
CptS 122 – Data Structures

Exam 2 Review Guide

This document will serve as a guide to help you prepare for the second exam in CptS
122. You will find information about the exam format and topics you are expected to
review within this guide.

What to Bring?

Your WSU ID

Two sharp pencils

Calculators and notes may not be used during the exam!

Exam Timeframe

Please be aware that, because you will be taking the exam during a normal lecture
period, time will be extremely tight for the exam. You will be allowed to start the
exam at 8:10 am sharp. If you show up late to class, you will have less time to take
the exam. You must hand your exam in by 9:05 am sharp. Note that, when you hand
in your exam, you will be required to present your WSU ID.

Exam Format

Expect the exam to look like an hour version of quizzes, with a few more involved
problems that are more in the spirit of a lab exercise. The exam will consist of some
concepts questions (~30% of the exam) and programming problems (~70% of the
exam). For the concept section of the exam, expect true-false, fill-in-the-blank,

multiple-choice, and/or short-answer questions similar to those found on the quizzes.
Some of these may be similar to the questions found at the end of chapters in your
textbook! For the programming problem section of the exam, I will present you with
programming problems, and you will be expected to write syntactically-correct C++
code solutions that exercise good design. Note that your solutions do not have to be
documented!

Exam Coverage

The exam covers weeks 5 through 10 of the semester, chapters 1 – 3, 6, 7, 9, 10, 14,
18, and 19 of the Deitel and Deitel C++ How to Program textbook.

C++ Data Structures

 Define what is a dynamic data structure in C++
 Apply new and delete to dynamic data structures
 Compare and contrast linked lists, stacks, queues, and BSTs
 Compare and contrast container and value classes

 Design and implement an ordered or non-ordered dynamic linked list using C++

classes including the following methods:

o isEmpty () - returns an integer or bool type; true for an empty list, false
for non-empty list

o insertAtFront () – allocates a node dynamically; initializes it to the data
passed in; inserts the node at the front of the list only; returns true or
false for successful or unsuccessful insertion, respectively

o insertAtEnd () - allocates a node dynamically; initializes it to the data

passed in; inserts the node at the tail or end of the list only; returns true
or false for successful or unsuccessful insertion, respectively

o insertInOrder () - allocates a node dynamically; initializes it to the data
passed in; inserts the node in the list in ascending or descending order
only; returns true or false for successful or unsuccessful insertion,
respectively

o deleteNode () – de-allocates a node dynamically; returns true if node

was de-allocated, false otherwise
o printList () – prints out the data in each node of the list; may be printed

iteratively or recursively
o others?

 Design and implement a dynamic linked stack (LIFO – last-in, first-out) using

C++ classes including the following methods:
o isEmpty () - returns an integer or enumerated bool type; true for an

empty stack, false for non-empty stack
o push () - allocates a node dynamically; initializes it to the data passed

in; inserts the node at the top of the stack only; returns true or false for
successful or unsuccessful insertion, respectively

o pop () - de-allocates a node at the top of the stack dynamically; returns
true if node was de-allocated, false otherwise; NOTE: some variations of
pop () will return the data in the node found at the top of the stack,
instead of true or false

o top () or peek () – returns the data found in the top node of the stack;
nodes are not affected (removed)

o printStack () - prints out the data in each node of the stack; may be

printed iteratively or recursively

 Design and implement a dynamic linked queue (FIFO – first-in, first-out) using
C++ classes including the following methods:

o isEmpty () - returns an integer or enumerated bool type; true for an
empty queue, false for non-empty queue

o enqueue () - allocates a node dynamically; initializes it to the data
passed in; inserts the node at the tail/e of the queue only; returns true
or false for successful or unsuccessful insertion, respectively

o dequeue () - de-allocates a node at the head/front of the queue
dynamically; returns the data in the node found at the head/front of the
queue; NOTE: some implementations may also return true or false for
successful or unsuccessful removal of a node from the head/front

o printQueue () - prints out the data in each node of the queue; may be
printed iteratively or recursively

