

The C Library
Reference Guide

by Eric Huss

Copyright 1996 Eric Huss

ht
This book can be found at the following address

tp://www.acm.uiuc.edu/webmonkeys/book/c_guide/

http://www.acm.uiuc.edu/webmonkeys/book/c_guide/

The C Library Reference Guide Introduction

Introduction

Welcome to the C Library Reference Guide. This guide provides a useful look at the standard C
programming language. In no way does this guide attempt to teach one how to program in C, nor will it
attempt to provide the history of C or the various implementations of it. It is merely a handy reference to
the standard C library. This guide is not a definitive look at the entire ANSI C standard. Some outdated
information has been left out. It is simply a quick reference to the functions and syntax of the language.
All efforts have been taken to make sure the information contained herein is correct, but no guarantees
are made. Nearly all of the information was obtained from the official ANSI C Standard published in
1989 in the document ANSI X3.159-1989. The associated International Organization for Standardization
document, ISO 9899-1990, is a near duplicate of the ANSI standard.

This guide is divided into two sections. The first part, "Language", is an analysis of the syntax and the
environment. The second part, "Library", is a list of the functions available in the standard C library.
These parts were designed to insure conformity among various implementations of the C language. Not
all information from the ANSI standard is contained in this guide. Additional reference may be made to
the actual ANSI publication.

Return to the Index

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/introduction.html4/1/2008 8:36:08 AM

The C Library Reference Guide

The C Library Reference Guide

by Eric Huss
© Copyright 1997 Eric Huss

Release 1

Introduction

1. Language
 1.1 Characters

 1.1.1 Trigraph Characters
 1.1.2 Escape Sequences
 1.1.3 Comments
 1.2 Identifiers

 1.2.1 Keywords

 1.2.2 Variables

 1.2.3 Enumerated Tags

 1.2.4 Arrays

 1.2.5 Structures and Unions

 1.2.6 Constants

 1.2.7 Strings

 1.2.8 sizeof Keyword

 1.3 Functions

 1.3.1 Definition
 1.3.2 Program Startup
 1.4 References

 1.4.1 Pointers and the Address Operator
 1.4.2 Typecasting
 1.5 Operators

 1.5.1 Postfix
 1.5.2 Unary and Prefix
 1.5.3 Normal
 1.5.4 Boolean
 1.5.5 Assignment
 1.5.6 Precedence
 1.6 Statements

 1.6.1 if

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/index.html (1 of 6)4/1/2008 8:35:06 AM

The C Library Reference Guide

 1.6.2 switch

 1.6.3 while

 1.6.4 do

 1.6.5 for

 1.6.6 goto

 1.6.7 continue

 1.6.8 break

 1.6.9 return

 1.7 Preprocessing Directives

 1.7.1 #if, #elif, #else, #endif

 1.7.2 #define, #undef, #ifdef, #ifndef

 1.7.3 #include

 1.7.4 #line

 1.7.5 #error

 1.7.6 #pragma

 1.7.7 Predefined Macros

2. Library
 2.1 assert.h

 2.1.1 assert
 2.2 ctype.h

 2.2.1 is... Functions
 2.2.2 to... Functions
 2.3 errno.h

 2.3.1 EDOM
 2.3.2 ERANGE
 2.3.3 errno
 2.4 float.h

 2.4.1 Defined Values
 2.5 limits.h

 2.5.1 Defined Values
 2.6 locale.h

 2.6.1 Variables and Definitions
 2.6.2 setlocale
 2.6.3 localeconv
 2.7 math.h

 2.7.1 Error Conditions
 2.7.2 Trigonometric Functions
 2.7.2.1 acos

 2.7.2.2 asin

 2.7.2.3 atan

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/index.html (2 of 6)4/1/2008 8:35:06 AM

The C Library Reference Guide

 2.7.2.4 atan2

 2.7.2.5 cos

 2.7.2.6 cosh

 2.7.2.7 sin

 2.7.2.8 sinh

 2.7.2.9 tan

 2.7.2.10 tanh

 2.7.3 Exponential, Logarithmic, and Power Functions
 2.7.3.1 exp

 2.7.3.2 frexp

 2.7.3.3 ldexp

 2.7.3.4 log

 2.7.3.5 log10

 2.7.3.6 modf

 2.7.3.7 pow

 2.7.3.8 sqrt

 2.7.4 Other Math Functions
 2.7.4.1 ceil

 2.7.4.2 fabs

 2.7.4.3 floor

 2.7.4.4 fmod

 2.8 setjmp.h

 2.8.1 Variables and Definitions
 2.8.2 setjmp
 2.8.3 longjmp
 2.9 signal.h

 2.9.1 Variables and Definitions
 2.9.2 signal
 2.9.3 raise
 2.10 stdarg.h

 2.10.1 Variables and Definitions
 2.10.2 va_start
 2.10.3 va_arg
 2.10.4 va_end
 2.11 stddef.h

 2.11.1 Variables and Definitions
 2.12 stdio.h

 2.12.1 Variables and Definitions

 2.12.2 Streams and Files

 2.12.3 File Functions

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/index.html (3 of 6)4/1/2008 8:35:06 AM

The C Library Reference Guide

 2.12.3.1 clearerr

 2.12.3.2 fclose

 2.12.3.3 feof

 2.12.3.4 ferror

 2.12.3.5 fflush

 2.12.3.6 fgetpos

 2.12.3.7 fopen

 2.12.3.8 fread

 2.12.3.9 freopen

 2.12.3.10 fseek

 2.12.3.11 fsetpos

 2.12.3.12 ftell

 2.12.3.13 fwrite

 2.12.3.14 remove

 2.12.3.15 rename

 2.12.3.16 rewind

 2.12.3.17 setbuf

 2.12.3.18 setvbuf

 2.12.3.19 tmpfile

 2.12.3.20 tmpnam

 2.12.4 Formatted I/O Functions
 2.12.4.1 ...printf Functions

 2.12.4.2 ...scanf Functions

 2.12.5 Character I/O Functions
 2.12.5.1 fgetc

 2.12.5.2 fgets

 2.12.5.3 fputc

 2.12.5.4 fputs

 2.12.5.5 getc

 2.12.5.6 getchar

 2.12.5.7 gets

 2.12.5.8 putc

 2.12.5.9 putchar

 2.12.5.10 puts

 2.12.5.11 ungetc

 2.12.7 Error Functions
 2.12.7.1 perror

 2.13 stdlib.h

 2.13.1 Variables and Definitions

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/index.html (4 of 6)4/1/2008 8:35:06 AM

The C Library Reference Guide

 2.13.2 String Functions
 2.13.2.1 atof

 2.13.2.2 atoi

 2.13.2.3 atol

 2.13.2.4 strtod

 2.13.2.5 strtol

 2.13.2.6 strtoul

 2.13.3 Memory Functions
 2.13.3.1 calloc

 2.13.3.2 free

 2.13.3.3 malloc

 2.13.3.4 realloc

 2.13.4 Environment Functions
 2.13.4.1 abort

 2.13.4.2 atexit

 2.13.4.3 exit

 2.13.4.4 getenv

 2.13.4.5 system

 2.13.5 Searching and Sorting Functions
 2.13.5.1 bsearch

 2.13.5.2 qsort

 2.13.6 Math Functions
 2.13.6.1 abs

 2.13.6.2 div

 2.13.6.3 labs

 2.13.6.4 ldiv

 2.13.6.5 rand

 2.13.6.6 srand

 2.13.7 Multibyte Functions
 2.13.7.1 mblen

 2.13.7.2 mbstowcs

 2.13.7.3 mbtowc

 2.13.7.4 wcstombs

 2.13.7.5 wctomb

 2.14 string.h

 2.14.1 Variables and Definitions

 2.14.2 memchr

 2.14.3 memcmp

 2.14.4 memcpy

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/index.html (5 of 6)4/1/2008 8:35:06 AM

The C Library Reference Guide

 2.14.5 memmove

 2.14.6 memset

 2.14.7 strcat

 2.14.8 strncat

 2.14.9 strchr

 2.14.10 strcmp

 2.14.11 strncmp

 2.14.12 strcoll

 2.14.13 strcpy

 2.14.14 strncpy

 2.14.15 strcspn

 2.14.16 strerror

 2.14.17 strlen

 2.14.18 strpbrk

 2.14.19 strrchr

 2.14.20 strspn

 2.14.21 strstr

 2.14.22 strtok

 2.14.23 strxfrm

 2.15 time.h

 2.15.1 Variables and Definitions

 2.15.2 asctime

 2.15.3 clock

 2.15.4 ctime

 2.15.5 difftime

 2.15.6 gmtime

 2.15.7 localtime

 2.15.8 mktime

 2.15.9 strftime

 2.15.10 time

Appendix A
 ASCII Chart

Index
 Index

Questions, comments, or error reports? Please send them to Eric Huss

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/index.html (6 of 6)4/1/2008 8:35:06 AM

mailto:e-huss@uiuc.edu

C Guide--Index

The C Library Reference Guide

Index

[# | __ | _ | A | B | C | D | E | F | G | H | I | J | L | M | N | O | P | Q | R | S | T | U | V | W]
Table of Contents

#if Preprocessing Directives
#define Preprocessing Directives
#elif Preprocessing Directives
#else Preprocessing Directives
#endif Preprocessing Directives
#error Preprocessing Directives
#ifdef Preprocessing Directives
#ifndef Preprocessing Directives
#include Preprocessing Directives
#line Preprocessing Directives
#pragma Preprocessing Directives
#undef Preprocessing Directives

__LINE__ Preprocessing Directives
__FILE__ Preprocessing Directives
__DATE__ Preprocessing Directives
__TIME__ Preprocessing Directives
__STDC__ Preprocessing Directives

_IOFBF stdio.h
_IOLBF stdio.h
_IONBF stdio.h

abort() stdlib.h
abs() stdlib.h
acos() math.h
asctime() time.h
asin() math.h
assert() assert.h
atan() math.h

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/index2.html (1 of 8)4/1/2008 8:37:04 AM

C Guide--Index

atan2() math.h
atexit() stdlib.h
atof() stdlib.h
atoi() stdlib.h
atol() stdlib.h
auto Identifiers

break Statements
bsearch() stdlib.h
BUFSIZ stdio.h

calloc() stdlib.h
ceil() math.h
char Identifiers
clearerr() stdio.h
clock() time.h
clock_t time.h
CLOCKS_PER_SEC time.h
const Identifiers
continue Statements
cos() math.h
cosh() math.h
ctime() time.h

difftime() time.h
div() stdlib.h
div_t stdlib.h
do Statements
double Identifiers

EDOM errno.h
enum Identifiers
EOF stdio.h
ERANGE errno.h
errno errno.h
exit() stdlib.h
EXIT_FAILURE stdlib.h
EXIT_SUCCESS stdlib.h

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/index2.html (2 of 8)4/1/2008 8:37:04 AM

C Guide--Index

exp() math.h
extern Identifiers

fabs() math.h
fclose() stdio.h
feof() stdio.h
ferror() stdio.h
fflush() stdio.h
fgetc() stdio.h
fgetpos() stdio.h
fgets() stdio.h
FILE stdio.h
FILENAME_MAX stdio.h
float Identifiers
floor() math.h
fmod() math.h
fopen() stdio.h
FOPEN_MAX stdio.h
for Statements
fpos_t stdio.h
fprintf() stdio.h
fputc() stdio.h
fputs() stdio.h
fread() stdio.h
free() stdlib.h
freopen() stdio.h
frexp() math.h
fscanf() stdio.h
fseek() stdio.h
fsetpos() stdio.h
ftell() stdio.h
fwrite() stdio.h

getc() stdio.h
getchar() stdio.h
getenv() stdlib.h
gets() stdio.h
gmtime() time.h

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/index2.html (3 of 8)4/1/2008 8:37:04 AM

C Guide--Index

goto Statements

HUGE_VAL math.h

if Statements
isalnum() ctype.h
isalpha() ctype.h
iscntrl() ctype.h
isdigit() ctype.h
isgraph() ctype.h
islower() ctype.h
isprint() ctype.h
ispunct() ctype.h
isspace() ctype.h
isupper() ctype.h
isxdigit() ctype.h

jmp_buf setjmp.h

L_tmpnam stdio.h
labs() stdlib.h
LC_ALL locale.h
LC_COLLATE locale.h
LC_CTYPE locale.h
LC_MONETARY locale.h
LC_NUMERIC locale.h
LC_TIME locale.h
ldexp() math.h
ldiv() stdlib.h
ldiv_t stdlib.h
linkage Identifiers
localeconv() locale.h
localtime() time.h
log() math.h
log10() math.h
long Identifiers
longjmp() setjmp.h

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/index2.html (4 of 8)4/1/2008 8:37:04 AM

C Guide--Index

malloc() stdlib.h
MB_CUR_MAX stdlib.h
mblen() stdlib.h
mbstowcs() stdlib.h
mbtowc() stdlib.h
memchr() string.h
memcmp() string.h
memcpy() string.h
memmove() string.h
memset() string.h
mktime() time.h
modf() math.h

NDEBUG assert.h
NULL time.h string.h stdlib.h stdio.h stddef.h locale.h

offsetof() stddef.h

perror() stdio.h
pow() math.h
printf() stdio.h
ptrdiff_t stddef.h
putc() stdio.h
putchar() stdio.h
puts() stdio.h

qsort() stdlib.h

raise() signal.h
rand() stdlib.h
RAND_MAX stdlib.h
realloc() stdlib.h
register Identifiers
remove() stdio.h
rename() stdio.h
return Statements
rewind() stdio.h

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/index2.html (5 of 8)4/1/2008 8:37:04 AM

C Guide--Index

scanf() stdio.h
scope Identifiers
SEEK_CUR stdio.h
SEEK_END stdio.h
SEEK_SET stdio.h
setbuf() stdio.h
setjmp() setjmp.h
setlocale() locale.h
setvbuf() stdio.h
short Identifiers
sig_atomic_t signal.h
SIG_DFL signal.h
SIG_ERR signal.h
SIG_IGN signal.h
SIGABRT signal.h
SIGFPE signal.h
SIGILL signal.h
SIGINT signal.h
signed Identifiers
SIGSEGV signal.h
SIGTERM signal.h
signal() signal.h
sin() math.h
sinh() math.h
size_t time.h string.h stdlib.h stdio.h stddef.h
sizeof Identifiers
sprintf() stdio.h
sqrt() math.h
srand() stdlib.h
sscanf() stdio.h
static Identifiers
stderr stdio.h
stdin stdio.h
stdout stdio.h
strcat() string.h
strncat() string.h
strchr() string.h
strcmp() string.h

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/index2.html (6 of 8)4/1/2008 8:37:04 AM

C Guide--Index

strncmp() string.h
strcoll() string.h
strcpy() string.h
strncpy() string.h
strcspn() string.h
strerror() string.h
strftime() time.h
strlen() string.h
strpbrk() string.h
strrchr() string.h
strspn() string.h
strstr() string.h
strtod() stdlib.h
strtok() string.h
strtol() stdlib.h
strtoul() stdlib.h
struct Indentifiers
strxfrm() string.h
switch Statements
system() stdlib.h

tan() math.h
tanh() math.h
time() time.h
tm time.h
TMP_MAX stdio.h
tmpfile() stdio.h
tmpnam() stdio.h
tolower() ctype.h
toupper() ctype.h
typedef Identifiers

ungetc() stdio.h
unions Identifiers

va_arg() stdarg.h
va_end() stdarg.h
va_list stdarg.h

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/index2.html (7 of 8)4/1/2008 8:37:04 AM

C Guide--Index

va_start() stdarg.h
vfprintf() stdio.h
void Identifiers
vprintf() stdio.h
vsprintf() stdio.h

wcstombs() stdlib.h
wctomb() stdlib.h
wchar_t stdlib.h stddef.h
while Statements

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/index2.html (8 of 8)4/1/2008 8:37:04 AM

C Guide--1.1 Characters

 Previous
Section
TOC

| Table of Contents | Index | Next Section
1.2 Identifiers

1.1.1 Trigraph Characters

A trigraph sequence found in the source code is converted to its respective translation character. This
allows people to enter certain characters that are not allowed under some (rare) platforms.

Trigraph Sequence Translation Character

??= #

??([

??/ \

??)]

??' ^

??< {

??! |

??> }

??- ~

Example:

printf("No???/n");

translates into:

printf("No?\n");

1.1.2 Escape sequences

The following escape sequences allow special characters to be put into the source code.

Escape Sequence Name Meaning

\a Alert Produces an audible or visible alert.

\b Backspace Moves the cursor back one position (non-destructive).

\f Form Feed Moves the cursor to the first position of the next page.

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.1.html (1 of 3)4/1/2008 8:38:25 AM

C Guide--1.1 Characters

\n New Line Moves the cursor to the first position of the next line.

\r Carriage Return Moves the cursor to the first position of the current line.

\t Horizontal Tab Moves the cursor to the next horizontal tabular position.

\v Vertical Tab Moves the cursor to the next vertical tabular position.

\' Produces a single quote.

\" Produces a double quote.

\? Produces a question mark.

\\ Produces a single backslash.

\0 Produces a null character.

\ddd
Defines one character by the octal digits (base-8 number). Multiple
characters may be defined in the same escape sequence, but the
value is implementation-specific (see examples).

\xdd Defines one character by the hexadecimal digit (base-16 number).

Examples:

printf("\12");
Produces the decimal character 10 (x0A Hex).

printf("\xFF");
Produces the decimal character -1 or 255 (depending on sign).

printf("\x123");
Produces a single character (value is undefined). May cause errors.

printf("\0222");
Produces two characters whose values are implementation-specific.

1.1.3 Comments

Comments in the source code are ignored by the compiler. They are encapsulated starting with /* and
ending with */. According to the ANSI standard, nested comments are not allowed, although some
implementations allow it.

Single line comments are becoming more common, although not defined in the ANSI standard. Single
line comments begin with // and are automatically terminated at the end of the current line.

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.1.html (2 of 3)4/1/2008 8:38:25 AM

C Guide--1.1 Characters

 Previous
Section
TOC

| Table of Contents | Index | Next Section
1.2 Identifiers

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.1.html (3 of 3)4/1/2008 8:38:25 AM

C Guide--1.2 Indentifiers

 Previous
Section
1.1 Characters

| Table of Contents | Index | Next Section
1.3 Functions

1.2.1 Keywords

The following keywords are reserved and may not be used as an identifier for any other purpose.

auto double int long

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

1.2.2 Variables

A variable may be defined using any uppercase or lowercase character, a numerical digit (0 through 9),
and the underscore character (_). The first character of the variable may not be a numerical digit or
underscore. Variable names are case sensitive.

