

Andrew S. O’Fallon 1

CptS 122 – Data Structures

Lab 5: The Wonderful World of C++, Classes, and Objects

Assigned: Week of February 12, 2024
Due: At the end of the lab session

I. Learner Objectives:

At the conclusion of this programming assignment, participants should be able to:
 Design, implement and test classes in C++
 Declare and define constructors
 Declare and define destructors
 Compare and contrast public and private access specifiers in C++
 Describe what is an attribute or data member of a class

 Describe what is a method of a class
 Apply and implement overloaded functions
 Distinguish between pass-by-value and pass-by-reference
 Discuss classes versus objects

II. Prerequisites:

Before starting this programming assignment, participants should be able to:
 Analyze a basic set of requirements for a problem
 Compose a small C++ language program
 Create test cases for a program

III. Overview & Requirements:

This lab will allow you to further explore lists, and navigate through designing,
implementing, and testing classes in C++.

Labs are held in a “closed” environment such that you may ask your TA questions.
Please use your TA’s knowledge to your advantage. You are required to move at the
pace set forth by your TA. Please help other students in need when you are finished

with a task. Have a great time! Labs are a vital part to your education in CptS 122 so
work diligently.

Tasks:

1. In teams, before you implement any code, discuss, with the use of the
whiteboard, a general C++ class that will satisfy the requirements for the
application described below. Complete programming project Complex numbers
from your Deitel and Deitel C++ How to Program book, with some additional
tasks provided by me.

Andrew S. O’Fallon 2

 Create a class called Complex for performing arithmetic with complex
numbers. Write a program to test your class. Complex numbers have the form:

 realPart + imaginaryPart * i

 where i is

 sqrt (-1)

 use double variables to represent the private data of the class. Provide a
constructor that enables an object of this class to be initialized when it is
declared. The constructor should contain default values in case no initializers
are provided. Define public setters and getters to access the private data
members. Below in Figure 1 is a summary of the Complex Number ADT:

Also, provide functions that perform the following tasks:

a) Adding two Complex numbers: The real parts are added together and the
imaginary parts are added together. Implement the addition operation in
three ways:

i. Implement a member function of class Complex called add() that must

do the following: accept one Complex number rhs for an argument, add

rhs to the data members in the object that invokes the add() function,

and return the result.

ii. Implement a non-member function called add(). Make sure it has the

same name as the one defined in part (i). Place the
prototype/declaration for this function outside of the Complex number
class’s declaration (below the class declaration). Place its definition
inside of the Complex.cpp file. The function must do the following:

Andrew S. O’Fallon 3

accept two Complex numbers called lhs and rhs for arguments, add lhs
and rhs together, and return the result.

iii. Implement a non-member overloaded addition (+) operator. Place the
prototype/declaration for this function outside of the Complex number
class’s declaration (below the class declaration). Place its definition

inside of the Complex.cpp file. The function must do the following:
accept two Complex numbers called lhs and rhs for arguments, add lhs
and rhs together, and return the result. Note: the overloaded + is a
binary operation, which requires two arguments! Use the following
prototype/declaration:

Complex operator+ (const Complex &lhs, const Complex &rhs);

Note: overloading the + operator allows for us to use statements such as:
c3 = c1 + c2, where c1, c2, and c3 are Complex numbers. Another
interpretation is: c3 = operator+(c1, c2).

Now place the following statements in a test driver, and use the
debugger to watch each of the Complex numbers:
 Complex c1(3.5, 2), c2(5.5, 7), c3;

 c3 = c1.add(c2); // member add () function

 c3 = add(c1, c2); // non-member add () function
 c3 = c1 + c2; // overloaded + operator

b) Subtracting two Complex numbers: The real part of the right operand is

subtracted from the real part of the left operand, and the imaginary part of
the operand. Solve this problem by overloading the subtraction (–) operator.
Use the debugger to watch each of the Complex numbers declared for part

(a).

 c3 = c1 - c2; // overloaded - operator

c) Reading Complex numbers from the keyboard, in the form a + bi, where a is
the real part and b is the imaginary part. Implement the read operation in

two ways:

i. Implement a member function of class Complex called read() that

must do the following: accept no arguments, read in the real and

imaginary parts of the number from the standard input stream in the
form:

 a + bi,

and return nothing. Yes, you must read in the + (or minus -) and the i,

but they should be discarded. This function does not prompt for the
Complex number. The prompt is done external to the function.

