

Andrew S. O’Fallon 1

CptS 122 – Data Structures

Lab 12: Inheritance and Containers in C++

Assigned: Week of April 8, 2024
Due: At the end of the lab session

I. Learner Objectives:

At the conclusion of this programming assignment, participants should be able to:

 Design, implement and test classes in C++ which apply inheritance
 Apply and implement private inheritance to container classes
 Compare and contrast inheritance (“is-a”) relationships versus composition

(“has-a”) relationships
 Apply and implement overloaded functions and operators

II. Prerequisites:

Before starting this programming assignment, participants should be able to:

 Analyze a basic set of requirements for a problem
 Create test cases for a program
 Design, implement and test classes in C++
 Declare and define constructors
 Declare and define destructors
 Compare and contrast public and private access specifiers in C++
 Describe what is an attribute or data member of a class
 Describe what is a method of a class
 Apply and implement overloaded functions
 Distinguish between pass-by-value and pass-by-reference
 Discuss classes versus objects
 Describe and define inheritance

III. Overview & Requirements:

This lab, along with your TA, will help you navigate through designing, implementing,
and testing inheritance with container classes in C++. It will also, once again, help
you with understanding how to apply inheritance to an application.

Labs are held in a “closed” environment such that you may ask your TA questions.
Please use your TAs knowledge to your advantage. You are required to move at the
pace set forth by your TA. Please help other students in need when you are finished
with a task. However, I encourage you to compose your own solution to each problem.
Have a great time! Labs are a vital part to your education in CptS 122 so work
diligently.

Tasks:

Andrew S. O’Fallon 2

NOTE: Parts of this lab are courtesy of Jack Hagemeister.

One of the powers of inheritance is that it facilitates large amounts of code reuse.
In this lab, you will redesign your queue class by inheriting from a base list class.

Task 1. List

Implement a templated class List and ListNode. Note: that you’ll have the opportunity
to work with the C++ keyword friend in this lab. The keyword friend allows for a

function or class direct access to the private and protected members of a class. You
may add methods/functions as you see fit. Test these classes. I have left all of the
implementation as an exercise for you.

template< class NODETYPE > class List; // forward declaration

template<class NODETYPE>

class ListNode

{

 friend class List< NODETYPE >; // make List a friend

public:

 ListNode(const NODETYPE &newData); // copy constructor

 NODETYPE getData() const; // return data in the node

private:

 NODETYPE data; // data

 ListNode< NODETYPE > *nextPtr; // next node in the list

};

template< class NODETYPE >

class List

{

public:

 List(); // constructor

 ~List(); // destructor

 void insertAtFront(const NODETYPE &newData);

 void insertAtBack(const NODETYPE &newData);

 bool removeFromFront(NODETYPE &removedData);

 bool removeFromBack(NODETYPE &removedData);

 bool isEmpty() const;

 void print() const;

private:

 ListNode< NODETYPE > *firstPtr; // pointer to first node

 ListNode< NODETYPE > *lastPtr; // pointer to last node

 // Utility function to allocate a new node

 ListNode< NODETYPE > *getNewNode(const NODETYPE &newData);

};

Andrew S. O’Fallon 3

Task 2. Queue

Create a Queue class template that privately inherits from a List class. You should
define enqueue () and dequeue () operations in terms of the inherited list
operations.

Task 3. Network Traffic Application

Write an application that simulates network traffic. The traffic is represented by
packets (of information) moving through the network. These packets must be
represented by a class. Each packet must include an integer length field (in bytes)
and a std::string field for data, where the length field is the number of characters in
the std::string. You must represent one device in the network, which is represented
by a Queue object. The application must randomly assign the arrival time of the first
packet and the time that it takes to process the packet at the device. As a new
packet arrives to the device, the arrival time for the next packet should be
generated. Every time a packet leaves the device or a new packet arrives, print out
the packet information for the one at the front and the back of the Queue.

IV. Submitting Labs:

 You are not required to submit your lab solutions, unless you are unable to
attend them synchronously. You should keep them in a folder that you may
continue to access throughout the semester.

V. Grading Guidelines:

 This lab is worth 10 points. Your lab grade is assigned based on completeness
and effort. To receive full credit for the lab you must show up on time, work in
a team, continue to work on the problems until the TA has dismissed you, and
complete at least 2/3 of the problems.