The scope of the variable (where it can be used), is determined by where it is defined. If it is defined
outside any block or list of parameters, then it has file scope. This means it may be accessed anywhere in
the current source code file. This is normally called a global variable and is normally defined at the top
of the source code. All other types of variables are local variables. If a variable is defined in a block
(encapsulated with { and }), then its scope begins when the variable is defined and ends when it hits the
terminating }. This is called block scope. If the variable is defined in a function prototype, then the
variable may only be accessed in that function. This is called function prototype scope.

Access to variables outside of their file scope can be made by using linkage. Linkage is done by placing
the keyword extern prior to a variable declaration. This allows a variable that is defined in another
source code file to be accessed.

Variables defined within a function scope have automatic storage duration. The life of the variable is
determined by the life of the function. Space is allocated at the beginning of the function and terminated

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.2.html (1 of 9)4/1/2008 8:38:26 AM

C Guide--1.2 Indentifiers

at the end of the function. Static storage duration can be obtained by placing the keyword static in
front of the variable declaration. This causes the variable's space to be allocated when the program starts
up and is kept during the life of the program. The value of the variable is preserved during subsequent
calls to the function that defines it. Variables with file scope are automatically static variables.

A variable is defined by the following:

storage-class-specifier type-specifier variable-names,...

The storage-class-specifier can be one of the following:

typedef The symbol name "variable-name" becomes a type-specifier of type "type-
specifier". No variable is actually created, this is merely for convenience.

extern Indicates that the variable is defined outside of the current file. This brings
the variables scope into the current scope. No variable is actually created by
this.

static Causes a variable that is defined within a function to be preserved in
subsequent calls to the function.

auto Causes a local variable to have a local lifetime (default).

register Requests that the variable be accessed as quickly as possible. This request is
not guaranteed. Normally, the variable's value is kept within a CPU register
for maximum speed.

The type-specifier can be one of the following:

void Defines an empty or NULL value whose
type is incomplete.

char, signed char Variable is large enough to store a basic
character in the character set. The value is
either signed or nonnegative.

unsigned char Same as char, but unsigned values only.

short, signed short, short
int, signed short int

Defines a short signed integer. May be the
same range as a normal int, or half the bits
of a normal int.

unsigned short, unsigned
short int

Defines an unsigned short integer.

int, signed, signed int, or no
type specifier

Defines a signed integer. If no type
specifier is given, then this is the default.

unsigned int, unsigned Same as int, but unsigned values only.

long, signed long, long int,
signed long int

Defines a long signed integer. May be
twice the bit size as a normal int, or the
same as a normal int.

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.2.html (2 of 9)4/1/2008 8:38:26 AM

C Guide--1.2 Indentifiers

unsigned long, unsigned long
int

Same as long, but unsigned values only.

float A floating-point number. Consists of a
sign, a mantissa (number greater than or
equal to 1), and an exponent. The mantissa
is taken to the power of the exponent then
given the sign. The exponent is also signed
allowing extremely small fractions. The
mantissa gives it a finite precision.

double A more accurate floating-point number
than float. Normally twice as many bits in
size.

long double Increases the size of double.

Here are the maximum and minimum sizes of the type-specifiers on most common implementations.
Note: some implementations may be different.

Type Size Range

unsigned char 8 bits 0 to 255

char 8 bits -128 to 127

unsigned int 16 bits 0 to 65,535

short int 16 bits -32,768 to 32,767

int 16 bits -32,768 to 32,767

unsigned long 32 bits 0 to 4,294,967,295

long 32 bits -2,147,483,648 to 2,147,483,647

float 32 bits 1.17549435 * (10^-38) to 3.40282347 * (10^+38)

double 64 bits 2.2250738585072014 * (10^-308) to 1.7976931348623157 * (10^+308)

long double 80 bits 3.4 * (10^-4932) to 1.1 * (10^4932)

Examples:

int bob=32;
Creates variable "bob" and initializes it to the value 32.

char loop1,loop2,loop3='\x41';
Creates three variables. The value of "loop1" and "loop2" is undefined. The value of loop3
is the letter "A".

typedef char boolean;
Causes the keyword "boolean" to represent variable-type "char".

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.2.html (3 of 9)4/1/2008 8:38:26 AM

C Guide--1.2 Indentifiers

boolean yes=1;
Creates variable "yes" as type "char" and sets its value to 1.

1.2.3 Enumerated Tags

Enumeration allows a series of constant integers to be easily assigned. The format to create a
enumeration specifier is:

enum identifier {enumerator-list};
Identifier is a handle for identification, and is optional.
Enumerator-list is a list of variables to be created. They will be constant integers. Each
variable is given the value of the previous variable plus 1. The first variable is given the
value of 0.

Examples:

enum {joe, mary, bob, fran};
Creates 4 variables. The value of joe is 0, mary is 1, bob is 2, and fran is 3.

enum test {larry, floyd=20, ted};
Creates 3 variables with the identifier test. The value of larry is 0, floyd is 20, and ted is
21.

1.2.4 Arrays

Arrays create single or multidimensional matrices. They are defined by appending an integer
encapsulated in brackets at the end of a variable name. Each additional set of brackets defines an
additional dimension to the array. When addressing an index in the array, indexing begins at 0 and ends
at 1 less than the defined array. If no initial value is given to the array size, then the size is determined
by the initializers. When defining a multidimensional array, nested curly braces can be used to specify
which dimension of the array to initialize. The outermost nest of curly braces defines the leftmost
dimension, and works from left to right.

Examples:

int x[5];
Defines 5 integers starting at x[0], and ending at x[4]. Their values are undefined.

char str[16]="Blueberry";
Creates a string. The value at str[8] is the character "y". The value at str[9] is the null

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.2.html (4 of 9)4/1/2008 8:38:26 AM

C Guide--1.2 Indentifiers

character. The values from str[10] to str[15] are undefined.

char s[]="abc";
Dimensions the array to 4 (just long enough to hold the string plus a null character), and
stores the string in the array.

int y[3]={4};
Sets the value of y[0] to 4 and y[1] and y[2] to 0.

int joe[4][5]={
 {1,2,3,4,5},
 {6,7,8,9,10},
 {11,12,13,14,15}
};

The first row initializes joe[0], the second row joe[1] and so forth. joe[3] is initialized to 5
zeros.

The same effect is achieved by:
int joe[4][5]={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};

1.2.5 Structures and Unions

Structures and unions provide a way to group common variables together. To define a structure use:

struct structure-name {

 variables,...

} structure-variables,...;

Structure-name is optional and not needed if the structure variables are defined. Inside it can contain any
number of variables separated by semicolons. At the end, structure-variables defines the actual names of
the individual structures. Multiple structures can be defined by separating the variable names with
commas. If no structure-variables are given, no variables are created. Structure-variables can be defined
separately by specifying:

struct structure-name new-structure-variable;

new-structure-variable will be created and has a separate instance of all the variables in structure-name.

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.2.html (5 of 9)4/1/2008 8:38:26 AM

C Guide--1.2 Indentifiers

To access a variable in the structure, you must use a record selector (.).

Unions work in the same way as structures except that all variables are contained in the same location in
memory. Enough space is allocated for only the largest variable in the union. All other variables must
share the same memory location. Unions are defined using the union keyword.

Examples:

struct my-structure {
 int fred[5];
 char wilma, betty;
 float barny=1;
};

This defines the structure my-structure, but nothing has yet been done.

struct my-structure account1;
This creates account1 and it has all of the variables from my-structure. account1.barny
contains the value "1".

union my-union {
 char character_num;
 int integer_num;
 long long_num;
 float float_num;
 double double_num;
} number;

This defines the union number and allocates just enough space for the variable
double_num.

number.integer_num=1;
Sets the value of integer_num to "1".
number.float_num=5;
Sets the value of float_num to "5".
printf("%i",integer_num);
This is undefined since the location of integer_num was overwritten in the previous line
by float_num.

1.2.6 Constants

Constants provide a way to define a variable which cannot be modified by any other part in the code.

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.2.html (6 of 9)4/1/2008 8:38:26 AM

C Guide--1.2 Indentifiers

Constants can be defined by placing the keyword const in front of any variable declaration. If the
keyword volatile is placed after const, then this allows external routines to modify the variable
(such as hardware devices). This also forces the compiler to retrieve the value of the variable each time
it is referenced rather than possibly optimizing it in a register.

Constant numbers can be defined in the following way:

Hexadecimal constant:

0x hexadecimal digits...
Where hexadecimal digits is any digit or any letter A through F or a through
f.

Decimal constant:

Any number where the first number is not zero.

Octal constant:

Any number where the first number must be zero.

Floating constant:

A fractional number, optionally followed by either e or E then the
exponent.

The number may be suffixed by:
U or u:

Causes the number to be an unsigned long integer.

L or l:

If the number is a floating-point number, then it is a long double, otherwise
it is an unsigned long integer.

F or f:

Causes the number to be a floating-point number.

Examples:

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.2.html (7 of 9)4/1/2008 8:38:26 AM

C Guide--1.2 Indentifiers

const float PI=3.141;
Causes the variable PI to be created with value 3.141. Any subsequent attempts to write to
PI are not allowed.

const int joe=0xFFFF;
Causes joe to be created with the value of 65535 decimal.

const float penny=7.4e5;
Causes penny to be created with the value of 740000.000000.

1.2.7 Strings

Strings are simply an array of characters encapsulated in double quotes. At the end of the string a null
character is appended.

Examples:

"\x65" and "A" are the same string.

char fred[25]="He said, \"Go away!\"";
The value at fred[9] is a double quote. The value at fred[20] is the null character.

1.2.8 sizeof Keyword

Declaration:

size_t sizeof expression

or

size_t sizeof (type)

The sizeof keyword returns the number of bytes of the given expression or type.
size_t is an unsigned integer result.

Example:

printf("The number of bytes in an int is %d.\n",sizeof
(int));

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.2.html (8 of 9)4/1/2008 8:38:26 AM

C Guide--1.2 Indentifiers

 Previous
Section
1.1 Characters

| Table of Contents | Index | Next Section
1.3 Functions

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.2.html (9 of 9)4/1/2008 8:38:26 AM

C Guide--1.3 Functions

 Previous
Section
1.2 Identifiers

| Table of Contents | Index | Next Section
1.4 References

1.3.1 Function Definition

A function is declared in the following manner:

return-type function-name(parameter-list,...) { body... }

return-type is the variable type that the function returns. This can not be an array type or a function type.
If not given, then int is assumed.

function-name is the name of the function.

parameter-list is the list of parameters that the function takes separated by commas. If no parameters are
given, then the function does not take any and should be defined with an empty set of parenthesis or
with the keyword void. If no variable type is in front of a variable in the paramater list, then int is
assumed. Arrays and functions are not passed to functions, but are automatically converted to pointers.
If the list is terminated with an ellipsis (,...), then there is no set number of parameters. Note: the
header stdarg.h can be used to access arguments when using an ellipsis.

If the function is accessed before it is defined, then it must be prototyped so the compiler knows about
the function. Prototyping normally occurs at the beginning of the source code, and is done in the
following manner:

return-type function-name(paramater-type-list);

return-type and function-name must correspond exactly to the actual function definition. parameter-type-
list is a list separated by commas of the types of variable parameters. The actual names of the parameters
do not have to be given here, although they may for the sake of clarity.

Examples:

int joe(float, double, int);
This defines the prototype for function joe.

int joe(float coin, double total, int sum)

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.3.html (1 of 3)4/1/2008 8:38:26 AM

C Guide--1.3 Functions

 {
 /*...*/
 }

This is the actual function joe.

int mary(void), *lloyd(double);
This defines the prototype for the function mary with no parameters and return type int.
Function llyod is defined with a double type paramater and returns a pointer to an int.

int (*peter)();
Defines peter as a pointer to a function with no parameters specified. The value of peter
can be changed to represent different functions.

int (*aaron(char *(*)(void)) (long, int);
Defines the function aaron which returns a pointer to a function. The function aaron takes
one argument: a pointer to a function which returns a character pointer and takes no
arguments. The returned function returns a type int and has two parameters of type long
and int.

1.3.2 Program Startup

A program begins by calling the function main. There is no prototype required for this. It can be defined
with no parameters such as:

int main(void) { body... }

Or with the following two parameters:

int main(int argc, char *argv[]) { body... }

Note that they do not have to be called argc or argv, but this is the common naming system.

argc is a nonnegative integer. If argc is greater than zero, then the string pointed to by argv[0] is
the name of the program. If argc is greater than one, then the strings pointed to by argv[1] through
argv[argc-1] are the parameters passed to the program by the system.

Example:

#include<stdio.h>

int main(int argc, char *argv[])

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.3.html (2 of 3)4/1/2008 8:38:26 AM

C Guide--1.3 Functions

{
 int loop;

 if(argc>0)
 printf("My program name is %s.\n",argv[0]);

 if(argc>1)
 {
 for(loop=1;loop<argc;loop++)
 printf("Parameter #%i is %s.\n",loop,argv[loop]);
 }
}

 Previous
Section
1.2 Identifiers

| Table of Contents | Index | Next Section
1.4 References

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.3.html (3 of 3)4/1/2008 8:38:26 AM

C Guide--1.4 References

 Previous
Section
1.3 Functions

| Table of Contents | Index | Next Section
1.5 Operators

1.4.1 Pointers and the Address Operator

Pointers are variables that contain the memory address for another variable. A pointer is defined like a
normal variable, but with an asterisk before the variable name. The type-specifier determines what kind
of variable the pointer points to but does not affect the actual pointer.

The address operator causes the memory address for a variable to be returned. It is written with an
ampersand sign before the variable name.

When using a pointer, referencing just the pointer such as:

int *my_pointer;
int barny;
my_pointer=&barny;

Causes my_pointer to contain the address of barny. Now the pointer can be use indirection to reference
the variable it points to. Indirection is done by prefixing an asterisk to the pointer variable.

*my_pointer=3;

This causes the value of barny to be 3. Note that the value of my_pointer is unchanged.

Pointers offer an additional method for addressing an array. The following array:

int my_array[3];

Can be addressed normally such as:

my_array[2]=3;

The same can be accomplished with:

*(my_array+2)=3;

Note that my_array is a pointer constant. Its value cannot be modified such as:

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.4.html (1 of 3)4/1/2008 8:38:26 AM

C Guide--1.4 References

my_array++; This is illegal.

However, if a pointer variable is created such as:

int *some_pointer=my_array;

Then modifying the pointer will correctly increment the pointer so as to point to the next element in the
array.

*(some_pointer+1)=3;

This will cause the value of my_array[1] to be 3. On a system where an int takes up two bytes,
adding 1 to some_pointer did not actually increase it by 1, but by 2 so that it pointed to the next
element in the array.

Functions can also be represented with a pointer. A function pointer is defined in the same way as a
function prototype, but the function name is replaced by the pointer name prefixed with an asterisk and
encapsulated with parenthesis. Such as:

int (*fptr)(int, char);
fptr=some_function;

To call this function:

(*ftpr)(3,'A');

This is equivalent to:

some_function(3,'A');

A structure or union can have a pointer to represent it. Such as:

struct some_structure homer;
struct some_structure *homer_pointer;
homer_pointer=&homer;

This defines homer_pointer to point to the structure homer. Now, when you use the pointer to reference
something in the structure, the record selector now becomes -> instead of a period.

homer_pointer->an_element=5;

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.4.html (2 of 3)4/1/2008 8:38:26 AM

C Guide--1.4 References

This is the same as:

homer.an_element=5;

The void pointer can represent an unknown pointer type.

void *joe;

This is a pointer to an undetermined type.

1.4.2 Typecasting

Typecasting allows a variable to act like a variable of another type. The method of typecasting is done
by prefixing the variable type enclosed by parenthesis before the variable name. The actual variable is
not modified.

Example:

float index=3; int loop=(int)index;

This causes index to be typecasted to act like an int.

 Previous
Section
1.3 Functions

| Table of Contents | Index | Next Section
1.5 Operators

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.4.html (3 of 3)4/1/2008 8:38:26 AM

C Guide--1.5 Operators

 Previous
Section
1.4 References

| Table of Contents | Index | Next Section
1.6 Statements

1.5.1 Postfix

Postfix operators are operators that are suffixed to an expression.

operand++;
This causes the value of the operand to be returned. After the result is obtained, the value
of the operand is incremented by 1.

operand--;
This is the same but the value of the operand is decremented by 1.

Examples:

int joe=3;
joe++;

The value of joe is now 4.

printf("%i",joe++);

This outputs the number 4. The value of joe is now 5.

1.5.2 Unary and Prefix

Prefix operators are operators that are prefixed to an expression.

++operand;
This causes the value of the operand to be incremented by 1. Its new value is then
returned.

--operand;
This is the same but the value of the operand is decremented by 1.

!operand

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.5.html (1 of 7)4/1/2008 8:38:25 AM

C Guide--1.5 Operators

Returns the logical NOT operation on the operand. A true operand returns false, a false
operand returns true. Also known as the bang operand.

~operand
Returns the compliment of the operand. The returned value is the operand with its bits
reversed (1's become 0's, 0's become 1's).

Examples:

int bart=7;
printf("%i",--bart);
This outputs the number 6. The value of bart is now 6.

int lisa=1;
printf("%i",!lisa);
This outputs 0 (false).

1.5.3 Normal

There are several normal operators which return the result defined for each:

expression1 + expression
The result of this is the sum of the two expressions.

expression1 - expression2
The result of this is the value of expression2 subtracted from expression1.

expression1 * expression2
The result of this is the value of expression1 multiplied by expression2.

expression1 / expression2
The result of this is the value of expression1 divided by expression2.

expression1 % expression2
The result of this is the value of the remainder after dividing expression1 by expression2.
Also called the modulo operator.

expression1 & expression2
Returns a bitwise AND operation done on expression1 and expression2. The result is a
value the same size as the expressions with its bits modified using the following rules:
Both bits must be 1 (on) to result in 1 (on), otherwise the result is 0 (off).

e1 e2 Result

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.5.html (2 of 7)4/1/2008 8:38:25 AM

C Guide--1.5 Operators

0 0 0

0 1 0

1 0 0

1 1 1

expression1 | expression2
Returns a bitwise OR operation done on expression1 and expression2. The result is a
value the same size as the expressions with its bits modified using the following rules:
Both bits must be 0 (off) to result in 0 (off), otherwise the result is 1 (on).

e1 e2 Result

0 0 0

0 1 1

1 0 1

1 1 1

expression1 ^ expression2
Returns a bitwise XOR operation done on expression1 and expression2. The result is a
value the same size as the expressions with its bits modified using the following rules: If
both bits are the same, then the result is 0 (off), otherwise the result is 1 (on).

e1 e2 Result

0 0 0

0 1 1

1 0 1

1 1 0

expression1 >> shift_value
Returns expression1 with its bits shifted to the right by the shift_value. The leftmost bits
are replaced with zeros if the value is nonnegative or unsigned. This result is the integer
part of expression1 divided by 2 raised to the power of shift_value. If expression1 is
signed, then the result is implementation specific.

expression1 << shift_value
Returns expression1 with its bits shifted to the left by the shift_value. The rightmost bits
are replaced with zeros. This result is the value of expression1 multiplied by the value of 2
raised to the power of shift_value. If expression1 is signed, then the result is
implementation specific.