 Design and implement a dynamic linked binary search tree (BST) using C++
classes including the following methods:

o isEmpty () - returns an integer or enumerated bool type; true for an
empty BST, false for non-empty BST

o insert () – allocates a node dynamically; initializes it to the data passed
in; inserts the node into the left or right subtree; returns true or false

for successful or unsuccessful insertion, respectively
o inOrder () – performs an inorder traversal of a BST and prints out the

data in the nodes accordingly
o preOrder () – performs a preorder traversal of a BST and prints out the

data in the nodes accordingly
o postOrder () - performs a postorder traversal of a BST and prints out the

data in the nodes accordingly

o destroyTree () – removes all nodes in the tree

 Design and implement makeNode () as a separate helper function for each of
the above data structures

o makeNode () – allocates a node dynamically; initializes the node;
returns a pointer to the dynamic node

 How would you make use of private and public member functions for each of
the container classes? Could you design a public preorder () function, which
calls upon a private preorder () helper function? Etc.

 Draw block/memory diagrams to illustrate how links are modified for any of the
particular operations described above

 Design and implement a list, stack, and queue with arrays instead of dynamic

“links”

Chapters 1 - 3: Introduction to Classes and Objects

 Design and implement classes in C++
o What are some advantages to using classes?

 Design and apply data members and member functions for classes
 Define and apply accessor (getter) functions and mutator (setter) functions

 Define access specifier
o These include private, protected, and public

 Apply UML Class Diagrams
 Apply and implement default constructors, copy constructors, and destructors
 How is the size (amount of memory) of an object determined?

o We generally assume an object contains data and

operations…However, each instance of an object uses the same copy
of the member functions, which is separate from the object size

o Sizeof reports only the number of bytes required for a class’s data
members

 What is the rule of three/Law of the Big Three/the Big Three?
o Rule of thumb in C++: should define destructor, copy constructor, and

overloaded copy assignment operator

Chapter 6 & 9: Classes: A Deeper Look

 Compare and contrast procedural programming (C) versus objected-oriented
programming (C++)

 Define the term encapsulation
o Wrapping of attributes and operations into objects

 Define the term information hiding
o Implementation details are hidden within objects

 Define and apply function overloading
o Allows for functions with the same name to be defined. The key is the

functions must have different parameters (number, type, order)
 Define and apply procedural abstraction
 Define and apply data abstraction
 What is a data member (attribute)? What is a member function (operation)?
 Define and apply function templates

 Apply the reference (&) operator in C++, including returning references from
functions

 Define pass-by-reference and pass-by-value
 What is a dangling reference?
 Define, implement, and apply friend functions and classes

o Recall: a friend class has access to private members

 What is the this pointer? When do we need to use it?
 Apply dynamic memory management with new and delete operators
 What is a const object and const member function?
 What is class composition?

o Recall: represents a “has-a” relationship

Chapter 10: Operator Overloading
 List the operators that may not be overloaded (there are four of them…)

o Recall: precedence, associativity, and number of operands (arity) for an
operator may not be changed

 Implement and apply overloaded stream insertion and extraction operators
 Implement and apply overloaded unary operators
 Implement and apply overloaded binary operators (+, -, *, /, etc.)

 Compare and contrast overloaded member operators versus non-member
operators

 Define what is a forward class declaration

Chapters 18 & 19: Templates

 What is a function template?

 What is a class template?
 Design, implement, and apply templates
 What are advantages and disadvantages of templates?

Other Chapters/Topics (More in chapters 6, 7, & 14)

 What is a function call stack?
 Apply recursion to a given set of problems, including BSTs

 What is a stream? What is a file stream?
 Open, read from/write to, and close files in C++
 Analyze an algorithm and provide the Big-O time and space complexities

Recommended Strategy for Preparing for the Exam

 I recommend that you use the following activities and materials to prepare for the
exam:

 Review quizzes and lab exercises: These may well be your best resource. An

excellent learning activity would be to retake the quizzes and review the lab

exercises.

 Lecture slides and example code: Study the lecture slides and example code.

 Read the textbook: Read or re-read chapters 1 – 3, 6, 7, 9, 10, 14, 18, and 19 in

your textbook.

