

Andrew S. O’Fallon 1

CptS 122 – Data Structures

Lab 6: Developing a (Linked) List Class in C++

Assigned: Week of February 20, 2024
Due: At the end of the lab session

I. Learner Objectives:

At the conclusion of this programming assignment, participants should be able to:
 Design, implement, and test a List class in C++
 Apply a customized linked List class
 Compare and contrast shallow versus deep copy
 Compare and contrast value classes versus container classes
 Apply and implement overloaded functions and operators

II. Prerequisites:

Before starting this programming assignment, participants should be able to:

 Analyze a basic set of requirements for a problem
 Create test cases for a program
 Design, implement and test classes in C++

 Declare and define constructors
 Declare and define destructors
 Compare and contrast public and private access specifiers in C++
 Describe what is an attribute or data member of a class
 Describe what is a method of a class
 Apply and implement overloaded functions

 Distinguish between pass-by-value and pass-by-reference
 Discuss classes versus objects

III. Overview & Requirements:

This lab, along with your TA, will help you navigate through designing, implementing,
testing a List class in C++. It will also help you with understanding how to apply a List

object to an application.

Labs are held in a “closed” environment such that you may ask your TA questions.
Please use your TAs knowledge to your advantage. You are required to move at the
pace set forth by your TA. Have a great time! Labs are a vital part to your education
in CptS 122 so work diligently.

--- Read the following before you start! ---
A couple of notes to consider:

- You will be working with dynamically allocated space in C++. Instead of using

malloc(), we’ll use operator new to allocate space. Also, instead of using

free() to deallocate space, we’ll use operator delete. When operator new

Andrew S. O’Fallon 2

is called, the constructor for the object is automatically invoked! When the

operator delete is called, the destructor for the object is automatically

invoked! Please keep these ideas in mind.

- You will be working with copy constructors. You will have the option to
implement a shallow and deep copy constructors. A shallow copy will perform
a basic assignment of data members of one object to the same data members
of another object. A deep copy will allocate extra space to ensure that the
items copied are in distinct locations. A deep copy is usually considered when
working with pointers! If you want to copy one list to another list, should the

head pointer be copied only (shallow copy)? Or should extra space be allocated
to establish a completely new list with the same data items (deep copy)?

Tasks:

Starting with the List code found at
https://eecs.wsu.edu/~aofallon/cpts122/labs/ClassLinkedList.zip:

1. Unzip the file and review “main.cpp” with your teammates. Answer questions
1-6, which are provided through comments in the file. Use the debugger to
help answer the questions!

2. Review the “ListNode.h”, “ListNode.cpp”, “List.h”, and “List.cpp” files. Start
to fill in the code for the functions listed below. Note: the ListNode class

declaration (“ListNode.h”) and ListNode function implementations
(“ListNode.cpp”) have been completed for you!

a. Write the implementation for the deep copy constructor the List class
(found in “List.cpp”). After you finish writing your copy constructor,
uncomment line 25 (List l2 = l1;) in main (). Answer questions 7 and 8.

b. Write the implementation for the deep copy assignment operator (found

in “List.cpp”). After you finish writing your overloaded assignment
operator, uncomment line 37 (l3 = l2;) in main (). Answer questions 9
and 10.

c. Write the implementation for insertInorder () (found in “List.cpp”). Test
your function by calling it in main () or within a test function.

d. Write the implementation for insertAtEnd () (found in “List.cpp”). Test

your function by calling it in main () or within a test function.
e. Write the implementation for deleteAtFront () (found in “List.cpp”).

Test your function by calling it in main () or within a test function.
f. Write the implementation for deleteNode () (found in “List.cpp”). Test

your function by calling it in main () or within a test function.
g. Write the implementation for deleteAtEnd () (found in “List.cpp”). Test

your function by calling it in main () or within a test function.
h. Answer question 11 in main ().

https://eecs.wsu.edu/~aofallon/cpts122/labs/ClassLinkedList.zip

Andrew S. O’Fallon 3

3. Review the “ListApp.h” and “ListApp.cpp” files. Write an application, which
computes the high, low, and mean of the scores in the “ExamScores.csv” file.
The functions for reading and extracting the scores from the file, and for
inserting into the list have been completed for you! See the “ListApp.h” and
“ListApp.cpp” files. You will need to write functions for the computations and
for writing the results to a file. You will have to visit each node in your linked

list of scores to perform the computations! The high, low, and mean should be
written to a file called “ExamStats.txt”. These functions should be called from
the runApp () function. Note: the ListApp class constructor takes care of
opening the files!

IV. Submitting Labs:

 You are not required to submit your lab solutions, unless you are unable to
attend them synchronously. You should keep them in a folder that you may
continue to access throughout the semester.

V. Grading Guidelines:

 This lab is worth 10 points. Your lab grade is assigned based on completeness
and effort. To receive full credit for the lab you must show up on time, work in
a team, complete 2/3 of the problems, and continue to work on the problems
until the TA has dismissed you.