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.5.html (3 of 7)4/1/2008 8:38:25 AM

C Guide--1.5 Operators

1.5.4 Boolean

The boolean operators return either 1 (true) or 0 (false).

expression1 && expression2
Returns the logical AND operation of expression1 and expression2. The result is 1 (true)
if both expressions are true, otherwise the result is 0 (false).

e1 e2 Result

0 0 0

0 1 0

1 0 0

1 1 1

expression1 || expression2
Returns the logical OR operation of expression1 and expression2. The result is 0 (false) if
bother expressions are false, otherwise the result is 1 (true).

e1 e2 Result

0 0 0

0 1 1

1 0 1

1 1 1

expression1 < expression2
Returns 1 (true) if expression1 is less than expression2, otherwise the result is 0 (false).

expression1 > expression2
Returns 1 (true) if expression1 is greater than expression2, otherwise the result is 0 (false).

expression1 <= expression2
Returns 1 (true) if expression1 is less than or equal to expression2, otherwise the result is
0 (false).

expression1 >= expression2
Returns 1 (true) if expression1 is greater than or equal to expression2, otherwise the result
is 0 (false).

expression1 == expression2
Returns 1 (true) if expression1 is equal to expression2, otherwise the result is 0 (false).

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.5.html (4 of 7)4/1/2008 8:38:25 AM

C Guide--1.5 Operators

expression1 != expression2
Returns 1 (true) if expression1 is not equal to expression2, otherwise the result is 0 (false).

1.5.5 Assignment

An assignment operator stores the value of the right expression into the left expression.

expression1 = expression2
The value of expression2 is stored in expression1.

expression1 *= expression2
The value of expression1 times expression2 is stored in expression1.

expression1 /= expression2
The value of expression1 divided by expression2 is stored in expression1.

expression1 %= expression2
The value of the remainder of expression1 divided by expression2 is stored in expression1.

expression1 += expression2
The value of expression1 plus expression2 is stored in expression1.

expression1 -= expression2
The value of expression1 minus expression2 is stored in expression1.

expression1 <<= shift_value
The value of expression1's bits are shifted to the left by shift_value and stored in
expression1.

expression1 >>= shift_value
The value of expression1's bits are shifted to the right by shift_value and stored in
expression1.

expression1 &= expression2
The value of the bitwise AND of expression1 and expression2 is stored in expression1.

e1 e2 Result

0 0 0

0 1 0

1 0 0

1 1 1

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.5.html (5 of 7)4/1/2008 8:38:25 AM

C Guide--1.5 Operators

expression1 ^= expression2
The value of the bitwise XOR of expression1 and expression2 is stored in expression1.

e1 e2 Result

0 0 0

0 1 1

1 0 1

1 1 0

expression1 |= expression2
The value of the bitwise OR of expression1 and expression2 is stored in expression1.

e1 e2 Result

0 0 0

0 1 1

1 0 1

1 1 1

1.5.6 Precedence

The operators have a set order of precedence during evaluation. Items encapsulated in parenthesis are
evaluated first and have the highest precedence. The following chart shows the order of precedence with
the items at the top having highest precedence.

Operator Name

! Logical NOT. Bang.

++ -- Increment and decrement operators.

* / % Multiplicative operators.

+ - Additive operators.

<< >> Shift operators.

< > <= >= Inequality comparators.

== != Equality comparators

& Bitwise AND.

^ Bitwise XOR.

| Bitwise OR.

&& Logical AND.

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.5.html (6 of 7)4/1/2008 8:38:25 AM

C Guide--1.5 Operators

|| Logical OR.

?: Conditional.

= op= Assignment.

Examples:

17 * 5 + !(1+1) && 0

Evaluates to 0 (false).

5+7<4

Evaluates to 1 (true).

a<b<c

Same as (a<b)<c.

 Previous
Section
1.4 References

| Table of Contents | Index | Next Section
1.6 Statements

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.5.html (7 of 7)4/1/2008 8:38:25 AM

C Guide--1.6 Statements

 Previous
Section
1.5 Operators

| Table of Contents | Index | Next Section
1.7 Preprocessing

Directives

1.6.1 if

The if statement evaluates an expression. If that expression is true, then a statement is executed. If an
else clause is given and if the expression is false, then the else's statement is executed.

Syntax:

if(expression) statement1;

or

if(expression) statement1;
else statement2 ;

Examples:

if(loop<3) counter++;

if(x==y)
 x++;
else
 y++;

if(z>x)
 {
 z=5;
 x=3;
 }
else
 {
 z=3;
 x=5;
 }

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.6.html (1 of 7)4/1/2008 8:39:51 AM

C Guide--1.6 Statements

1.6.2 switch

A switch statement allows a single variable to be compared with several possible constants. If the
variable matches one of the constants, then a execution jump is made to that point. A constant can not
appear more than once, and there can only be one default expression.

Syntax:

switch (variable)
 {
 case const:
 statements...;
 default:
 statements...;
 }

Examples:

switch(betty)
 {
 case 1:
 printf("betty=1\n");
 case 2:
 printf("betty=2\n");
 break;
 case 3:
 printf("betty=3\n");
 break;
 default:
 printf("Not sure.\n");
 }

If betty is 1, then two lines are printed: betty=1 and betty=2. If betty is 2, then only one line is printed:
betty=2. If betty=3, then only one line is printed: betty=3. If betty does not equal 1, 2, or 3, then "Not
sure." is printed.

1.6.3 while

The while statement provides an iterative loop.

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.6.html (2 of 7)4/1/2008 8:39:51 AM

C Guide--1.6 Statements

Syntax:

while(expression) statement...

statement is executed repeatedly as long as expression is true. The test on expression takes place before
each execution of statement.
Examples:

while(*pointer!='j') pointer++;

while(counter<5)
 {
 printf("counter=%i",counter);
 counter++;
 }

1.6.4 do

The do...while construct provides an iterative loop.

Syntax:

do statement... while(expression);

statement is executed repeatedly as long as expression is true. The test on expression takes place after
each execution of statement.

Examples:

do {
 betty++;
 printf("%i",betty);
} while (betty<100);

1.6.5 for

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.6.html (3 of 7)4/1/2008 8:39:51 AM

C Guide--1.6 Statements

The for statement allows for a controlled loop.

Syntax:

for(expression1 ; expression2 ; expression3) statement...

expression1 is evaluated before the first iteration. After each iteration, expression3 is evaluated. Both
expression1 and expression3 may be ommited. If expression2 is ommited, it is assumed to be 1.
statement is executed repeatedly until the value of expression2 is 0. The test on expression2 occurs
before each execution of statement.

Examples:

for(loop=0;loop<1000;loop++)
 printf("%i\n",loop);

Prints numbers 0 through 999.

for(x=3, y=5; x<100+y; x++, y--)
 {
 printf("%i\n",x);
 some_function();
 }

Prints numbers 3 through 53. some_function is called 51 times.

1.6.6 goto

The goto statement transfers program execution to some label within the program.

Syntax:

goto label;
....
label:

Examples:

goto skip_point;
printf("This part was skipped.\n");
skip_point:

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.6.html (4 of 7)4/1/2008 8:39:51 AM

C Guide--1.6 Statements

printf("Hi there!\n");

Only the text "Hi there!" is printed.

1.6.7 continue

The continue statement can only appear in a loop body. It causes the rest of the statement body in the
loop to be skipped.

Syntax:

continue;

Examples:

for(loop=0;loop<100;loop++)
 {
 if(loop==50)
 continue;
 printf("%i\n",loop);
 }

The numbers 0 through 99 are printed except for 50.

joe=0;
while(joe<1000)
 {
 for(zip=0;zip<100;zip++)
 {
 if(joe==500)
 continue;
 printf("%i\n",joe);
 }
 joe++;
}

Each number from 0 to 999 is printed 100 times except for the number 500 which is not printed at all.

1.6.8 break

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.6.html (5 of 7)4/1/2008 8:39:51 AM

C Guide--1.6 Statements

The break statement can only appear in a switch body or a loop body. It causes the execution of the
current enclosing switch or loop body to terminate.

Syntax:

break;

Examples:

switch(henry)
 {
 case 1: print("Hi!\n");
 break;
 case 2: break;
 }

If henry is equal to 2, nothing happens.

for(loop=0;loop<50;loop++)
 {
 if(loop==10)
 break;
 printf("%i\n",loop);
 }

Only numbers 0 through 9 are printed.

1.6.9 return

The return statement causes the current function to terminate. It can return a value to the calling
function. A return statement can not appear in a function whose return type is void. If the value returned
has a type different from that of the function's return type, then the value is converted. Using the return
statement without an expression creates an undefined result. Reaching the } at the end of the function is
the same as returning without an expression.

Syntax:

return expression;

Examples:

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.6.html (6 of 7)4/1/2008 8:39:51 AM

C Guide--1.6 Statements

int alice(int x, int y)
 {
 if(x<y)
 return(1);
 else
 return(0);
}

 Previous
Section
1.5 Operators

| Table of Contents | Index | Next Section
1.7 Preprocessing

Directives

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.6.html (7 of 7)4/1/2008 8:39:51 AM

C Guide--1.7 Preprocessing Directives

 Previous
Section
1.6 Statements

| Table of Contents | Index | Next Section
2.1 assert.h

1.7.1 #if, #elif, #else, #endif

These preprocessing directives create conditional compiling parameters that control the compiling of the
source code. They must begin on a separate line.

Syntax:

#if constant_expression
#else
#endif

or

#if constant_expression
#elif constant_expression
#endif

The compiler only compiles the code after the #if expression if the constant_expression evaluates to a
non-zero value (true). If the value is 0 (false), then the compiler skips the lines until the next #else,
#elif, or #endif. If there is a matching #else, and the constant_expression evaluated to 0 (false),
then the lines between the #else and the #endif are compiled. If there is a matching #elif, and the
preceding #if evaluated to false, then the constant_expression after that is evaluated and the code
between the #elif and the #endif is compiled only if this expression evaluates to a non-zero value
(true).

Examples:

int main(void)
 {
 #if 1
 printf("Yabba Dabba Do!\n");
 #else
 printf("Zip-Bang!\n");
 #endif
 return 0;
}

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.7.html (1 of 5)4/1/2008 8:39:51 AM

C Guide--1.7 Preprocessing Directives

Only "Yabba Dabba Do!" is printed.

int main(void)
 {
 #if 1
 printf("Checkpoint1\n");
 #elif 1
 printf("Checkpoint2\n");
 #endif
 return 0;
}

Only "Checkpoint1" is printed. Note that if the first line is #if 0, then only "Checkpoint2" would be
printed.

#if OS==1
 printf("Version 1.0");
#elif OS==2
 printf("Version 2.0");
#else
 printf("Version unknown");
#endif

Prints according to the setting of OS which is defined with a #define.

1.7.2 #define, #undef, #ifdef, #ifndef

The preprocessing directives #define and #undef allow the definition of identifiers which hold a
certain value. These identifiers can simply be constants or a macro function. The directives #ifdef and
#ifndef allow conditional compiling of certain lines of code based on whether or not an identifier has
been defined.

Syntax:

#define identifier replacement-code

#undef identifier

#ifdef identifier
#else or #elif
#endif

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.7.html (2 of 5)4/1/2008 8:39:51 AM

C Guide--1.7 Preprocessing Directives

#ifndef identifier
#else or #elif
#endif

#ifdef identifier is the same is #if defined(identifier).
#ifndef identifier is the same as #if !defined(identifier).
An identifier defined with #define is available anywhere in the source code until a
#undef is reached.
A function macro can be defined with #define in the following manner:

#define identifier(parameter-list) (replacement-text)

The values in the parameter-list are replaced in the replacement-text.

Examples:

#define PI 3.141
printf("%f",PI);

#define DEBUG
#ifdef DEBUG
 printf("This is a debug message.");
#endif

#define QUICK(x) printf("%s\n",x);
QUICK("Hi!")

#define ADD(x, y) x + y
z=3 * ADD(5,6)

This evaluates to 21 due to the fact that multiplication takes precedence over addition.

#define ADD(x,y) (x + y)
z=3 * ADD(5,6)

This evaluates to 33 due to the fact that the summation is encapsulated in parenthesis which takes
precedence over multiplication.

1.7.3 #include

The #include directive allows external header files to be processed by the compiler.

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.7.html (3 of 5)4/1/2008 8:39:51 AM

C Guide--1.7 Preprocessing Directives

Syntax:

#include <header-file>

or

#include "source-file"

When enclosing the file with < and >, then the implementation searches the known header directories for
the file (which is implementation-defined) and processes it. When enclosed with double quotation
marks, then the entire contents of the source-file is replaced at this point. The searching manner for the
file is implementation-specific.

Examples:

#include <stdio.h>
#include "my_header.h"

1.7.4 #line

The #line directive allows the current line number and the apparent name of the current sourcecode
filename to be changed.

Syntax:

#line line-number filename

Note that if the filename is not given, then it stays the same. The line number on the current line is one
greater than the number of new-line characters (so the first line number is 1).
Examples:

#line 50 user.c

#line 23

1.7.5 #error

The #error directive will cause the compiler to halt compiling and return with the specified error
message.

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.7.html (4 of 5)4/1/2008 8:39:51 AM

C Guide--1.7 Preprocessing Directives

Syntax:

#error message

Examples:

#ifndef VERSION
#error Version number not specified.
#endif

1.7.6 #pragma

This #pragma directive allows a directive to be defined. Its effects are implementation-defined. If the
pragma is not supported, then it is ignored.

Syntax:

#pragma directive

1.7.7 Predefined Macros

The following macros are already defined by the compiler and cannot be changed.

__LINE__ A decimal constant representing the current line number.

__FILE__ A string representing the current name of the source code file.

__DATE__ A string representing the current date when compiling began for the current source file. It
is in the format "mmm dd yyyy", the same as what is generated by the asctime function.

__TIME__ A string literal representing the current time when cimpiling began for the current source
file. It is in the format "hh:mm:ss", the same as what is generated by the asctime function.

__STDC__ The decimal constant 1. Used to indicate if this is a standard C compiler.

 Previous
Section
1.6 Statements

| Table of Contents | Index | Next Section
2.1 assert.h

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.7.html (5 of 5)4/1/2008 8:39:51 AM

C Guide--2.1 assert.h

 Previous
Section
1.7 Preprocessing
Directives

| Table of Contents | Index | Next Section
2.2 ctype.h

2.1 assert.h

The assert header is used for debugging purposes.

Macros:

assert();

External References:

NDEBUG

2.1.1 assert

Declaration:

void assert(int expression);

The assert macro allows diagnostic information to be written to the standard error file.

If expression evaluates to 0 (false), then the expression, sourcecode filename, and line number are sent
to the standard error, and then calls the abort function. If the identifier NDEBUG ("no debug") is defined
with #define NDEBUG then the macro assert does nothing.

Common error outputting is in the form:

Assertion failed: expression, file filename, line line-number

Example:

#include<assert.h>

void open_record(char *record_name)

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.1.html (1 of 2)4/1/2008 8:39:50 AM

C Guide--2.1 assert.h

{
 assert(record_name!=NULL);
 /* Rest of code */
}

int main(void)
{
 open_record(NULL);
}

 Previous
Section
1.7 Preprocessing
Directives

| Table of Contents | Index | Next Section
2.2 ctype.h

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.1.html (2 of 2)4/1/2008 8:39:50 AM

C Guide--2.2 ctype.h

 Previous
Section
2.1 assert.h

| Table of Contents | Index | Next Section
2.3 errno.h

2.2 ctype.h

The ctype header is used for testing and converting characters. A control character refers to a character
that is not part of the normal printing set. In the ASCII character set, the control characters are the
characters from 0 (NUL) through 0x1F (US), and the character 0x7F (DEL). Printable characters are
those from 0x20 (space) to 0x7E (tilde).

Functions:

isalnum();
isalpha();
iscntrl();
isdigit();
isgraph();
islower();
isprint();
ispunct();
isspace();
isupper();
isxdigit();
tolower();
toupper();

2.2.1 is... Functions

Declarations:

int isalnum(int character);
int isalpha(int character);
int iscntrl(int character);
int isdigit(int character);
int isgraph(int character);
int islower(int character);
int isprint(int character);
int ispunct(int character);

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.2.html (1 of 3)4/1/2008 8:39:51 AM

C Guide--2.2 ctype.h

int isspace(int character);
int isupper(int character);
int isxdigit(int character);

The is... functions test the given character and return a nonzero (true) result if it satisfies the following
conditions. If not, then 0 (false) is returned.

Conditions:

isalnum a letter (A to Z or a to z) or a digit (0 to 9)

isalpha a letter (A to Z or a to z)

iscntrl any control character (0x00 to 0x1F or 0x7F)

isdigit a digit (0 to 9)

isgraph any printing character except for the space character (0x21 to 0x7E)

islower a lowercase letter (a to z)

isprint any printing character (0x20 to 0x7E)

ispunct any punctuation character (any printing character except for space character or isalnum)

isspace a whitespace character (space, tab, carriage return, new line, vertical tab, or formfeed)

isupper an uppercase letter (A to Z)

isxdigit a hexadecimal digit (0 to 9, A to F, or a to f)

2.2.2 to... Functions

Declarations:

int tolower(int character);
int toupper(int character);

The to... functions provide a means to convert a single character. If the character matches the appropriate
condition, then it is converted. Otherwise the character is returned unchanged.

Conditions:

tolower If the character is an uppercase character (A to Z), then it is converted to lowercase (a to z)

toupper If the character is a lowercase character (a to z), then it is converted to uppercase (A to Z)

Example:

#include<ctype.h>

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.2.html (2 of 3)4/1/2008 8:39:51 AM

C Guide--2.2 ctype.h

#include<stdio.h>
#include<string.h>

int main(void)
{
 int loop;
 char string[]="THIS IS A TEST";

 for(loop=0;loop<strlen(string);loop++)
 string[loop]=tolower(string[loop]);

 printf("%s\n",string);
 return 0;
}

 Previous
Section
2.1 assert.h

| Table of Contents | Index | Next Section
2.3 errno.h

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.2.html (3 of 3)4/1/2008 8:39:51 AM

C Guide--2.3 errno.h

 Previous
Section
2.2 ctype.h

| Table of Contents | Index | Next Section
2.4 float.h

2.3 errno.h

The errno header is used as a general error handler.