Andrew S. O’Fallon 4

ii. Implement a non-member overloaded stream extraction (>>) operator.
Place the prototype/declaration for this function outside of the Complex
number class’s declaration (below the class declaration). Place its
definition inside of the Complex.cpp file. The function must do the
following: accept one istream object called lhs and one Complex
number called rhs for arguments, extract the real and imaginary parts of

the number from the standard input stream in the form:
 a + bi,

and return the istream object (so we can chain >> together!). Note:
once again, you should discard the the + (or minus -) and the i. Use the
following prototype/declaration:

istream & operator>> (istream &lhs, Complex &rhs);

Assuming that you still have the same Complex numbers instantiated: c1,

c2, and c3. Use the debugger to watch each of the Complex numbers
declared. Also, place the following statements in a test driver:

cout << “Enter a complex number in the form a + bi: “;

c1.read();

cout << “Enter a complex number in the form a + bi: “;

c2.read();

cout << “Enter two complex numbers in the form a + bi (each
separated by whitespace): “;

cin >> c1 >> c2;

d) Printing Complex numbers to the screen, in the form a + bi, where a is the

real part and b is the imaginary part. Implement the print operation in two
ways:

i. Implement a member function of class Complex called print() that

must do the following: accept no arguments, insert the real and

imaginary parts of the number into the standard output stream in the
form:

 a + bi,

and return nothing.

ii. Implement a non-member overloaded stream insertion (<<) operator.

Place the prototype/declaration for this function outside of the Complex
number class’s declaration (below the class declaration). Place its

Andrew S. O’Fallon 5

definition inside of the Complex.cpp file. The function must do the
following: accept one ostream object called lhs and one Complex
number called rhs for arguments, insert the real and imaginary parts of
the number into the standard output stream in the form:

 a + bi,

and return the ostream object (so we can chain << together!). Use the
following prototype/declaration:

ostream & operator<< (ostream &lhs, const Complex &rhs);

Once again, assuming that you still have the same Complex numbers
instantiated: c1, c2, and c3. Place the following statements in a test
driver:

 c1.print();
 c2.print();
 c3.print();

 cout << c1 << “ “ << c2 << “ “ << c3 << endl;

2. Read the following http://www.consumerfinance.gov/askcfpb/309/what-is-a-

credit-report.html. Once again work with your team to write and test a class
called CreditReport. This class represents a real-world credit report. In this
problem we will model the credit report in the following way. It should contain
a credit score (ranges 330 – 850), a debt profile (total real estate and credit

card debt), account types (number of real estate, credit cards, and retail
cards), length of history (oldest account age and average account age), and
number of hard inquiries (number of times your credit report has been
accessed) as attributes. Operations that may be applied to your CreditReport
include: printReport and updateReport (you may refine updateReport for use
with individual class attributes). Be sure to include all necessary getters and
setters, constructors, and destructors. Be sure to define a copy constructor!

Write an application which instantiates three credit reports. These include
Experian, TransUnion, and Equifax. Your application should decrease credit
scores as the credit limit on cards is approached and increase scores as the
credit is paid off. Also the older the credit accounts, the higher the credit
score. Also, use the other attributes of the CreditReport as you see fit.

IV. Submitting Labs:

 You are not required to submit your lab solutions, unless you are unable to
attend them synchronously. You should keep them in a folder that you may

continue to access throughout the semester.

V. Grading Guidelines:

http://www.consumerfinance.gov/askcfpb/309/what-is-a-credit-report.html
http://www.consumerfinance.gov/askcfpb/309/what-is-a-credit-report.html

Andrew S. O’Fallon 6

 This lab is worth 10 points. Your lab grade is assigned based on completeness
and effort. To receive full credit for the lab you must show up on time, work in
a team, continue to work on the problems until the TA has dismissed you, and
complete at least 2/3 of the problems.

