

Andrew S. O’Fallon 1

CptS 122 – Data Structures

Lab 2: Data Structures and Dynamic Singly Linked Lists in C

Assigned: Week of January 22, 2024
Due: At the end of the lab session

I. Learner Objectives:

At the conclusion of this programming assignment, participants should be able to:

 Design, implement and test a dynamic singly linked list in C
 Programmatically traverse through a singly linked list

 Implement insertions, in order, into a singly linked list
 Implement deletions from a singly linked list
 Support modifications and printings of data in a singly linked list
 Develop a menu system
 Apply standard library functions malloc () and free ()
 Design and implement basic manual unit tests

II. Prerequisites:

Before starting this programming assignment, participants should be able to:

 Analyze a basic set of requirements for a problem
 Compose a small C language program
 Compile a C program using Microsoft Visual Studio 2022
 Create test cases for a program

 Apply and implement arrays and strings in C
 Apply and implement recursion in C
 Apply and implement structs in C
 Apply and implement pointers in C
 Apply and implement dynamic memory in C

III. Overview & Requirements:

This lab, along with your TA, will help you navigate through designing, implementing,
and testing a dynamic linked list.

Labs are held in a “closed” environment such that you may ask your TA questions.
Please use your TAs knowledge to your advantage. You are required to move at the
pace set forth by your TA. Please help other students in need when you are finished
with a task. You must work in teams! However, I encourage you to compose your own
solution to each problem. Have a great time! Labs are a vital part to your education
in CptS 122 so work diligently.

Tasks:

Andrew S. O’Fallon 2

1. Linked lists may be used to implement many real world applications. Recall,
linked lists are data structures, which represent collections of nodes that may
be accessed sequentially via a pointer to the first node. A node contains data
and a pointer to the next node in sequence. When the last node in the list is
reached, its next pointer is NULL. A logical view of a singly linked list of
integers is illustrated below:

Build an application, in C, for storing contact information (you must have one
header file and two source files). For each contact you must store a name, phone
number, email, and professional title. Your application must support insertions in
order (based on last name), deletions, modifications, and printings of contacts.

For this task you will be required to implement a dynamic singly linked list, which
grows and shrinks at runtime. Build a menu that allows the user to add, remove,
edit, print, store, and load contact information. The store feature should write
contact information found in the list to a file. The load feature should read
contact information from the same file into the list. Note: you should store the

contact information in a struct called Contact. Each Node must be a struct,

which consists of a Contact and a pointer to the next Contact in the list. Please

see below.

typedef enum boolean
{

 FALSE, TRUE
} Boolean;

typedef struct contact
{

 char name[50];
 char phone[12]; // 18005557577
 char email[50];
 char title[20];
 } Contact;

typedef struct node
{

 Contact data;
 struct node *pNext;

} Node;

Which list operations should you support? There are more than the ones listed
below!

Andrew S. O’Fallon 3

// Description: Allocates space for a Node on the heap and initializes
the Node with the information found in newData.
// Returns: The address of the start of the block of memory on the heap
or NULL if no memory was allocated
Node * makeNode(Contact newData);

// Description: Uses makeNode () to allocate space for a new Node and
inserts the new Node into the list in alphabetic order ('a' - 'z')
// based on the name field
// Returns: TRUE if memory was allocated for a Node; FALSE otherwise
Boolean insertContactInOrder(Node **pList, Contact newData);

// Description: Deletes a Contact in the list based on the name field;
deletes the first occurence of the name
// Returns: TRUE if the Contact was found; FALSE otherwise
Boolean deleteContact(Node **pList, Contact searchContact);

// Description: Edits a Contact in the list based on the name field;
edits the first occurence of the name
// Returns: TRUE if the Contact was found; FALSE otherwise
Boolean editContact(Node *pList, Contact searchContact);

// Description: Loads all Contact information from the given file, in
alphabetic order, based on the name, into the list
// Returns: TRUE if all Contacts were loaded; FALSE otherwise
Boolean loadContacts(FILE *infile, Node **pList);

// Description: Stores all Contact information from the list into the
given file
// Returns: TRUE if all Contacts were stored; FALSE otherwise
Boolean storeContacts(FILE *infile, Node *pList);

// Description: Prints all contact information in the list
// Returns: Nothing
void printList(Node *pList);

2. Test your application. Using your current understanding of testing and
creativity, write some test functions. In the same project, create one more
header file testList.h and source file testList.c (for a total of at least

five files). The testList.h file should contain function prototypes for test

functions you will use on your list functions. The testList.c source file

should contain the implementations for these test functions. You will be
designing and implementing unit tests. You will have at least one test function
per application function. Your test functions must display a message “test
failed” or “test passed” depending on the results. For example, you will have
an application function called deleteContact() (or a function very similar)

that was used to remove contact information from the list. In this task, you will
need to create a test function called testDeleteContact() that passes in

Andrew S. O’Fallon 4

various contact information directly into deleteNode() to see if it works

correctly.

IV. Submitting Labs:

 You are not required to submit your lab solutions. However, you should keep
them in a folder that you may continue to access throughout the semester.

V. Grading Guidelines:

 This lab is worth 10 points. Your lab grade is assigned based on completeness

and effort. To receive full credit for the lab you must show up on time,
continue to work on the problems until the TA has dismissed you, and complete
at least 2/3 of the problems.