Macros:

EDOM
ERANGE

Variables:

errno

2.3.1 EDOM

Declaration:

#define EDOM some_value

EDOM is an identifier macro declared with #define. Its value represents a domain error which is
returned by some math functions when a domain error occurs.

2.3.2 ERANGE

Declaration:

#define ERANGE some_value

ERANGE is an identifier macro declared with #define. Its value represents a range error which is
returned by some math functions when a range error occurs.

2.3.3 errno

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.3.html (1 of 2)4/1/2008 8:39:51 AM

C Guide--2.3 errno.h

Declaration:

int errno;

The errno variable has a value of zero at the beginning of the program. If an error occurs, then this
variable is given the value of the error number.

 Previous
Section
2.2 ctype.h

| Table of Contents | Index | Next Section
2.4 float.h

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.3.html (2 of 2)4/1/2008 8:39:51 AM

C Guide--2.4 float.h

 Previous
Section
2.3 errno.h

| Table of Contents | Index | Next Section
2.5 limits.h

2.4 float.h

The float header defines the minimum and maximum limits of floating-point number values.

2.4.1 Defined Values

A floating-point number is defined in the following manner:

sign value E exponent

Where sign is plus or minus, value is the value of the number, and exponent is the value of the exponent.

The following values are defined with the #define directive. These values are implementation-
specific, but may not be any lower than what is given here. Note that in all instances FLT refers to type
float, DBL refers to double, and LDBL refers to long double.

FLT_ROUNDS

Defines the way floating-point numbers are rounded.

-1 indeterminable

0 toward zero

1 to nearest

2 toward positive infinity

3 toward negative infinity

FLT_RADIX 2
Defines the base (radix) representation of the exponent (i.e. base-2 is
binary, base-10 is the normal decimal representation, base-16 is Hex).

FLT_MANT_DIG
DBL_MANT_DIG
LDBL_MANT_DIG

Defines the number of digits in the number (in the FLT_RADIX base).

FLT_DIG 6
DBL_DIG 10
LDBL_DIG 10

The maximum number decimal digits (base-10) that can be represented
without change after rounding.

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.4.html (1 of 2)4/1/2008 8:39:51 AM

C Guide--2.4 float.h

FLT_MIN_EXP
DBL_MIN_EXP
LDBL_MIN_EXP

The minimum negative integer value for an exponent in base
FLT_RADIX.

FLT_MIN_10_EXP -37
DBL_MIN_10_EXP -37
LDBL_MIN_10_EXP -37

The minimum negative integer value for an exponent in base 10.

FLT_MAX_EXP
DBL_MAX_EXP
LDBL_MAX_EXP

The maximum integer value for an exponent in base FLT_RADIX.

FLT_MAX_10_EXP +37
DBL_MAX_10_EXP +37
LDBL_MAX_10_EXP +37

The maximum integer value for an exponent in base 10.

FLT_MAX 1E+37
DBL_MAX 1E+37
LDBL_MAX 1E+37

Maximum finite floating-point value.

FLT_EPSILON 1E-5
DBL_EPSILON 1E-9
LDBL_EPSILON 1E-9

Least significant digit representable.

FLT_MIN 1E-37
DBL_MIN 1E-37
LDBL_MIN 1E-37

Minimum floating-point value.

 Previous
Section
2.3 errno.h

| Table of Contents | Index | Next Section
2.5 limits.h

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.4.html (2 of 2)4/1/2008 8:39:51 AM

C Guide--2.5 limits.h

 Previous
Section
2.4 float.h

| Table of Contents | Index | Next Section
2.6 locale.h

2.5 limits.h

The limits header defines the characteristics of variable types.

2.5.1 Defined Values

The following values are defined with the #define directive. These values are implementation-
specific, but may not be any lower than what is given here.

CHAR_BIT 8 Number of bits in a byte.

SCHAR_MIN -127 Minimum value for a signed char.

SCHAR_MAX +127 Maximum value for a signed char.

UCHAR_MAX 255 Maximum value for an unsigned char.

CHAR_MIN
CHAR_MAX

These define the minimum and maximum values for a char. If a char is
being represented as a signed integer, then their values are the same as
the signed char (SCHAR) values. Otherwise CHAR_MIN is 0 and
CHAR_MAX is the same as UCHAR_MAX.

MB_LEN_MAX 1 Maximum number of bytes in a multibyte character.

SHRT_MIN -32767 Minimum value for a short int.

SHRT_MAX +32767 Maximum value for a short int.

USHRT_MAX 65535 Maximum value for an unsigned short int.

INT_MIN -32767 Minimum value for an int.

INT_MAX +32767 Maximum value for an int.

UINT_MAX 65535 Maximum value for an unsigned int.

LONG_MIN -
2147483647

Minimum value for a long int.

LONG_MAX
+2147483647

Maximum value for a long int.

ULONG_MAX
4294967295

Maximum value for an unsigned long int.

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.5.html (1 of 2)4/1/2008 8:41:27 AM

C Guide--2.5 limits.h

 Previous
Section
2.4 float.h

| Table of Contents | Index | Next Section
2.6 locale.h

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.5.html (2 of 2)4/1/2008 8:41:27 AM

C Guide--2.6 locale.h

 Previous
Section
2.5 limits.h

| Table of Contents | Index | Next Section
2.7 math.h

2.6 locale.h

The locale header is useful for setting location specific information.

Variables:

struct lconv

Macros:

NULL
LC_ALL
LC_COLLATE
LC_CTYPE
LC_MONETARY
LC_NUMERIC
LC_TIME

Functions:

localeconv();
setlocale();

2.6.1 Variables and Definitions

The lconv structure contains the following variables in any order. The use of this structure is described
in 2.6.3 localeconv.

char *decimal_point;
char *thousands_sep;
char *grouping;
char *int_curr_symbol;
char *currency_symbol;
char *mon_decimal_point;
char *mon_thousands_sep;

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.6.html (1 of 6)4/1/2008 8:41:28 AM

C Guide--2.6 locale.h

char *mon_grouping;
char *positive_sign;
char *negative_sign;
char int_frac_digits;
char frac_digits;
char p_cs_precedes;
char p_sep_by_space;
char n_cs_precedes;
char n_sep_by_space;
char p_sign_posn;
char n_sign_posn;

The LC_ macros are described in 2.6.2 setlocale. NULL is the value of a null pointer constant.

2.6.2 setlocale

Declaration:

char *setlocale(int category, const char *locale);

Sets or reads location dependent information.

category can be one of the following:

LC_ALL Set everything.

LC_COLLATE Affects strcoll and strxfrm functions.

LC_CTYPE Affects all character functions.

LC_MONETARY Affects the monetary information provided by localeconv function.

LC_NUMERIC
Affects decimal-point formatting and the information provided by localeconv
function.

LC_TIME Affects the strftime function.

A value of "C" for locale sets the locale to the normal C translation environment settings (default). A
null value ("") sets the native environment settings. A null pointer (NULL) causes setlocale to return a
pointer to the string associated with this category for the current settings (no changes occur). All other
values are implementation-specific.

After a successful set, setlocale returns a pointer to a string which represents the previous location
setting. On failure it returns NULL.

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.6.html (2 of 6)4/1/2008 8:41:28 AM

C Guide--2.6 locale.h

Example:

#include<locale.h>
#include<stdio.h>

int main(void)
{
 char *old_locale;

 old_locale=setlocale(LC_ALL,"C");
 printf("The preivous setting was %s.\n",old_locale);
 return 0;
}

2.6.3 localeconv

Declaration:

struct lconv *localeconv(void);

Sets the structure lconv to represent the current location settings.

The string pointers in the structure may point to a null string ("") which indicates that the value is not
available. The char types are nonnegative numbers. If the value is CHAR_MAX, then the value is not
available.

lconv variables:

char *decimal_point Decimal point character used for non-monetary values.

char *thousands_sep Thousands place separator character used for non-monetary values.

char *grouping

A string that indicates the size of each group of digits in non-
monetary quantities. Each character represents an integer value
which designates the number of digits in the current group. A value
of 0 means that the previous value is to be used for the rest of the
groups.

char *int_curr_symbol

A string of the international currency symbols used. The first three
characters are those specified by ISO 4217:1987 and the fourth is
the character which separates the currency symbol from the
monetary quantity.

char *currency_symbol The local symbol used for currency.

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.6.html (3 of 6)4/1/2008 8:41:28 AM

C Guide--2.6 locale.h

char *mon_decimal_point The decimal point character used for monetary values.

char *mon_thousands_sep The thousands place grouping character used for monetary values.

char *mon_grouping

A string whose elements define the size of the grouping of digits in
monetary values. Each character represents an integer value which
designates the number of digits in the current group. A value of 0
means that the previous value is to be used for the rest of the groups.

char *positive_sign The character used for positive monetary values.

char *negative_sign The character used for negative monetary values.

char int_frac_digits
Number of digits to show after the decimal point in international
monetary values.

char frac_digits
Number of digits to show after the decimal point in monetary
values.

char p_cs_precedes
If equal to 1, then the currency_symbol appears before a
positive monetary value. If equal to 0, then the
currency_symbol appears after a positive monetary value.

char p_sep_by_space
If equal to 1, then the currency_symbol is separated by a space
from a positive monetary value. If equal to 0, then there is no space
between the currency_symbol and a positive monetary value.

char n_cs_precedes
If equal to 1, then the currency_symbol precedes a negative
monetary value. If equal to 0, then the currency_symbol
succeeds a negative monetary value.

char n_sep_by_space
If equal to 1, then the currency_symbol is separated by a space
from a negative monetary value. If equal to 0, then there is no space
between the currency_symbol and a negative monetary value.

char p_sign_posn
Represents the position of the positive_sign in a positive
monetary value.

char n_sign_posn
Represents the position of the negative_sign in a negative
monetary value.

The following values are used for p_sign_posn and n_sign_posn:

0 Parentheses encapsulate the value and the currency_symbol.

1 The sign precedes the value and currency_symbol.

2 The sign succeeds the value and currency_symbol.

3 The sign immediately precedes the value and currency_symbol.

4 The sign immediately succeeds the value and currency_symbol.

Example:

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.6.html (4 of 6)4/1/2008 8:41:28 AM

C Guide--2.6 locale.h

#include<locale.h>
#include<stdio.h>
int main(void)
{
 struct lconv locale_structure;
 struct lconv *locale_ptr=&locale_structure;

 locale_ptr=lcoaleconv();
 printf("Decimal point: %s",locale_ptr-
>decimal_point);
 printf("Thousands Separator: %s",locale_ptr-
>thousands_sep);
 printf("Grouping: %s",locale_ptr-
>grouping);
 printf("International Currency Symbol: %s",locale_ptr-
>int_curr_symbol);
 printf("Currency Symbol: %s",locale_ptr-
>currency_symbol);
 printf("Monetary Decimal Point: %s",locale_ptr-
>mon_decimal_point);
 printf("Monetary Thousands Separator: %s",locale_ptr-
>mon_thousands_sep);
 printf("Monetary Grouping: %s",locale_ptr-
>mon_grouping);
 printf("Monetary Positive Sign: %s",locale_ptr-
>positive_sign);
 printf("Monetary Negative Sign: %s",locale_ptr-
>negative_sign);
 printf("Monetary Intl Decimal Digits: %c",locale_ptr-
>int_frac_digits);
 printf("Monetary Decimal Digits: %c",locale_ptr-
>frac_digits);
 printf("Monetary + Precedes: %c",locale_ptr-
>p_cs_precedes);
 printf("Monetary + Space: %c",locale_ptr-
>p_sep_by_space);
 printf("Monetary - Precedes: %c",locale_ptr-
>n_cs_precedes);
 printf("Monetary - Space: %c",locale_ptr-
>n_sep_by_space);
 printf("Monetary + Sign Posn: %c",locale_ptr-

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.6.html (5 of 6)4/1/2008 8:41:28 AM

C Guide--2.6 locale.h

>p_sign_posn);
 printf("Monetary - Sign Posn: %c",locale_ptr-
>n_sign_posn);
}

 Previous
Section
2.5 limits.h

| Table of Contents | Index | Next Section
2.7 math.h

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.6.html (6 of 6)4/1/2008 8:41:28 AM

C Guide--2.7 math.h

 Previous
Section
2.6 locale.h

| Table of Contents | Index | Next Section
2.8 setjmp.h

2.7 math.h

The math header defines several mathematic functions.

Macros:

HUGE_VAL

Functions:

acos();
asin();
atan();
atan2();
ceil();
cos();
cosh();
exp();
fabs();
floor();
fmod();
frexp();
ldexp();
log();
log10();
modf();
pow();
sin();
sinh();
sqrt();
tan();
tanh();

2.7.1 Error Conditions

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.7.html (1 of 9)4/1/2008 8:41:27 AM

C Guide--2.7 math.h

All math.h functions handle errors similarly.

In the case that the argument passed to the function exceeds the range of that function, then the variable
errno is set to EDOM. The value that the function returns is implementation specific.

In the case that the value being returned is too large to be represented in a double, then the function
returns the macro HUGE_VAL, and sets the variable errno to ERANGE to represent an overflow. If the
value is too small to be represented in a double, then the function returns zero. In this case whether or
not errno is set to ERANGE is implementation specific.

errno, EDOM, and ERANGE are defined in the errno.h header.

Note that in all cases when it is stated that there is no range limit, it is implied that the value is limited by
the minimum and maximum values of type double.

2.7.2 Trigonometric Functions

2.7.2.1 acos

Declaration:

double acos(double x);

Returns the arc cosine of x in radians.

Range:

The value x must be within the range of -1 to +1 (inclusive). The returned value is in the
range of 0 to pi (inclusive).

2.7.2.2 asin

Declaration:

double asin(double x);

Returns the arc sine of x in radians.

Range:

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.7.html (2 of 9)4/1/2008 8:41:27 AM

C Guide--2.7 math.h

The value of x must be within the range of -1 to +1 (inclusive). The returned value is in
the range of -p/2 to +p/2 (inclusive).

2.7.2.3 atan

Declaration:

double atan(double x);

Returns the arc tangent of x in radians.

Range:

The value of x has no range. The returned value is in the range of -p/2 to +p/2 (inclusive).

2.7.2.4 atan2

Declaration:

double atan2(doubly y, double x);

Returns the arc tangent in radians of y/x based on the signs of both values to determine the
correct quadrant.

Range:

Both y and x cannot be zero. The returned value is in the range of -p/2 to +p/2 (inclusive).

2.7.2.5 cos

Declaration:

double cos(double x);

Returns the cosine of a radian angle x.

Range:

The value of x has no range. The returned value is in the range of -1 to +1 (inclusive).

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.7.html (3 of 9)4/1/2008 8:41:27 AM

C Guide--2.7 math.h

2.7.2.6 cosh

Declaration:

double cosh(double x);

Returns the hyperbolic cosine of x.

Range:

There is no range limit on the argument or return value.

2.7.2.7 sin

Declaration:

double sin(double x);

Returns the sine of a radian angle x.

Range:

The value of x has no range. The returned value is in the range of -1 to +1 (inclusive).

2.7.2.8 sinh

Declaration:

double sinh(double x);

Returns the hyperbolic sine of x.

Range:

There is no range limit on the argument or return value.

2.7.2.9 tan

Declaration:

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.7.html (4 of 9)4/1/2008 8:41:27 AM

C Guide--2.7 math.h

double tan(double x);

Returns the tangent of a radian angle x.

Range:

There is no range limit on the argument or return value.

2.7.2.10 tanh

Declaration:

double tanh(double x);

Returns the hyperbolic tangent of x.

Range:

The value of x has no range. The returned value is in the range of -1 to +1 (inclusive).

2.7.3 Exponential, Logarithmic, and Power Functions

2.7.3.1 exp

Declaration:

double exp(double x);

Returns the value of e raised to the xth power.

Range:

There is no range limit on the argument or return value.

2.7.3.2 frexp

Declaration:

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.7.html (5 of 9)4/1/2008 8:41:27 AM

C Guide--2.7 math.h

double frexp(double x, int *exponent);

The floating-point number x is broken up into a mantissa and exponent.
The returned value is the mantissa and the integer pointed to by exponent is the exponent.
The resultant value is x=mantissa * 2^exponent.

Range:

The mantissa is in the range of .5 (inclusive) to 1 (exclusive).

2.7.3.3 ldexp

Declaration:

double ldexp(double x, int exponent);

Returns x multiplied by 2 raised to the power of exponent.
x*2^exponent

Range:

There is no range limit on the argument or return value.

2.7.3.4 log

Declaration:

double log(double x);

Returns the natural logarithm (base-e logarithm) of x.

Range:

There is no range limit on the argument or return value.

2.7.3.5 log10

Declaration:

double log10(double x);

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.7.html (6 of 9)4/1/2008 8:41:27 AM

C Guide--2.7 math.h

Returns the common logarithm (base-10 logarithm) of x.

Range:

There is no range limit on the argument or return value.

2.7.3.6 modf

Declaration:

double modf(double x, double *integer);

Breaks the floating-point number x into integer and fraction components.
The returned value is the fraction component (part after the decimal), and sets integer to
the integer component.

Range:

There is no range limit on the argument or return value.

2.7.3.7 pow

Declaration:

double pow(double x, double y);

Returns x raised to the power of y.

Range:

x cannot be negative if y is a fractional value. x cannot be zero if y is less than or equal to
zero.

2.7.3.8 sqrt

Declaration:

double sqrt(double x);

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.7.html (7 of 9)4/1/2008 8:41:27 AM

C Guide--2.7 math.h

Returns the square root of x.

Range:

The argument cannot be negative. The returned value is always positive.

2.7.4 Other Math Functions

2.7.4.1 ceil

Declaration:

double ceil(double x);

Returns the smallest integer value greater than or equal to x.

Range:

There is no range limit on the argument or return value.

2.7.4.2 fabs

Declaration:

double fabs(double x);

Returns the absolute value of x (a negative value becomes positive, positive value is
unchanged).

Range:

There is no range limit on the argument. The return value is always positive.

2.7.4.3 floor

Declaration:

double floor(double x);

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.7.html (8 of 9)4/1/2008 8:41:27 AM

C Guide--2.7 math.h

Returns the largest integer value less than or equal to x.

Range:

There is no range limit on the argument or return value.

2.7.4.4 fmod

Declaration:

double fmod(double x, double y);

Returns the remainder of x divided by y.

Range:

There is no range limit on the return value. If y is zero, then either a range error will occur
or the function will return zero (implementation-defined).

