

Andrew S. O’Fallon 1

CptS 122 – Data Structures

Lab 7: Developing a (Linked) Queue Class in C++

Assigned: Week of February 26, 2024
Due: At the end of the lab session

I. Learner Objectives:

At the conclusion of this programming assignment, participants should be able to:
 Design, implement and test a dynamic queue implemented with a singly linked

list in C++
 Compare and contrast dynamic linked lists, dynamic linked stacks, and dynamic

linked queues
 Summarize the advantages of applying a queue within certain applications

 Describe the operations applied to a queue including
1. enqueue ()
2. dequeue ()

II. Prerequisites:

Before starting this programming assignment, participants should be able to:

 Analyze a basic set of requirements for a problem
 Create test cases for a program
 Design, implement and test classes in C++
 Declare and define constructors
 Declare and define destructors
 Compare and contrast public and private access specifiers in C++

 Describe what is an attribute or data member of a class
 Describe what is a method of a class
 Apply and implement overloaded functions
 Distinguish between pass-by-value and pass-by-reference
 Discuss classes versus objects
 Apply and implement pointers in C++
 Apply and implement dynamic memory in C++

 Design and implement singly linked lists in C++

III. Overview & Requirements:

This lab, along with your TA, will help you navigate through designing, implementing,
testing a List class in C++. It will also help you with understanding how to apply a

Queue object to an application.

Labs are held in a “closed” environment such that you may ask your TA questions.
Please use your TAs knowledge to your advantage. You are required to move at the
pace set forth by your TA. Have a great time! Labs are a vital part to your education
in CptS 122 so work diligently.

Andrew S. O’Fallon 2

Tasks:

This lab, along with your TA, will help you navigate through designing, implementing,
and testing a dynamic queue implemented with a linked list. Recall, a queue data
structure is a restricted linked list, where only the front or head node in the queue
may be processed and then removed, at any given time. However, only nodes may be

added to the end, back, or tail of the queue. A queue is referred to as a first-in, first-
out (FIFO) structure as a result of this constraint. Furthermore, the operations of a

queue must adhere to this restriction. An enqueue() operation adds a node to the

tail of the queue and a dequeue() operation removes a node from the head of the

queue. We will visualize a queue in the following way:

Labs are held in a “closed” environment such that you may ask your TA questions.
Please use your TAs knowledge to your advantage. You are required to move at the
pace set forth by your TA. Please help other students in need when you are finished
with a task. Have a great time! Labs are a vital part to your education in CptS 122 so
work diligently.

Tasks:

1. Define a class QueueNode with data of type std::string. Implement the

core constructors, destructor, setters, and getters for the class.

2. Implement a class Queue with the following operations for your queue data

structure:

1. isEmpty() – a predicate function which checks to see if the queue is

empty; returns true if the queue is empty; false otherwise

2. enqueue() – inserts a node to the tail of the queue; the node is

allocated dynamically; returns true if the memory was allocated for a
node, false otherwise

3. dequeue() – deletes a node from the head of the queue; returns the

data in the node; precondition: queue is not empty (isEmpty () must be
called before dequeue () is called)

4. printQueueRecursive() – recursively prints out the data in the

queue

Andrew S. O’Fallon 3

3. Test your application. In the same project, create one more header file

testQueue.hpp and source file testQueue.cpp (for a total of at least seven

files). The testQueue.hpp file should contain function prototypes for test

functions you will use on your queue functions. The testQueue.cpp source

file should contain the implementations for these test functions. You will have
at least one test function per application function. For example, you will have

an application function called enqueue() (or a function very similar) that is

used to insert a node into the tail of the queue. In this task, you will need to

create a test function called testEnqueue() that passes in various data

directly into enqueue() to see if it works as intended. You will also want to

test these functions on empty and non-empty queues.

4. Work on the current programming assignment.

IV. Submitting Labs:

 You are not required to submit your lab solutions, unless you are unable to
attend them synchronously. You should keep them in a folder that you may
continue to access throughout the semester.

V. Grading Guidelines:

 This lab is worth 10 points. Your lab grade is assigned based on completeness
and effort. To receive full credit for the lab you must show up on time, work in
a team, complete 2/3 of the problems, and continue to work on the problems
until the TA has dismissed you.

