figure out what code is doing by talking to the dolt, i.e. the original 
programmer that wrote it. So, if you put your initials on a block of code you change or modify it 
may be helpful. Of course, if it is the gnarliest code you ever wrote, put your manager’s initials on 
it! 
 
When was the code written? 
Add a date stamp to your comments/modifications. Perhaps also insert some reference to a 
specification, change order, change request number in a bug tracking system. The reference will 
allow someone to locate further info about possible discussions or specs about your code. 
 
How does the code work? 
This is similar but slightly different and more useful than the “What” type of comment. In this type 
you are trying explain in a general sense how the code meets the purpose of the routine. These 
types of comment only need to change when a different approach to implementation is tried. 
 
Which other parts of the application calls this function? 
It can be very difficult to track application flow when going through source code that does not 
document from where and how it is called. 
  
How to invoke this routine; what do parameters stand for? 
I like to see a line or two at the top of a function identifying how and why this routine gets called. 
If there are parameters, it tells what they mean, whether or not they are optional, and what their 
defaults might be. And what it returns!  
 
Who made the change? Why was a change made? 
I like information that indicates who made a change to the code, when it was made, and more 
important...why it was changed.  
 
There is a lot to be said for self-documenting code.  The idea being that you are naming funcitons 
by what they do, variables by what they hold. Also, writing top to bottom without a-lot of entry and 
exit points. If you find that you cannot read through code and know what it is doing, it needs to be 
re-written. 
 
A critical element to self-documenting code is concise, single concept functions which, as 
mentioned above, make use of intelligently named variables. A function which needs to combine 
concepts should have each concept broken out into a separate function. 

6.1.1. All comments should be in English. 

6.1.2. File and function header comments follow the convention in Appendix A. 

7. Files, file organization, and unit testing 

7.1. Source Files 

7.1.1. File naming 

Header files are named with extension .h and source files with extension .c This is expected by 
the compiler.  



7.1.2. Declaration and Definition 

All declarations, functions, types, constants, will be located in a .h file. 
All definitions will be in a matching .c file.  
The header files should declare an interface; the source file should implement it. When looking 
for an implementation, the programmer should always know that it is found in the source file. 

7.1.3. Header files must contain include guard code. 

#ifndef NAME_H 
#define NAME_H 
  : 
#endif 

  
The construction is to avoid compilation errors. The name convention resembles the location of 
the file inside the source tree and prevents naming conflicts.   

7.1.4. Include statements should be sorted and grouped. 

#include <stidio.h> 
#include <time.h> 
 
#include "com/company/ui/PropertiesDialog.h" 
#include "com/company/ui/MainWindow.h" 
 
In addition to show the reader the individual include files, it also give an immediate clue about 
the modules that are involved.  Include file paths must never be absolute. Compiler directives 
should instead be used to indicate root directories for includes. 
 

7.2. 

7.3. 

File organization 

Files should be organized in .h .c pairs as outlined above. Each file should group a logically 
related part of the project, such as I/O functionality, utility functions, drawing functions, etc.  
Each file must have a File Header Comment block. 

Unit Testing 

The unit testing drive code can be in one .h .c pair. Each function of the project should have a 
unit test that can exercise it in isolation of the working project. The testing operation should be 
automated such that any component or collection of components can be tested and verified. 
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