 Previous
Section
2.6 locale.h

| Table of Contents | Index | Next Section
2.8 setjmp.h

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.7.html (9 of 9)4/1/2008 8:41:27 AM

C Guide--2.8 setjmp.h

 Previous
Section
2.7 math.h

| Table of Contents | Index | Next Section
2.9 signal.h

2.8 setjmp.h

The setjmp header is used for controlling low-level calls and returns to and from functions.

Macros:

setjmp();

Functions:

longjmp();

Variables:

typedef jmp_buf

2.8.1 Variables and Definitions

The variable type jmp_buf is an array type used for holding information for setjmp and longjmp.

2.8.2 setjmp

Declaration:

int setjmp(jmp_buf environment);

Saves the environment into the variable environment. If a non-zero value is returned, then this indicates
that the point in the sourcecode was reached by a longjmp. Otherwise zero is returned indicating the
environment has been saved.

2.8.3 longjmp

Declaration:

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.8.html (1 of 3)4/1/2008 8:41:27 AM

C Guide--2.8 setjmp.h

void longjmp(jmp_buf environment, int value);

Causes the environment to be restored from a setjmp call where the environment variable had been
saved. It causes execution to goto the setjmp location as if setjmp had returned the value of the
variable value. The variable value cannot be zero. However, if zero is passed, then 1 is replaced. If the
function where setjmp was called has terminated, then the results are undefined.

Example:

#include<setjmp.h>
#include<stdio.h>

void some_function(jmp_buf);

int main(void)
{
 int value;
 jmp_buf environment_buffer;

 value=setjmp(environment_buffer);
 if(value!=0)
 {
 printf("Reached this point from a longjmp with value=%d.
\n",value);
 exit(0);
 }
 printf("Calling function.\n");
 some_function(environment_buffer);
 return 0;
}

void some_function(jmp_buf env_buf)
{
 longjmp(env_buf,5);
}

The output from this program should be:

Calling function.
Reached this point from a longjmp with value=5.

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.8.html (2 of 3)4/1/2008 8:41:27 AM

C Guide--2.8 setjmp.h

 Previous
Section
2.7 math.h

| Table of Contents | Index | Next Section
2.9 signal.h

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.8.html (3 of 3)4/1/2008 8:41:27 AM

C Guide--2.9 signal.h

 Previous
Section
2.8 setjmp.h

| Table of Contents | Index | Next Section
2.10 stdarg.h

2.9 signal.h

The signal header provides a means to handle signals reported during a program's execution.

Macros:

SIG_DFL
SIG_ERR
SIG_IGN
SIGABRT
SIGFPE
SIGILL
SIGINT
SIGSEGV
SIGTERM

Functions:

signal();
raise();

Variables:

typedef sig_atomic_t

2.9.1 Variables and Definitions

The sig_atomic_t type is of type int and is used as a variable in a signal handler. The SIG_
macros are used with the signal function to define signal functions.

SIG_DFL Default handler.

SIG_ERR Represents a signal error.

SIG_IGN Signal ignore.

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.9.html (1 of 3)4/1/2008 8:41:27 AM

C Guide--2.9 signal.h

The SIG macros are used to represent a signal number in the following conditions:

SIGABRT Abnormal termination (generated by the abort function).

SIGFPE
Floating-point error (error caused by division by zero, invalid operation,
etc.).

SIGILL Illegal operation (instruction).

SIGINT Interactive attention signal (such as ctrl-C).

SIGSEGV Invalid access to storage (segment violation, memory violation).

SIGTERM Termination request.

2.9.2 signal

Declaration:

void (*signal(int sig, void (*func)(int)))(int);

Controls how a signal is handled. sig represents the signal number compatible with the SIG macros.
func is the function to be called when the signal occurs. If func is SIG_DFL, then the default handler is
called. If func is SIG_IGN, then the signal is ignored. If func points to a function, then when a signal is
detected the default function is called (SIG_DFL), then the function is called. The function must take
one argument of type int which represents the signal number. The function may terminate with
return, abort, exit, or longjmp. When the function terminates execution resumes where it was
interrupted (unless it was a SIGFPE signal in which case the result is undefined).

If the call to signal is successful, then it returns a pointer to the previous signal handler for the specified
signal type. If the call fails, then SIG_ERR is returned and errno is set appropriately.

2.9.3 raise

Declaration

int raise(int sig);

Causes signal sig to be generated. The sig argument is compatible with the SIG macros.

If the call is successful, zero is returned. Otherwise a nonzero value is returned.

Example:

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.9.html (2 of 3)4/1/2008 8:41:27 AM

C Guide--2.9 signal.h

#include<signal.h>
#include<stdio.h>

void catch_function(int);

int main(void)
{
 if(signal(SIGINT, catch_function)==SIG_ERR)
 {
 printf("An error occured while setting a signal handler.
\n");
 exit(0);
 }

 printf("Raising the interactive attention signal.\n");
 if(raise(SIGINT)!=0)
 {
 printf("Error raising the signal.\n");
 exit(0);
 }
 printf("Exiting.\n");
 return 0;
}

void catch_function(int signal)
{
 printf("Interactive attention signal caught.\n");
}

The output from the program should be (assuming no errors):

Raising the interactive attention signal.
Interactive attention signal caught.
Exiting.

 Previous
Section
2.8 setjmp.h

| Table of Contents | Index | Next Section
2.10 stdarg.h

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.9.html (3 of 3)4/1/2008 8:41:27 AM

C Guide--2.10 stdarg.h

 Previous
Section
2.9 signal.h

| Table of Contents | Index | Next Section
2.11 stddef.h

2.10 stdarg.h

The stdarg header defines several macros used to get the arguments in a function when the number of
arguments is not known.

Macros:

va_start();
va_arg();
va_end();

Variables:

typedef va_list

2.10.1 Variables and Definitions

The va_list type is a type suitable for use in accessing the arguments of a function with the stdarg
macros.

A function of variable arguments is defined with the ellipsis (,...) at the end of the parameter list.

2.10.2 va_start

Declaration:

void va_start(va_list ap, last_arg);

Initializes ap for use with the va_arg and va_end macros. last_arg is the last known fixed argument
being passed to the function (the argument before the ellipsis).

Note that va_start must be called before using va_arg and va_end.

2.10.3 va_arg

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.10.html (1 of 3)4/1/2008 8:41:28 AM

C Guide--2.10 stdarg.h

Declaration:

type va_arg(va_list ap, type);

Expands to the next argument in the paramater list of the function with type type. Note that ap must be
initialized with va_start. If there is no next argument, then the result is undefined.

2.10.4 va_end

Declaration:

void va_end(va_list ap);

Allows a function with variable arguments which used the va_start macro to return. If va_end is
not called before returning from the function, the result is undefined. The variable argument list ap may
no longer be used after a call to va_end without a call to va_start.

Example:

#include<stdarg.h>
#include<stdio.h>

void sum(char *, int, ...);

int main(void)
{
 sum("The sum of 10+15+13 is %d.\n",3,10,15,13);
 return 0;
}

void sum(char *string, int num_args, ...)
{
 int sum=0;
 va_list ap;
 int loop;

 va_start(ap,num_args);
 for(loop=0;loop<num_args;loop++)
 sum+=va_arg(ap,int);

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.10.html (2 of 3)4/1/2008 8:41:28 AM

C Guide--2.10 stdarg.h

 printf(string,sum);
 va_end(ap);
}

 Previous
Section
2.9 signal.h

| Table of Contents | Index | Next Section
2.11 stddef.h

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.10.html (3 of 3)4/1/2008 8:41:28 AM

C Guide--2.11 stddef.h

 Previous
Section
2.10 stdarg.h

| Table of Contents | Index | Next Section
2.12 stdio.h

2.11 stddef.h

The stddef header defines several standard definitions. Many of these definitions also appear in other
headers.

Macros:

NULL
offsetof();

Variables:

typedef ptrdiff_t
typedef size_t
typedef wchar_t

2.11.1 Variables and Definitions

ptrdiff_t is the result of subtracting two pointers.
size_t is the unsigned integer result of the sizeof keyword.
wchar_t is an integer type of the size of a wide character constant.

NULL is the value of a null pointer constant.

offsetof(type, member-designator)

This results in a constant integer of type size_t which is the offset in bytes of a structure member
from the beginning of the structure. The member is given by member-designator, and the name of the
structure is given in type.

Example:

#include<stddef.h>
#include<stdio.h>

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.11.html (1 of 2)4/1/2008 8:42:54 AM

C Guide--2.11 stddef.h

int main(void)
{
 struct user{
 char name[50];
 char alias[50];
 int level;
 };

 printf("level is the %d byte in the user structure.\n"),
 offsetof(struct user,level));
}

The output should be:

level is the 100 byte in the user structure.

 Previous
Section
2.10 stdarg.h

| Table of Contents | Index | Next Section
2.12 stdio.h

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.11.html (2 of 2)4/1/2008 8:42:54 AM

C Guide--2.12 stdio.h

 Previous
Section
2.11 stddef.h

| Table of Contents | Index | Next Section
2.13 stdlib.h

2.12 stdio.h

The stdio header provides functions for performing input and output.

Macros:

NULL
_IOFBF
_IOLBF
_IONBF
BUFSIZ
EOF
FOPEN_MAX
FILENAME_MAX
L_tmpnam
SEEK_CUR
SEEK_END
SEEK_SET
TMP_MAX
stderr
stdin
stdout

Functions:

clearerr();
fclose();
feof();
ferror();
fflush();
fgetpos();
fopen();
fread();
freopen();
fseek();
fsetpos();

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.12.html (1 of 20)4/1/2008 8:42:57 AM

C Guide--2.12 stdio.h

ftell();
fwrite();
remove();
rename();
rewind();
setbuf();
setvbuf();
tmpfile();
tmpnam();
fprintf();
fscanf();
printf();
scanf();
sprintf();
sscanf();
vfprintf();
vprintf();
vsprintf();
fgetc();
fgets();
fputc();
fputs();
getc();
getchar();
gets();
putc();
putchar();
puts();
ungetc();
perror();

Variables:

typedef size_t
typedef FILE
typedef fpos_t

2.12.1 Variables and Definitions

size_t is the unsigned integer result of the sizeof keyword.
FILE is a type suitable for storing information for a file stream.
fpos_t is a type suitable for storing any position in a file.

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.12.html (2 of 20)4/1/2008 8:42:57 AM

C Guide--2.12 stdio.h

NULL is the value of a null pointer constant.
_IOFBF, _IOLBF, and _IONBF are used in the setvbuf function.
BUFSIZ is an integer which represents the size of the buffer used by the setbuf function.
EOF is a negative integer which indicates an end-of-file has been reached.
FOPEN_MAX is an integer which represents the maximum number of files that the system
can guarantee that can be opened simultaneously.
FILENAME_MAX is an integer which represents the longest length of a char array suitable
for holding the longest possible filename. If the implementation imposes no limit, then
this value should be the recommended maximum value.
L_tmpnam is an integer which represents the longest length of a char array suitable for
holding the longest possible temporary filename created by the tmpnam function.
SEEK_CUR, SEEK_END, and SEEK_SET are used in the fseek function.
TMP_MAX is the maximum number of unique filenames that the function tmpnam can
generate.
stderr, stdin, and stdout are pointers to FILE types which correspond to the
standard error, standard input, and standard output streams.

2.12.2 Streams and Files

Streams facilitate a way to create a level of abstraction between the program and an input/output device.
This allows a common method of sending and receiving data amongst the various types of devices
available. There are two types of streams: text and binary.

Text streams are composed of lines. Each line has zero or more characters and are terminated by a new-
line character which is the last character in a line. Conversions may occur on text streams during input
and output. Text streams consist of only printable characters, the tab character, and the new-line
character. Spaces cannot appear before a newline character, although it is implementation-defined
whether or not reading a text stream removes these spaces. An implementation must support lines of up
to at least 254 characters including the new-line character.

Binary streams input and output data in an exactly 1:1 ratio. No conversion exists and all characters may
be transferred.

When a program begins, there are already three available streams: standard input, standard output, and
standard error.

Files are associated with streams and must be opened to be used. The point of I/O within a file is
determined by the file position. When a file is opened, the file position points to the beginning of the file
unless the file is opened for an append operation in which case the position points to the end of the file.
The file position follows read and write operations to indicate where the next operation will occur.

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.12.html (3 of 20)4/1/2008 8:42:57 AM

C Guide--2.12 stdio.h

When a file is closed, no more actions can be taken on it until it is opened again. Exiting from the main
function causes all open files to be closed.

2.12.3 File Functions

2.12.3.1 clearerr

Declaration:

void clearerr(FILE *stream);

Clears the end-of-file and error indicators for the given stream. As long as the error indicator is set, all
stream operations will return an error until clearerr or rewind is called.

2.12.3.2 fclose

Declaration:

int fclose(FILE *stream);

Closes the stream. All buffers are flushed.

If successful, it returns zero. On error it returns EOF.

2.12.3.3 feof

Declaration:

int feof(FILE *stream);

Tests the end-of-file indicator for the given stream. If the stream is at the end-of-file, then it returns a
nonzero value. If it is not at the end of the file, then it returns zero.

2.12.3.4 ferror

Declaration:

int ferror(FILE *stream);

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.12.html (4 of 20)4/1/2008 8:42:57 AM

C Guide--2.12 stdio.h

Tests the error indicator for the given stream. If the error indicator is set, then it returns a nonzero value.
If the error indicator is not set, then it returns zero.

2.12.3.5 fflush

Declaration:

int fflush(FILE *stream);

Flushes the output buffer of a stream. If stream is a null pointer, then all output buffers are flushed.

If successful, it returns zero. On error it returns EOF.

2.12.3.6 fgetpos

Declaration:

int fgetpos(FILE *stream, fpos_t *pos);

Gets the current file position of the stream and writes it to pos.

If successful, it returns zero. On error it returns a nonzero value and stores the error number in the
variable errno.

2.12.3.7 fopen

Declaration:

FILE *fopen(const char *filename, const char *mode);

Opens the filename pointed to by filename. The mode argument may be one of the following constant
strings:

r read text mode

w write text mode (truncates file to zero length or creates new file)

a append text mode for writing (opens or creates file and sets file pointer to the end-of-file)

rb read binary mode

wb write binary mode (truncates file to zero length or creates new file)

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.12.html (5 of 20)4/1/2008 8:42:57 AM

C Guide--2.12 stdio.h

ab
append binary mode for writing (opens or creates file and sets file pointer to the end-of-
file)

r+ read and write text mode

w+ read and write text mode (truncates file to zero length or creates new file)

a+ read and write text mode (opens or creates file and sets file pointer to the end-of-file)

r+b or rb+ read and write binary mode

w+b or wb+ read and write binary mode (truncates file to zero length or creates new file)

a+b or ab+ read and write binary mode (opens or creates file and sets file pointer to the end-of-file)

If the file does not exist and it is opened with read mode (r), then the open fails.

If the file is opened with append mode (a), then all write operations occur at the end of the file
regardless of the current file position.

If the file is opened in the update mode (+), then output cannot be directly followed by input and input
cannot be directly followed by output without an intervening fseek, fsetpos, rewind, or fflush.

On success a pointer to the file stream is returned. On failure a null pointer is returned.

2.12.3.8 fread

Declaration:

size_t fread(void *ptr, size_t size, size_t nmemb, FILE
*stream);

Reads data from the given stream into the array pointed to by ptr. It reads nmemb number of elements of
size size. The total number of bytes read is (size*nmemb).

On success the number of elements read is returned. On error or end-of-file the total number of elements
successfully read (which may be zero) is returned.

2.12.3.9 freopen

Declaration:

FILE *freopen(const char *filename, const char *mode, FILE
*stream);

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.12.html (6 of 20)4/1/2008 8:42:57 AM

C Guide--2.12 stdio.h

Associates a new filename with the given open stream. The old file in stream is closed. If an error occurs
while closing the file, the error is ignored. The mode argument is the same as described in the fopen
command. Normally used for reassociating stdin, stdout, or stderr.

On success the pointer to the stream is returned. On error a null pointer is returned.

2.12.3.10 fseek

Declaration:

int fseek(FILE *stream, long int offset, int whence);

Sets the file position of the stream to the given offset. The argument offset signifies the number of bytes
to seek from the given whence position. The argument whence can be:

SEEK_SET Seeks from the beginning of the file.

SEEK_CUR Seeks from the current position.

SEEK_END Seeks from the end of the file.

On a text stream, whence should be SEEK_SET and offset should be either zero or a value returned from
ftell.

The end-of-file indicator is reset. The error indicator is NOT reset.

On success zero is returned. On error a nonzero value is returned.

2.12.3.11 fsetpos

Declaration:

int fsetpos(FILE *stream, const fpos_t *pos);

Sets the file position of the given stream to the given position. The argument pos is a position given by
the function fgetpos. The end-of-file indicator is cleared.

On success zero is returned. On error a nonzero value is returned and the variable errno is set.

2.12.3.12 ftell

Declaration:

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.12.html (7 of 20)4/1/2008 8:42:57 AM

C Guide--2.12 stdio.h

long int ftell(FILE *stream);

Returns the current file position of the given stream. If it is a binary stream, then the value is the number
of bytes from the beginning of the file. If it is a text stream, then the value is a value useable by the fseek
function to return the file position to the current position.

On success the current file position is returned. On error a value of -1L is returned and errno is set.

2.12.3.13 fwrite

Declaration:

size_t fwrite(const void *ptr, size_t size, size_t nmemb, FILE
*stream);

Writes data from the array pointed to by ptr to the given stream. It writes nmemb number of elements of
size size. The total number of bytes written is (size*nmemb).

On success the number of elements writen is returned. On error the total number of elements
successfully writen (which may be zero) is returned.

2.12.3.14 remove

Declaration:

int remove(const char *filename);

Deletes the given filename so that it is no longer accessible (unlinks the file). If the file is currently open,
then the result is implementation-defined.

On success zero is returned. On failure a nonzero value is returned.

2.12.3.15 rename

Declaration:

int rename(const char *old_filename, const char *new_filename);

Causes the filename referred to by old_filename to be changed to new_filename. If the filename pointed

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.12.html (8 of 20)4/1/2008 8:42:57 AM

C Guide--2.12 stdio.h

to by new_filename exists, the result is implementation-defined.

On success zero is returned. On error a nonzero value is returned and the file is still accessible by its old
filename.

2.12.3.16 rewind

Declaration:

void rewind(FILE *stream);

Sets the file position to the beginning of the file of the given stream. The error and end-of-file indicators
are reset.

2.12.3.17 setbuf

Declaration:

void setbuf(FILE *stream, char *buffer);

Defines how a stream should be buffered. This should be called after the stream has been opened but
before any operation has been done on the stream. Input and output is fully buffered. The default
BUFSIZ is the size of the buffer. The argument buffer points to an array to be used as the buffer. If
buffer is a null pointer, then the stream is unbuffered.

2.12.3.18 setvbuf

Declaration:

int setvbuf(FILE *stream, char *buffer, int mode, size_t size);

Defines how a stream should be buffered. This should be called after the stream has been opened but
before any operation has been done on the stream. The argument mode defines how the stream should be
buffered as follows:

_IOFBF Input and output is fully buffered. If the buffer is empty, an input operation attempts to fill the
buffer. On output the buffer will be completely filled before any information is written to the
file (or the stream is closed).

_IOLBF Input and output is line buffered. If the buffer is empty, an input operation attempts to fill the
buffer. On output the buffer will be flushed whenever a newline character is written.

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.12.html (9 of 20)4/1/2008 8:42:57 AM

C Guide--2.12 stdio.h

_IONBF Input and output is not buffered. No buffering is performed.

The argument buffer points to an array to be used as the buffer. If buffer is a null pointer, then setvbuf
uses malloc to create its own buffer.

The argument size determines the size of the array.

On success zero is returned. On error a nonzero value is returned.

2.12.3.19 tmpfile

Declaration:

FILE *tmpfile(void);

Creates a temporary file in binary update mode (wb+). The tempfile is removed when the program
terminates or the stream is closed.

On success a pointer to a file stream is returned. On error a null pointer is returned.

2.12.3.20 tmpnam

Declaration:

char *tmpnam(char *str);

Generates and returns a valid temporary filename which does not exist. Up to TMP_MAX different
filenames can be generated.

If the argument str is a null pointer, then the function returns a pointer to a valid filename. If the
argument str is a valid pointer to an array, then the filename is written to the array and a pointer to the
same array is returned. The filename may be up to L_tmpnam characters long.

2.12.4 Formatted I/O Functions

2.12.4.1 ..printf Functions

Declarations:

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.12.html (10 of 20)4/1/2008 8:42:57 AM

C Guide--2.12 stdio.h

int fprintf(FILE *stream, const char *format, ...);
int printf(const char *format, ...);
int sprintf(char *str, const char *format, ...);
int vfprintf(FILE *stream, const char *format, va_list arg);
int vprintf(const char *format, va_list arg);
int vsprintf(char *str, const char *format, va_list arg);

The ..printf functions provide a means to output formatted information to a stream.

fprintf sends formatted output to a stream

printf sends formatted output to stdout

sprintf sends formatted output to a string

vfprintf sends formatted output to a stream using an argument list

vprintf sends formatted output to stdout using an argument list

vsprintf sends formatted output to a string using an argument list

These functions take the format string specified by the format argument and apply each following
argument to the format specifiers in the string in a left to right fashion. Each character in the format
string is copied to the stream except for conversion characters which specify a format specifier.

The string commands (sprintf and vsprintf) append a null character to the end of the string. This
null character is not counted in the character count.

The argument list commands (vfprintf, vprintf, and vsprintf) use an argument list which is
prepared by va_start. These commands do not call va_end (the caller must call it).

A conversion specifier begins with the % character. After the % character come the following in this
order:

[flags] Control the conversion (optional).

[width] Defines the number of characters to print (optional).

[.precision] Defines the amount of precision to print for a number type (optional).

[modifier] Overrides the size (type) of the argument (optional).

[type] The type of conversion to be applied (required).

Flags:

- Value is left justified (default is right justified). Overrides the 0 flag.

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.12.html (11 of 20)4/1/2008 8:42:57 AM

C Guide--2.12 stdio.h

+ Forces the sign (+ or -) to always be shown. Default is to just show the - sign. Overrides the
space flag.

space Causes a positive value to display a space for the sign. Negative values still show the - sign.

Alternate form:

Conversion Character Result

o Precision is increased to make the first digit a zero.

X or x Nonzero value will have 0x or 0X prefixed to it.

E, e, f, g, or
G

Result will always have a decimal point.

G or g Trailing zeros will not be removed.

0 For d, i, o, u, x, X, e, E, f, g, and G leading zeros are used to pad the field width instead of
spaces. This is useful only with a width specifier. Precision overrides this flag.

Width:
The width of the field is specified here with a decimal value. If the value is not large enough to fill the
width, then the rest of the field is padded with spaces (unless the 0 flag is specified). If the value
overflows the width of the field, then the field is expanded to fit the value. If a * is used in place of the
width specifer, then the next argument (which must be an int type) specifies the width of the field.
Note: when using the * with the width and/or precision specifier, the width argument comes first, then
the precision argument, then the value to be converted.

Precision:
The precision begins with a dot (.) to distinguish itself from the width specifier. The precision can be
given as a decimal value or as an asterisk (*). If a * is used, then the next argument (which is an int
type) specifies the precision. Note: when using the * with the width and/or precision specifier, the width
argument comes first, then the precision argument, then the value to be converted. Precision does not
affect the c type.

[.precision] Result

(none) Default precision values:
1 for d, i, o, u, x, X types. The minimum number of digits to appear.
6 for f, e, E types. Specifies the number of digits after the decimal point.
For g or G types all significant digits are shown.
For s type all characters in string are print up to but not including the null character.

. or .0 For d, i, o, u, x, X types the default precis ion value is used unless the value is zero in
which case no characters are printed.
For f, e, E types no decimal point character or digits are printed.
For g or G types the precision is assumed to be 1.

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.12.html (12 of 20)4/1/2008 8:42:57 AM

C Guide--2.12 stdio.h

.n For d, i, o, u, x, X types then at least n digits are printed (padding with zeros if necessary).
For f, e, E types specifies the number of digits after the decimal point.
For g or G types specifies the number of significant digits to print.
For s type specifies the maximum number of characters to print.

Modifier:
A modifier changes the way a conversion specifier type is interpreted.

[modifier] [type] Effect

h d, i, o, u, x, X Value is first converted to a short int or unsigned short i nt.

h n Specifies that the pointer points to a short int.

l
d, i, o, u, x,
X

Value is first converted to a long int or unsigned long int .

l n Specifies that the pointer points to a long int.

L e, E, f, g, G Value is first converted to a long double.

Conversion specifier type:
The conversion specifier specifies what type the argument is to be treated as.

[type] Output

d, i Type signed int.

o Type unsigned int printed in octal.

u Type unsigned int printed in decimal.

x Type unsigned int printed in hexadecimal as dddd using a, b, c, d, e, f.

X Type unsigned int printed in hexadecimal as dddd using A, B, C, D, E, F.

f Type double printed as [-]ddd.ddd.

e, E Type double printed as [-]d.dddeñdd where there is one digit printed before the decimal (zero
only if the value is zero). The exponent contains at least two digits. If type is E then the
exponent is printed with a capital E.

g, G Type double printed as type e or E if the exponent is less than -4 or greater than or equal to
the precision. Otherwise printed as type f. Trailing zeros are removed. Decimal point character
appears only if there is a nonzero decimal digit.

c Type char. Single character is printed.

s Type pointer to array. String is printed according to precision (no precision prints entire string).

p Prints the value of a pointer (the memory location it holds).

n The argument must be a pointer to an int. Stores the number of characters printed thus far in
the int. No characters are printed.

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.12.html (13 of 20)4/1/2008 8:42:57 AM

C Guide--2.12 stdio.h

% A % sign is printed.

The number of characters printed are returned. If an error occurred, -1 is returned.

2.12.4.2 ..scanf Functions

Declarations:

int fscanf(FILE *stream, const char *format, ...);
int scanf(const char *format, ...);
int sscanf(const char *str, const char *format, ...);

The ..scanf functions provide a means to input formatted information from a stream.

fscanf reads formatted input from a stream

scanf reads formatted input from stdin

sscanf reads formatted input from a string

These functions take input in a manner that is specified by the format argument and store each input
field into the following arguments in a left to right fashion.

Each input field is specified in the format string with a conversion specifier which specifies how the
input is to be stored in the appropriate variable. Other characters in the format string specify characters
that must be matched from the input, but are not stored in any of the following arguments. If the input
does not match then the function stops scanning and returns. A whitespace character may match with
any whitespace character (space, tab, carriage return, new line, vertical tab, or formfeed) or the next
incompatible character.

An input field is specified with a conversion specifer which begins with the % character. After the %
character come the following in this order:

[*] Assignment suppressor (optional).

[width] Defines the maximum number of characters to read (optional).

[modifier] Overrides the size (type) of the argument (optional).

[type] The type of conversion to be applied (required).

Assignment suppressor:
Causes the input field to be scanned but not stored in a variable.

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.12.html (14 of 20)4/1/2008 8:42:57 AM

C Guide--2.12 stdio.h

Width:
The maximum width of the field is specified here with a decimal value. If the input is smaller than the
width specifier (i.e. it reaches a nonconvertible character), then what was read thus far is converted and
stored in the variable.

Modifier:
A modifier changes the way a conversion specifier type is interpreted.

[modifier] [type] Effect

h
d, i, o, u,
x

The argument is a short int or unsigned short int.< /td>

h n Specifies that the pointer points to a short int.

l
d, i, o, u,
x

The argument is a long int or unsigned long int .

l n Specifies that the pointer points to a long int.

l e, f, g The argument is a double.

L e, f, g The argument is a long double.

Conversion specifier type:
The conversion specifier specifies what type the argument is. It also controls what a valid convertible
character is (what kind of characters it can read so it can convert to something compatible).

[type] Input

d Type signed int represented in base 10. Digits 0 through 9 and the sign (+ or -).

i Type signed int. The base (radix) is dependent on the first two characters. If the first
character is a digit from 1 to 9, then it is base 10. If the first digit is a zero and the second
digit is a digit from 1 to 7, then it is base 8 (octal). If the first digit is a zero and the
second character is an x or X, then it is base 16 (hexadecimal).

o Type unsigned int. The input must be in base 8 (octal). Digits 0 through 7 only.

u Type unsigned int. The input must be in base 10 (decimal). Digits 0 through 9 only.

x, X Type unsigned int. The input must be in base 16 (hexadecimal). Digits 0 through 9
or A through Z or a through z. The characters 0x or 0X may be optionally prefixed to the
value.

e, E, f, g, G Type float. Begins with an optional sign. Then one or more digits, followed by an
optional decimal-point and decimal value. Finally ended with an optional signed
exponent value designated with an e or E.

s Type character array. Inputs a sequence of non-whitespace characters (space, tab,
carriage return, new line, vertical tab, or formfeed). The array must be large enough to
hold the sequence plus a null character appended to the end.

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.12.html (15 of 20)4/1/2008 8:42:57 AM

C Guide--2.12 stdio.h

[...] Type character array. Allows a search set of characters. Allows input of only those
character encapsulated in the brackets (the scanset). If the first character is a carrot (^),
then the scanset is inverted and allows any ASCII character except those specified
between the brackets. On some systems a range can be specified with the dash character
(-). By specifying the beginning character, a dash, and an ending character a range of
characters can be included in the scanset. A null character is appended to the end of the
array.

c Type character array. Inputs the number of characters specified in the width field. If no
width field is specified, then 1 is assumed. No null character is appended to the array.

p Pointer to a pointer. Inputs a memory address in the same fashion of the %p type
produced by the printf function.

n The argument must be a pointer to an int. Stores the number of characters read thus far
in the int. No characters are read from the input stream.

% Requires a matching % sign from the input.

Reading an input field (designated with a conversion specifier) ends when an incompatible character is
met, or the width field is satisfied.

On success the number of input fields converted and stored are returned. If an input failure occurred,
then EOF is returned.

2.12.5 Character I/O Functions

2.12.5.1 fgetc

Declaration:

int fgetc(FILE *stream);

Gets the next character (an unsigned char) from the specified stream and advances the position
indicator for the stream.

On success the character is returned. If the end-of-file is encountered, then EOF is returned and the end-
of-file indicator is set. If an error occurs then the error indicator for the stream is set and EOF is returned.

2.12.5.2 fgets

Declaration:

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.12.html (16 of 20)4/1/2008 8:42:57 AM

C Guide--2.12 stdio.h

char *fgets(char *str, int n, FILE *stream);

Reads a line from the specified stream and stores it into the string pointed to by str. It stops when either
(n-1) characters are read, the newline character is read, or the end-of-file is reached, whichever comes
first. The newline character is copied to the string. A null character is appended to the end of the string.

On success a pointer to the string is returned. On error a null pointer is returned. If the end-of-file occurs
before any characters have been read, the string remains unchanged.

2.12.5.3 fputc

Declaration:

int fputc(int char, FILE *stream);

Writes a character (an unsigned char) specified by the argument char to the specified stream and
advances the position indicator for the stream.

On success the character is returned. If an error occurs, the error indicator for the stream is set and EOF
is returned.

2.12.5.4 fputs

Declaration:

int fputs(const char *str, FILE *stream);

Writes a string to the specified stream up to but not including the null character.

On success a nonnegative value is returned. On error EOF is returned.

2.12.5.5 getc

Declaration:

int getc(FILE *stream);

Gets the next character (an unsigned char) from the specified stream and advances the position
indicator for the stream.

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.12.html (17 of 20)4/1/2008 8:42:57 AM

C Guide--2.12 stdio.h

This may be a macro version of fgetc.

On success the character is returned. If the end-of-file is encountered, then EOF is returned and the end-
of-file indicator is set. If an error occurs then the error indicator for the stream is set and EOF is returned.

2.12.5.6 getchar

Declaration:

int getchar(void);

Gets a character (an unsigned char) from stdin.

On success the character is returned. If the end-of-file is encountered, then EOF is returned and the end-
of-file indicator is set. If an error occurs then the error indicator for the stream is set and EOF is returned.

2.12.5.7 gets

Declaration:

char *gets(char *str);

Reads a line from stdin and stores it into the string pointed to by str. It stops when either the newline
character is read or when the end-of-file is reached, whichever comes first. The newline character is not
copied to the string. A null character is appended to the end of the string.

On success a pointer to the string is returned. On error a null pointer is returned. If the end-of-file occurs
before any characters have been read, the string remains unchanged.

2.12.5.8 putc

Declaration:

int putc(int char, FILE *stream);

Writes a character (an unsigned char) specified by the argument char to the specified stream and
advances the position indicator for the stream.

This may be a macro version of fputc.

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.12.html (18 of 20)4/1/2008 8:42:57 AM

C Guide--2.12 stdio.h

On success the character is returned. If an error occurs, the error indicator for the stream is set and EOF
is returned.

2.12.5.9 putchar

Declaration:

int putchar(int char);

Writes a character (an unsigned char) specified by the argument char to stdout.

On success the character is returned. If an error occurs, the error indicator for the stream is set and EOF
is returned.

2.12.5.10 puts

Declaration:

int puts(const char *str);

Writes a string to stdout up to but not including the null character. A newline character is appended to
the output.

On success a nonnegative value is returned. On error EOF is returned.

2.12.5.11 ungetc

Declaration:

int ungetc(int char, FILE *stream);

Pushes the character char (an unsigned char) onto the specified stream so that the this is the next
character read. The functions fseek, fsetpos, and rewind discard any characters pushed onto the
stream.

Multiple characters pushed onto the stream are read in a FIFO manner (first in, first out).

On success the character pushed is returned. On error EOF is returned.

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.12.html (19 of 20)4/1/2008 8:42:57 AM

C Guide--2.12 stdio.h

2.12.7 Error Functions

2.12.7.1 perror

Declaration:

void perror(const char *str);

Prints a descriptive error message to stderr. First the string str is printed followed by a colon then a
space. Then an error message based on the current setting of the variable errno is printed.

 Previous
Section
2.11 stddef.h

| Table of Contents | Index | Next Section
2.13 stdlib.h

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.12.html (20 of 20)4/1/2008 8:42:57 AM

C Guide--2.13 stdlib.h

 Previous
Section
2.12 stdio.h

| Table of Contents | Index | Next Section
2.14 string.h

2.13 stdlib.h

The stdlib header defines several general operation functions and macros.

Macros:

NULL
EXIT_FAILURE
EXIT_SUCCESS
RAND_MAX
MB_CUR_MAX

Variables:

typedef size_t
typedef wchar_t
struct div_t
struct ldiv_t

Functions:

abort();
abs();
atexit();
atof();
atoi();
atol();
bsearch();
calloc();
div();
exit();
free();
getenv();
labs();
ldiv();
malloc();

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.13.html (1 of 14)4/1/2008 8:42:56 AM

C Guide--2.13 stdlib.h

mblen();
mbstowcs();
mbtowc();
qsort();
rand();
realloc();
srand();
strtod();
strtol();
strtoul();
system();
wcstombs();
wctomb();

2.13.1 Variables and Definitions

size_t is the unsigned integer result of the sizeof keyword.
wchar_t is an integer type of the size of a wide character constant.
div_t is the structure returned by the div function.
ldiv_t is the structure returned by the ldiv function.

NULL is the value of a null pointer constant.
EXIT_FAILURE and EXIT_SUCCESS are values for the exit function to return termination status.
RAND_MAX is the maximum value returned by the rand function.
MB_CUR_MAX is the maximum number of bytes in a multibyte character set which cannot be larger than
MB_LEN_MAX.

2.13.2 String Functions

2.13.2.1 atof

Declaration:

double atof(const char *str);

The string pointed to by the argument str is converted to a floating-point number (type double). Any
initial whitespace characters are skipped (space, tab, carriage return, new line, vertical tab, or formfeed).
The number may consist of an optional sign, a string of digits with an optional decimal character, and an
optional e or E followed by a optionally signed exponent. Conversion stops when the first unrecognized
character is reached.

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.13.html (2 of 14)4/1/2008 8:42:56 AM

C Guide--2.13 stdlib.h

On success the converted number is returned. If no conversion can be made, zero is returned. If the value
is out of range of the type double, then HUGE_VAL is returned with the appropriate sign and ERANGE is
stored in the variable errno. If the value is too small to be returned in the type double, then zero is
returned and ERANGE is stored in the variable errno.

2.13.2.2 atoi

Declaration:

int atoi(const char *str);

The string pointed to by the argument str is converted to an integer (type int). Any initial whitespace
characters are skipped (space, tab, carriage return, new line, vertical tab, or formfeed). The number may
consist of an optional sign and a string of digits. Conversion stops when the first unrecognized character
is reached.

On success the converted number is returned. If the number cannot be converted, then 0 is returned.

2.13.2.3 atol

Declaration:

long int atol(const char *str);

The string pointed to by the argument str is converted to a long integer (type long int). Any initial
whitespace characters are skipped (space, tab, carriage return, new line, vertical tab, or formfeed). The
number may consist of an optional sign and a string of digits. Conversion stops when the first
unrecognized character is reached.

On success the converted number is returned. If the number cannot be converted, then 0 is returned.

2.13.2.4 strtod

Declaration:

double strtod(const char *str, char **endptr);

The string pointed to by the argument str is converted to a floating-point number (type double). Any
initial whitespace characters are skipped (space, tab, carriage return, new line, vertical tab, or formfeed).
The number may consist of an optional sign, a string of digits with an optional decimal character, and an

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.13.html (3 of 14)4/1/2008 8:42:56 AM

C Guide--2.13 stdlib.h

optional e or E followed by a optionally signed exponent. Conversion stops when the first unrecognized
character is reached.

The argument endptr is a pointer to a pointer. The address of the character that stopped the scan is stored
in the pointer that endptr points to.

On success the converted number is returned. If no conversion can be made, zero is returned. If the value
is out of range of the type double, then HUGE_VAL is returned with the appropriate sign and ERANGE is
stored in the variable errno. If the value is too small to be returned in the type double, then zero is
returned and ERANGE is stored in the variable errno.

2.13.2.5 strtol

Declaration:

long int strtol(const char *str, char **endptr, int base);

The string pointed to by the argument str is converted to a long integer (type long int). Any initial
whitespace characters are skipped (space, tab, carriage return, new line, vertical tab, or formfeed). The
number may consist of an optional sign and a string of digits. Conversion stops when the first
unrecognized character is reached.

If the base (radix) argument is zero, then the conversion is dependent on the first two characters. If the
first character is a digit from 1 to 9, then it is base 10. If the first digit is a zero and the second digit is a
digit from 1 to 7, then it is base 8 (octal). If the first digit is a zero and the second character is an x or X,
then it is base 16 (hexadecimal).

If the base argument is from 2 to 36, then that base (radix) is used and any characters that fall outside of
that base definition are considered unconvertible. For base 11 to 36, the characters A to Z (or a to z) are
used. If the base is 16, then the characters 0x or 0X may precede the number.

The argument endptr is a pointer to a pointer. The address of the character that stopped the scan is stored
in the pointer that endptr points to.

On success the converted number is returned. If no conversion can be made, zero is returned. If the value
is out of the range of the type long int, then LONG_MAX or LONG_MIN is returned with the sign of
the correct value and ERANGE is stored in the variable errno.

2.13.2.6 strtoul

Declaration:

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.13.html (4 of 14)4/1/2008 8:42:56 AM

C Guide--2.13 stdlib.h

unsigned long int strtoul(const char *str, char **endptr, int
base);

The string pointed to by the argument str is converted to an unsigned long integer (type unsigned
long int). Any initial whitespace characters are skipped (space, tab, carriage return, new line,
vertical tab, or formfeed). The number may consist of an optional sign and a string of digits. Conversion
stops when the first unrecognized character is reached.

If the base (radix) argument is zero, then the conversion is dependent on the first two characters. If the
first character is a digit from 1 to 9, then it is base 10. If the first digit is a zero and the second digit is a
digit from 1 to 7, then it is base 8 (octal). If the first digit is a zero and the second character is an x or X,
then it is base 16 (hexadecimal).

If the base argument is from 2 to 36, then that base (radix) is used and any characters that fall outside of
that base definition are considered unconvertible. For base 11 to 36, the characters A to Z (or a to z) are
used. If the base is 16, then the characters 0x or 0X may precede the number.

The argument endptr is a pointer to a pointer. The address of the character that stopped the scan is stored
in the pointer that endptr points to.

On success the converted number is returned. If no conversion can be made, zero is returned. If the value
is out of the range of the type unsigned long int, then ULONG_MAX is returned and ERANGE is
stored in the variable errno.

2.13.3 Memory Functions

2.13.3.1 calloc

Declaration:

void *calloc(size_t nitems, size_t size);

Allocates the requested memory and returns a pointer to it. The requested size is nitems each size bytes
long (total memory requested is nitems*size). The space is initialized to all zero bits.

On success a pointer to the requested space is returned. On failure a null pointer is returned.

2.13.3.2 free

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.13.html (5 of 14)4/1/2008 8:42:56 AM

C Guide--2.13 stdlib.h

Declaration:

void free(void *ptr);

Deallocates the memory previously allocated by a call to calloc, malloc, or realloc. The
argument ptr points to the space that was previously allocated. If ptr points to a memory block that was
not allocated with calloc, malloc, or realloc, or is a space that has been deallocated, then the
result is undefined.

No value is returned.

2.13.3.3 malloc

Declaration:

void *malloc(size_t size);

Allocates the requested memory and returns a pointer to it. The requested size is size bytes. The value of
the space is indeterminate.

On success a pointer to the requested space is returned. On failure a null pointer is returned.

2.13.3.4 realloc

Declaration:

void *realloc(void *ptr, size_t size);

Attempts to resize the memory block pointed to by ptr that was previously allocated with a call to
malloc or calloc. The contents pointed to by ptr are unchanged. If the value of size is greater than
the previous size of the block, then the additional bytes have an undeterminate value. If the value of size
is less than the previous size of the block, then the difference of bytes at the end of the block are freed. If
ptr is null, then it behaves like malloc. If ptr points to a memory block that was not allocated with
calloc or malloc, or is a space that has been deallocated, then the result is undefined. If the new
space cannot be allocated, then the contents pointed to by ptr are unchanged. If size is zero, then the
memory block is completely freed.

On success a pointer to the memory block is returned (which may be in a different location as before).
On failure or if size is zero, a null pointer is returned.

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.13.html (6 of 14)4/1/2008 8:42:56 AM

C Guide--2.13 stdlib.h

2.13.4 Environment Functions

2.13.4.1 abort

Declaration:

void abort(void);

Causes an abnormal program termination. Raises the SIGABRT signal and an unsuccessful termination
status is returned to the environment. Whether or not open streams are closed is implementation-defined.

No return is possible.

2.13.4.2 atexit

Declaration:

int atexit(void (*func)(void));

Causes the specified function to be called when the program terminates normally. At least 32 functions
can be registered to be called when the program terminates. They are called in a last-in, first-out basis
(the last function registered is called first).

On success zero is returned. On failure a nonzero value is returned.

2.13.4.3 exit

Declaration:

void exit(int status);

Causes the program to terminate normally. First the functions registered by atexit are called, then all
open streams are flushed and closed, and all temporary files opened with tmpfile are removed. The value
of status is returned to the environment. If status is EXIT_SUCCESS, then this signifies a successful
termination. If status is EXIT_FAILURE, then this signifies an unsuccessful termination. All other
values are implementation-defined.

No return is possible.

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.13.html (7 of 14)4/1/2008 8:42:56 AM

C Guide--2.13 stdlib.h

2.13.4.4 getenv

Declaration:

char *getenv(const char *name);

Searches for the environment string pointed to by name and returns the associated value to the string.
This returned value should not be written to.

If the string is found, then a pointer to the string's associated value is returned. If the string is not found,
then a null pointer is returned.

2.13.4.5 system

Declaration:

int system(const char *string);

The command specified by string is passed to the host environment to be executed by the command
processor. A null pointer can be used to inquire whether or not the command processor exists.

If string is a null pointer and the command processor exists, then zero is returned. All other return values
are implementation-defined.

2.13.5 Searching and Sorting Functions

2.13.5.1 bsearch

Declaration:

void *bsearch(const void *key, const void *base, size_t nitems,
size_t size, int (*compar)(const void *, const void *));

Performs a binary search. The beginning of the array is pointed to by base. It searches for an element
equal to that pointed to by key. The array is nitems long with each element in the array size bytes long.

The method of comparing is specified by the compar function. This function takes two arguments, the
first is the key pointer and the second is the current element in the array being compared. This function
must return less than zero if the compared value is less than the specified key. It must return zero if the
compared value is equal to the specified key. It must return greater than zero if the compared value is

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.13.html (8 of 14)4/1/2008 8:42:56 AM

C Guide--2.13 stdlib.h

greater than the specified key.

The array must be arranged so that elements that compare less than key are first, elements that equal key
are next, and elements that are greater than key are last.

If a match is found, a pointer to this match is returned. Otherwise a null pointer is returned. If multiple
matching keys are found, which key is returned is unspecified.

2.13.5.2 qsort

Declaration:

void qsort(void *base, size_t nitems, size_t size, int (*compar)
(const void *, const void*));

Sorts an array. The beginning of the array is pointed to by base. The array is nitems long with each
element in the array size bytes long.

The elements are sorted in ascending order according to the compar function. This function takes two
arguments. These arguments are two elements being compared. This function must return less than zero
if the first argument is less than the second. It must return zero if the first argument is equal to the
second. It must return greater than zero if the first argument is greater than the second.

If multiple elements are equal, the order they are sorted in the array is unspecified.

No value is returned.

Example:

#include<stdlib.h>
#include<stdio.h>
#include<string.h>

int main(void)
{
 char string_array[10][50]={"John",
 "Jane",
 "Mary",
 "Rogery",
 "Dave",
 "Paul",

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.13.html (9 of 14)4/1/2008 8:42:56 AM

C Guide--2.13 stdlib.h

 "Beavis",
 "Astro",
 "George",
 "Elroy"};

 /* Sort the list */
 qsort(string_array,10,50,strcmp);

 /* Search for the item "Elroy" and print it */
 printf("%s",bsearch("Elroy",string_array,10,50,strcmp));

 return 0;
}

2.13.6 Math Functions

2.13.6.1 abs

Declaration:

int abs(int x);

Returns the absolute value of x. Note that in two's compliment that the most maximum number cannot
be represented as a positive number. The result in this case is undefined.

The absolute value is returned.

2.13.6.2 div

Declaration:

div_t div(int numer, int denom);

Divides numer (numerator) by denom (denominator). The result is stored in the structure div_t which
has two members:

int qout;
int rem;

Where quot is the quotient and rem is the remainder. In the case of inexact division, quot is rounded

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.13.html (10 of 14)4/1/2008 8:42:56 AM

C Guide--2.13 stdlib.h

down to the nearest integer. The value numer is equal to quot * denom + rem.

The value of the division is returned in the structure.

2.13.6.3 labs

Declaration:

long int labs(long int x);

Returns the absolute value of x. Not that in two's compliment that the most maximum number cannot be
represented as a positive number. The result in this case is undefined.

The absolute value is returned.

2.13.6.4 ldiv

Declaration:

ldiv_t ldiv(long int numer, long int denom);

Divides numer (numerator) by denom (denominator). The result is stored in the structure ldiv_t which
has two members:

long int qout;
long int rem;

Where quot is the quotient and rem is the remainder. In the case of inexact division, quot is rounded
down to the nearest integer. The value numer is equal to quot * denom + rem.

The value of the division is returned in the structure.

2.13.6.5 rand

Declaration:

int rand(void);

Returns a pseudo-random number in the range of 0 to RAND_MAX.

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.13.html (11 of 14)4/1/2008 8:42:56 AM

C Guide--2.13 stdlib.h

The random number is returned.

2.13.6.6 srand

Declaration:

void srand(unsigned int seed);

This function seeds the random number generator used by the function rand. Seeding srand with the
same seed will cause rand to return the same sequence of pseudo-random numbers. If srand is not
called, rand acts as if srand(1) has been called.

No value is returned.

2.13.7 Multibyte Functions

The behavior of the multibyte functions are affected by the setting of LC_CTYPE in the location
settings.

2.13.7.1 mblen

Declaration:

int mblen(const char *str, size_t n);

Returns the length of a multibyte character pointed to by the argument str. At most n bytes will be
examined.

If str is a null pointer, then zero is returned if multibyte characters are not state-dependent (shift state).
Otherwise a nonzero value is returned if multibyte character are state-dependent.

If str is not null, then the number of bytes that are contained in the multibyte character pointed to by str
are returned. Zero is returned if str points to a null character. A value of -1 is returned if str does not
point to a valid multibyte character.

2.13.7.2 mbstowcs

Declaration:

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.13.html (12 of 14)4/1/2008 8:42:56 AM

C Guide--2.13 stdlib.h

size_t mbstowcs(schar_t *pwcs, const char *str, size_t n);

Converts the string of multibyte characters pointed to by the argument str to the array pointed to by
pwcs. It stores no more than n values into the array. Conversion stops when it reaches the null character
or n values have been stored. The null character is stored in the array as zero but is not counted in the
return value.

If an invalid multibyte character is reached, then the value -1 is returned. Otherwise the number of
values stored in the array is returned not including the terminating zero character.

2.13.7.3 mbtowc

Declaration:

int mbtowc(whcar_t *pwc, const char *str, size_t n);

Examines the multibyte character pointed to by the argument str. The value is converted and stored in
the argument pwc if pwc is not null. It scans at most n bytes.

If str is a null pointer, then zero is returned if multibyte characters are not state-dependent (shift state).
Otherwise a nonzero value is returned if multibyte character are state-dependent.

If str is not null, then the number of bytes that are contained in the multibyte character pointed to by str
are returned. Zero is returned if str points to a null character. A value of -1 is returned if str does not
point to a valid multibyte character.

2.13.7.4 wcstombs

Declaration:

size_t wcstombs(char *str, const wchar_t *pwcs, size_t n);

Converts the codes stored in the array pwcs to multibyte characters and stores them in the string str. It
copies at most n bytes to the string. If a multibyte character overflows the n constriction, then none of
that multibyte character's bytes are copied. Conversion stops when it reaches the null character or n
bytes have been written to the string. The null character is stored in the string, but is not counted in the
return value.

If an invalid code is reached, the value -1 is returned. Otherwise the number of bytes stored in the string
is returned not including the terminating null character.

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.13.html (13 of 14)4/1/2008 8:42:56 AM

C Guide--2.13 stdlib.h

2.13.7.5 wctomb

Declaration:

int wctomb(char *str, wchar_t wchar);

Examines the code which corresponds to a multibyte character given by the argument wchar. The code
is converted to a multibyte character and stored into the string pointed to by the argument str if str is not
null.

If str is a null pointer, then zero is returned if multibyte characters are not state-dependent (shift state).
Otherwise a nonzero value is returned if multibyte character are state-dependent.

If str is not null, then the number of bytes that are contained in the multibyte character wchar are
returned. A value of -1 is returned if wchar is not a valid multibyte character.

 Previous
Section
2.12 stdio.h

| Table of Contents | Index | Next Section
2.14 string.h

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.13.html (14 of 14)4/1/2008 8:42:56 AM

C Guide--2.14 string.h

 Previous
Section
2.13 stdlib.h

| Table of Contents | Index | Next Section
2.15 time.h

2.14 string.h

The string header provides many functions useful for manipulating strings (character arrays).

Macros:

NULL

Variables:

typedef size_t

Functions:

memchr();
memcmp();
memcpy();
memmove();
memset();
strcat();
strncat();
strchr();
strcmp();
strncmp();
strcoll();
strcpy();
strncpy();
strcspn();
strerror();
strlen();
strpbrk();
strrchr();
strspn();
strstr();
strtok();
strxfrm();

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.14.html (1 of 10)4/1/2008 8:42:54 AM

C Guide--2.14 string.h

2.14.1 Variables and Definitions

size_t is the unsigned integer result of the sizeof keyword.
NULL is the value of a null pointer constant.

2.14.2 memchr

Declaration:

void *memchr(const void *str, int c, size_t n);

Searches for the first occurrence of the character c (an unsigned char) in the first n bytes of the
string pointed to by the argument str.

Returns a pointer pointing to the first matching character, or null if no match was found.

2.14.3 memcmp

Declaration:

int memcmp(const void *str1, const void *str2, size_t n);

Compares the first n bytes of str1 and str2. Does not stop comparing even after the null character (it
always checks n characters).

Returns zero if the first n bytes of str1 and str2 are equal. Returns less than zero or greater than zero if
str1 is less than or greater than str2 respectively.

2.14.4 memcpy

Declaration:

void *memcpy(void *str1, const void *str2, size_t n);

Copies n characters from str2 to str1. If str1 and str2 overlap the behavior is undefined.

Returns the argument str1.

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.14.html (2 of 10)4/1/2008 8:42:54 AM

C Guide--2.14 string.h

2.14.5 memmove

Declaration:

void *memmove(void *str1, const void *str2, size_t n);

Copies n characters from str2 to str1. If str1 and str2 overlap the information is first completely read
from str1 and then written to str2 so that the characters are copied correctly.

Returns the argument str1.

2.14.6 memset

Declaration:

void *memset(void *str, int c, size_t n);

Copies the character c (an unsigned char) to the first n characters of the string pointed to by the
argument str.

The argument str is returned.

2.14.7 strcat

Declaration:

char *strcat(char *str1, const char *str2);

Appends the string pointed to by str2 to the end of the string pointed to by str1. The terminating null
character of str1 is overwritten. Copying stops once the terminating null character of str2 is copied. If
overlapping occurs, the result is undefined.

The argument str1 is returned.

2.14.8 strncat

Declaration:

char *strncat(char *str1, const char *str2, size_t n);

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.14.html (3 of 10)4/1/2008 8:42:54 AM

C Guide--2.14 string.h

Appends the string pointed to by str2 to the end of the string pointed to by str1 up to n characters long.
The terminating null character of str1 is overwritten. Copying stops once n characters are copied or the
terminating null character of str2 is copied. A terminating null character is always appended to str1. If
overlapping occurs, the result is undefined.

The argument str1 is returned.

2.14.9 strchr

Declaration:

char *strchr(const char *str, int c);

Searches for the first occurrence of the character c (an unsigned char) in the string pointed to by the
argument str. The terminating null character is considered to be part of the string.

Returns a pointer pointing to the first matching character, or null if no match was found.

2.14.10 strcmp

Declaration:

int strcmp(const char *str1, const char *str2);

Compares the string pointed to by str1 to the string pointed to by str2.

Returns zero if str1 and str2 are equal. Returns less than zero or greater than zero if str1 is less than or
greater than str2 respectively.

2.14.11 strncmp

Declaration:

int strncmp(const char *str1, const char *str2, size_t n);

Compares at most the first n bytes of str1 and str2. Stops comparing after the null character.

Returns zero if the first n bytes (or null terminated length) of str1 and str2 are equal. Returns less than
zero or greater than zero if str1 is less than or greater than str2 respectively.

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.14.html (4 of 10)4/1/2008 8:42:54 AM

C Guide--2.14 string.h

2.14.12 strcoll

Declaration:

int strcoll(const char *str1, const char *str2);

Compares string str1 to str2. The result is dependent on the LC_COLLATE setting of the location.

Returns zero if str1 and str2 are equal. Returns less than zero or greater than zero if str1 is less than or
greater than str2 respectively.

2.14.13 strcpy

Declaration:

char *strcpy(char *str1, const char *str2);

Copies the string pointed to by str2 to str1. Copies up to and including the null character of str2. If str1
and str2 overlap the behavior is undefined.

Returns the argument str1.

2.14.14 strncpy

Declaration:

char *strncpy(char *str1, const char *str2, size_t n);

Copies up to n characters from the string pointed to by str2 to str1. Copying stops when n characters are
copied or the terminating null character in str2 is reached. If the null character is reached, the null
characters are continually copied to str1 until n characters have been copied.

Returns the argument str1.

2.14.15 strcspn

Declaration:

size_t strcspn(const char *str1, const char *str2);

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.14.html (5 of 10)4/1/2008 8:42:54 AM

C Guide--2.14 string.h

Finds the first sequence of characters in the string str1 that does not contain any character specified in
str2.

Returns the length of this first sequence of characters found that do not match with str2.

2.14.16 strerror

Declaration:

char *strerror(int errnum);

Searches an internal array for the error number errnum and returns a pointer to an error message string.

Returns a pointer to an error message string.

2.14.17 strlen

Declaration:

size_t strlen(const char *str);

Computes the length of the string str up to but not including the terminating null character.

Returns the number of characters in the string.

2.14.18 strpbrk

Declaration:

char *strpbrk(const char *str1, const char *str2);

Finds the first character in the string str1 that matches any character specified in str2.

A pointer to the location of this character is returned. A null pointer is returned if no character in str2
exists in str1.

Example:

#include<string.h>

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.14.html (6 of 10)4/1/2008 8:42:54 AM

C Guide--2.14 string.h

#include<stdio.h>

int main(void)
{
 char string[]="Hi there, Chip!";
 char *string_ptr;

 while((string_ptr=strpbrk(string," "))!=NULL)
 *string_ptr='-';

 printf("New string is \"%s\".\n",string);
 return 0;
}

The output should result in every space in the string being converted to a dash (-).

2.14.19 strrchr

Declaration:

char *strrchr(const char *str, int c);

Searches for the last occurrence of the character c (an unsigned char) in the string pointed to by the
argument str. The terminating null character is considered to be part of the string.

Returns a pointer pointing to the last matching character, or null if no match was found.

2.14.20 strspn

Declaration:

size_t strspn(const char *str1, const char *str2);

Finds the first sequence of characters in the string str1 that contains any character specified in str2.

Returns the length of this first sequence of characters found that match with str2.

Example:

#include<string.h>
#include<stdio.h>

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.14.html (7 of 10)4/1/2008 8:42:54 AM

C Guide--2.14 string.h

int main(void)
{
 char string[]="7803 Elm St.";

 printf("The number length is %d.\n",strspn
(string,"1234567890"));

 return 0;
}

The output should be: The number length is 4.

2.14.21 strstr

Declaration:

char *strstr(const char *str1, const char *str2);

Finds the first occurrence of the entire string str2 (not including the terminating null character) which
appears in the string str1.

Returns a pointer to the first occurrence of str2 in str1. If no match was found, then a null pointer is
returned. If str2 points to a string of zero length, then the argument str1 is returned.

2.14.22 strtok

Declaration:

char *strtok(char *str1, const char *str2);

Breaks string str1 into a series of tokens. If str1 and str2 are not null, then the following search sequence
begins. The first character in str1 that does not occur in str2 is found. If str1 consists entirely of
characters specified in str2, then no tokens exist and a null pointer is returned. If this character is found,
then this marks the beginning of the first token. It then begins searching for the next character after that
which is contained in str2. If this character is not found, then the current token extends to the end of str1.
If the character is found, then it is overwritten by a null character, which terminates the current token.
The function then saves the following position internally and returns.

Subsequent calls with a null pointer for str1 will cause the previous position saved to be restored and
begins searching from that point. Subsequent calls may use a different value for str2 each time.

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.14.html (8 of 10)4/1/2008 8:42:54 AM

C Guide--2.14 string.h

Returns a pointer to the first token in str1. If no token is found then a null pointer is returned.

Example:

#include<string.h>
#include<stdio.h>

int main(void)
{
 char search_string[]="Woody Norm Cliff";
 char *array[50];
 int loop;

 array[0]=strtok(search_string," ");
 if(array[0]==NULL)
 {
 printf("No test to search.\n");
 exit(0);
 }

 for(loop=1;loop<50;loop++)
 {
 array[loop]=strtok(NULL," ");
 if(array[loop]==NULL)
 break;
 }

 for(loop=0;loop<50;loop++)
 {
 if(array[loop]==NULL)
 break;
 printf("Item #%d is %s.\n",loop,array[loop]);
 }

 return 0;
}

This program replaces each space into a null character and stores a pointer to each substring into the
array. It then prints out each item.

2.14.23 strxfrm

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.14.html (9 of 10)4/1/2008 8:42:54 AM

C Guide--2.14 string.h

Declaration:

size_t strxfrm(char *str1, const char *str2, size_t n);

Transforms the string str2 and places the result into str1. It copies at most n characters into str1
including the null terminating character. The transformation occurs such that strcmp applied to two
separate converted strings returns the same value as strcoll applied to the same two strings. If
overlapping occurs, the result is undefined.

Returns the length of the transformed string (not including the null character).

 Previous
Section
2.13 stdlib.h

| Table of Contents | Index | Next Section
2.15 time.h

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.14.html (10 of 10)4/1/2008 8:42:54 AM

C Guide--2.15 time.h

 Previous
Section
2.14 string.h

| Table of Contents | Index | Next Section
Index

2.15 time.h

The time header provides several functions useful for reading and converting the current time and date.
Some functions behavior is defined by the LC_TIME category of the location setting.

Macros:

NULL
CLOCKS_PER_SEC

Variables:

typedef size_t
typedef clock_t
typedef size_t
struct tm

Functions:

asctime();
clock();
ctime();
difftime();
gmtime();
localtime();
mktime();
strftime();
time();

2.15.1 Variables and Definitions

NULL is the value of a null pointer constant.
CLOCKS_PER_SEC is the number of processor clocks per second.

size_t is the unsigned integer result of the sizeof keyword.

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.15.html (1 of 8)4/1/2008 8:42:54 AM

C Guide--2.15 time.h

clock_t is a type suitable for storing the processor time.
time_t is a type suitable for storing the calendar time.

struct tm is a structure used to hold the time and date. Its members are as follows:

 int tm_sec; /* seconds after the minute (0 to 61) */
 int tm_min; /* minutes after the hour (0 to 59) */
 int tm_hour; /* hours since midnight (0 to 23) */
 int tm_mday; /* day of the month (1 to 31) */
 int tm_mon; /* months since January (0 to 11) */
 int tm_year; /* years since 1900 */
 int tm_wday; /* days since Sunday (0 to 6 Sunday=0)
*/
 int tm_yday; /* days since January 1 (0 to 365) */
 int tm_isdst; /* Daylight Savings Time */

If tm_isdst is zero, then Daylight Savings Time is not in effect. If it is a positive value, then Daylight
Savings Time is in effect. If it is negative, then the function using it is requested to attempt to calculate
whether or not Daylight Savings Time is in effect for the given time.

Note that tm_sec may go as high as 61 to allow for up to two leap seconds.

2.15.2 asctime

Declaration:

char *asctime(const struct tm *timeptr);

Returns a pointer to a string which represents the day and time of the structure timeptr. The string is in
the following format:

DDD MMM dd hh:mm:ss YYYY

DDD Day of the week (Sun, Mon, Tue, Wed, Thu, Fri, Sat)

MMM Month of the year (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec)

dd Day of the month (1,...,31)

hh Hour (0,...,23)

mm Minute (0,...,59)

ss Second (0,...,59)

YYYY Year

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.15.html (2 of 8)4/1/2008 8:42:54 AM

C Guide--2.15 time.h

The string is terminated with a newline character and a null character. The string is always 26 characters
long (including the terminating newline and null characters).

A pointer to the string is returned.

Example:

#include<time.h>
#include<stdio.h>

int main(void)
{
 time_t timer;

 timer=time(NULL);
 printf("The current time is %s.\n",asctime(localtime
(&timer)));
 return 0;
}

2.15.3 clock

Declaration:

clock_t clock(void);

Returns the processor clock time used since the beginning of an implementation-defined era (normally
the beginning of the program). The returned value divided by CLOCKS_PER_SEC results in the number
of seconds. If the value is unavailable, then -1 is returned.

Example:

#include<time.h>
#include<stdio.h>

int main(void)
{
 clock_t ticks1, ticks2;

 ticks1=clock();
 ticks2=ticks1;
 while((ticks2/CLOCKS_PER_SEC-ticks1/CLOCKS_PER_SEC)<1)

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.15.html (3 of 8)4/1/2008 8:42:54 AM

C Guide--2.15 time.h

 ticks2=clock();

 printf("Took %ld ticks to wait one second.\n",ticks2-
ticks1);
 printf("This value should be the same as CLOCKS_PER_SEC
which is %ld.\n",CLOCKS_PER_SEC);
 return 0;
}

2.15.4 ctime

Declaration:

char *ctime(const time_t *timer);

Returns a string representing the localtime based on the argument timer. This is equivalent to:

asctime(locatime(timer));

The returned string is in the following format:

DDD MMM dd hh:mm:ss YYYY

DDD Day of the week (Sun, Mon, Tue, Wed, Thu, Fri, Sat)

MMM Month of the year (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec)

dd Day of the month (1,...,31)

hh Hour (0,...,23)

mm Minute (0,...,59)

ss Second (0,...,59)

YYYY Year

The string is terminated with a newline character and a null character. The string is always 26 characters
long (including the terminating newline and null characters).

A pointer to the string is returned.

2.15.5 difftime

Declaration:

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.15.html (4 of 8)4/1/2008 8:42:54 AM

C Guide--2.15 time.h

double difftime(time_t time1, time_t time2);

Calculates the difference of seconds between time1 and time2 (time1-time2).

Returns the number of seconds.

2.15.6 gmtime

Declaration:

struct tm *gmtime(const time_t *timer);

The value of timer is broken up into the structure tm and expressed in Coordinated Universal Time
(UTC) also known as Greenwich Mean Time (GMT).

A pointer to the structure is returned. A null pointer is returned if UTC is not available.

2.15.7 localtime

Declaration:

struct tm *localtime(const time_t *timer);

The value of timer is broken up into the structure tm and expressed in the local time zone.

A pointer to the structure is returned.

Example:

#include<time.h>
#include<stdio.h>

int main(void)
{
 time_t timer;

 timer=time(NULL);
 printf("The current time is %s.\n",asctime(localtime
(&timer)));
 return 0;

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.15.html (5 of 8)4/1/2008 8:42:54 AM

C Guide--2.15 time.h

}

2.15.8 mktime

Declaration:

time_t mktime(struct tm *timeptr);

Converts the structure pointed to by timeptr into a time_t value according to the local time zone. The
values in the structure are not limited to their constraints. If they exceed their bounds, then they are
adjusted accordingly so that they fit within their bounds. The original values of tm_wday (day of the
week) and tm_yday (day of the year) are ignored, but are set correctly after the other values have been
constrained. tm_mday (day of the month) is not corrected until after tm_mon and tm_year are
corrected.

After adjustment the structure still represents the same time.

The encoded time_t value is returned. If the calendar time cannot be represented, then -1 is returned.

Example:

#include<time.h>
#include<stdio.h>

/* find out what day of the week is January 1, 2001
 (first day of the 21st century) */

int main(void)
{
 struct tm time_struct;
 char days[7][4]={"Sun", "Mon", "Tue", "Wed", "Thu",
"Fri", "Sat"};

 time_struct.tm_year=2001-1900;
 time_struct.tm_mon=0;
 time_struct.tm_mday=1;
 time_struct.tm_sec=0;
 time_struct.tm_min=0;
 time_struct.tm_hour=0;
 time_struct.tm_isdst=-1;

 if(mktime(&time_struct)==-1)

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.15.html (6 of 8)4/1/2008 8:42:54 AM

C Guide--2.15 time.h

 {
 printf("Error getting time.\n");
 exit(0);
 }

 printf("January 1, 2001 is a %s.\n",days[time_struct.
tm_wday]);
 return 0;
}

2.15.9 strftime

Declaration:

size_t strftime(char *str, size_t maxsize, const char *format,
const struct tm *timeptr);

Formats the time represented in the structure timeptr according to the formatting rules defined in format
and stored into str. No more than maxsize characters are stored into str (including the terminating null
character).

All characters in the format string are copied to the str string, including the terminating null character,
except for conversion characters. A conversion character begins with the % sign and is followed by
another character which defines a special value that it is to be replaced by.

Conversion
Character

What it is replaced by

%a abbreviated weekday name

%A full weekday name

%b abbreviated month name

%B full month name

%c appropriate date and time representation

%d day of the month (01-31)

%H hour of the day (00-23)

%I hour of the day (01-12)

%j day of the year (001-366)

%m month of the year (01-12)

%M minute of the hour (00-59)

%p AM/PM designator

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.15.html (7 of 8)4/1/2008 8:42:54 AM

C Guide--2.15 time.h

%S second of the minute (00-61)

%U week number of the year where Sunday is the first day of week 1 (00-53)

%w weekday where Sunday is day 0 (0-6)

%W week number of the year where Monday is the first day of week 1 (00-53)

%x appropriate date representation

%X appropriate time representation

%y year without century (00-99)

%Y year with century

%Z time zone (possibly abbreviated) or no characters if time zone isunavailable

%% %

Returns the number of characters stored into str not including the terminating null character. On error
zero is returned.

2.15.10 time

Declaration:

time_t time(time_t *timer);

Calculates the current calender time and encodes it into time_t format.

The time_t value is returned. If timer is not a null pointer, then the value is also stored into the object
it points to. If the time is unavailable, then -1 is returned.

 Previous
Section
2.14 string.h

| Table of Contents | Index | Next Section
Index

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.15.html (8 of 8)4/1/2008 8:42:54 AM

C Guide--Appendix A ASCII Chart

| Table of Contents | Index |

Appendix A

ASCII Chart

Decimal Octal Hex Character

0 0 00 NUL

1 1 01 SOH

2 2 02 STX

3 3 03 ETX

4 4 04 EOT

5 5 05 ENQ

6 6 06 ACK

7 7 07 BEL

8 10 08 BS

9 11 09 HT

10 12 0A LF

11 13 0B VT

12 14 0C FF

13 15 0D CR

14 16 0E SO

15 17 0F SI

16 20 10 DLE

17 21 11 DC1

18 22 12 DC2

19 23 13 DC3

20 24 14 DC4

21 25 15 NAK

22 26 16 SYM

23 27 17 ETB

24 30 18 CAN

Decimal Octal Hex Character

64 100 40 @

65 101 41 A

66 102 42 B

67 103 43 C

68 104 44 D

69 105 45 E

70 106 46 F

71 107 47 G

72 110 48 H

73 111 49 I

74 112 4A J

75 113 4B K

76 114 4C L

77 115 4D M

78 116 4E N

79 117 4F O

80 120 50 P

81 121 51 Q

82 122 52 R

83 123 53 S

84 124 54 T

85 125 55 U

86 126 56 V

87 127 57 W

88 130 58 X

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/a.html (1 of 3)4/1/2008 8:42:53 AM

C Guide--Appendix A ASCII Chart

25 31 19 EM

26 32 1A SUB

27 33 1B ESC

28 34 1C FS

29 35 1D GS

30 36 1E RS

31 37 1F US

32 40 20 SP

33 41 21 !

34 42 22 "

35 43 23 #

36 44 24 $

37 45 25 %

38 46 26 &

39 47 27 '

40 50 28 (

41 51 29)

42 52 2A *

43 53 2B +

44 54 2C ,

45 55 2D -

46 56 2E .

47 57 2F /

48 60 30 0

49 61 31 1

50 62 32 2

51 63 33 3

52 64 34 4

53 65 35 5

54 66 36 6

55 67 37 7

56 70 38 8

89 131 59 Y

90 132 5A Z

91 133 5B [

92 134 5C \

93 135 5D]

94 136 5E ^

95 137 5F _

96 140 60 `

97 141 61 a

98 142 62 b

99 143 63 c

100 144 64 d

101 145 65 e

102 146 66 f

103 147 67 g

104 150 68 h

105 151 69 i

106 152 6A j

107 153 6B k

108 154 6C l

109 155 6D m

110 156 6E n

111 157 6F o

112 160 70 p

113 161 71 q

114 162 72 r

115 163 73 s

116 164 74 t

117 165 75 u

118 166 76 v

119 167 77 w

120 170 78 x

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/a.html (2 of 3)4/1/2008 8:42:53 AM

C Guide--Appendix A ASCII Chart

57 71 39 9

58 72 3A :

59 73 3B ;

60 74 3C <

61 75 3D =

62 76 3E >

63 77 3F ?

121 171 79 y

122 172 7A z

123 173 7B {

124 174 7C |

125 175 7D }

126 176 7E ~

127 177 7F DEL

| Table of Contents | Index |

file:///C|/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/a.html (3 of 3)4/1/2008 8:42:53 AM

	introduction.pdf
	introduction.pdf
	Local Disk
	The C Library Reference Guide Introduction

	index.pdf
	Local Disk
	The C Library Reference Guide

	index2.pdf
	Local Disk
	C Guide--Index

	1.1.pdf
	Local Disk
	C Guide--1.1 Characters

	1.2.pdf
	Local Disk
	C Guide--1.2 Indentifiers

	1.3.pdf
	Local Disk
	C Guide--1.3 Functions

	1.4.pdf
	Local Disk
	C Guide--1.4 References

	1.5.pdf
	Local Disk
	C Guide--1.5 Operators

	1.6.pdf
	Local Disk
	C Guide--1.6 Statements

	1.7.pdf
	Local Disk
	C Guide--1.7 Preprocessing Directives

	2.1.pdf
	Local Disk
	C Guide--2.1 assert.h

	2.2.pdf
	Local Disk
	C Guide--2.2 ctype.h

	2.3.pdf
	Local Disk
	C Guide--2.3 errno.h

	2.4.pdf
	Local Disk
	C Guide--2.4 float.h

	2.5.pdf
	Local Disk
	C Guide--2.5 limits.h

	2.6.pdf
	Local Disk
	C Guide--2.6 locale.h

	2.7.pdf
	Local Disk
	C Guide--2.7 math.h

	2.8.pdf
	Local Disk
	C Guide--2.8 setjmp.h

	2.9.pdf
	Local Disk
	C Guide--2.9 signal.h

	2.10.pdf
	Local Disk
	C Guide--2.10 stdarg.h

	2.11.pdf
	Local Disk
	C Guide--2.11 stddef.h

	2.12.pdf
	Local Disk
	C Guide--2.12 stdio.h

	2.13.pdf
	Local Disk
	C Guide--2.13 stdlib.h

	2.14.pdf
	Local Disk
	C Guide--2.14 string.h

	2.15.pdf
	Local Disk
	C Guide--2.15 time.h

	appendix.pdf
	Local Disk
	C Guide--Appendix A ASCII Chart

