

Andrew S. O’Fallon 1

CptS 122 – Data Structures

Lab 8: Developing a Binary Search Tree (BST) Class and Application in C++

Assigned: Week of March 4, 2024
Due: At the end of the lab session

I. Learner Objectives:

At the conclusion of this programming assignment, participants should be able to:

 Design, implement, test, and apply a BST class in C++
 Compare and contrast value classes versus container classes
 Apply and implement overloaded functions and operators
 Discuss the properties of a BST
 Discuss the advantages and disadvantages of a BST

II. Prerequisites:

Before starting this programming assignment, participants should be able to:

 Analyze a basic set of requirements for a problem
 Create test cases for a program
 Design, implement and test classes in C++
 Declare and define constructors

 Declare and define destructors
 Compare and contrast public and private access specifiers in C++
 Describe what is an attribute or data member of a class
 Describe what is a method of a class
 Apply and implement overloaded functions
 Distinguish between pass-by-value and pass-by-reference

 Discuss classes versus objects

III. Overview & Requirements:

This lab, along with your TA, will help you navigate through designing, implementing,
and testing a BST class in C++. It will also help you with understanding how to apply a
BST object to an application.

Labs are held in a “closed” environment such that you may ask your TA questions.
Please use your TAs knowledge to your advantage. You are required to move at the
pace set forth by your TA. Have a great time! Labs are a vital part to your education
in CptS 122 so work diligently.

Tasks:

NOTE: Parts of this lab are courtesy of Jack Hagemeister.

Andrew S. O’Fallon 2

For this lab you will develop a BST class and use it to solve a sorting problem. You will
create the class BSTNode declaration in a single .hpp (called BSTNode.hpp) and the
class BST declaration in a single .hpp file (called BST.hpp). Define all of the
functionality for class BSTNode in BSTNode .cpp and functionality for class BST in
BST.cpp.

Task 1. Defining a class, BSTNode

Start this task by designing the BSTNode class for the BST. For the initial development
you should just build the node to hold a std::string as its data. The BSTNode class will
consist of a string and left and right pointers. It will initialize the node using it’s
constructor. You will also overload the stream insertion operator << to output a node.
Will you need access and/or modify the contents of the nodes from outside the node?

Yes! Then you should implement getters/setters. Note: you will be inserting data into
the tree using recursion. How will this impact your getters in the BSTNode class? The
data in the node is a std::string, should we pass the newData value into the setter
using pass-by-reference? Recall, a std::string is an object type, and hence, if the
object is not passed by reference, then a copy of the object is made (std::string copy
constructor is invoked). Is this the intent? Probably not!

Task 2. Now create the BST class

Implement a BST class. You are now ready to define the BST class. You should create
a data member for a pointer that will be the root of the BST. The pointers should be
of type BSTNode. You will also implement the constructor and the destructor (should

destroy the tree through postorder traversing of nodes).

Additionally, you need:

 insertNode() - that adds an item to the BST. Recall the properties of a BST.

The values in any left subtree are less than its parent node,
 and any values in the right subtree are greater than its parent
node. Use recursion in your implementation!

 inOrderTraversal() - that prints the contents of the BST inorder. Use

recursion in your implementation!

 preOrderTraversal() - that prints the contents of the BST preorder. Use

recursion in your implementation!

 postOrderTraversal() - that prints the contents of the BST postorder. Use

recursion in your implementation!

 isEmpty() - that is a Boolean function that indicates that the BST is empty or

not.

 destroyTree() – a private function, which is called from the destructor to

delete each node in the the tree by postorder traversal.

You will overload the stream insertion operator << to output a BST in an elegant way.

NOTE: Listed below are the algorithms for the traversals.

Andrew S. O’Fallon 3

In-Order Traversal:
1. Traverse the “left” subtree by recursively calling inOrderTraversal()
2. Access the “data” of the current node
3. Traverse the “right” subtree by recursively calling inOrderTraversal()

Pre-Order Traversal:

1. Access the “data” of the current node
2. Traverse the “left” subtree by recursively calling preOrderTraversal()
3. Traverse the “right” subtree by recursively calling preOrderTraversal()

Post-Order Traversal:

1. Traverse the “left” subtree by recursively calling postOrderTraversal()
2. Traverse the “right” subtree by recursively calling postOrderTraversal()

3. Access the “data” of the current node

Let’s say we have the following BST:

 42
 / \

 25 75
 / \ / \
 10 30 65 100
 / \ / \ / \ / \
 15 70

The in-order traversal would print: 10 15 25 30 42 65 70 75 100
The pre-order traversal would print: 42 25 10 15 30 75 65 70 100
The post-order traversal would print: 15 10 30 25 70 65 100 75 42 // The value in each
node is not printed until the values of its children are printed

Task 3. Create a an application to sort strings

Create an application that populates an array with names (last, first) of your favorite
people. Read the names from a text file, where each name is placed on a separate
line in the form (last, first). Take the array and place all names in the array into a
BST object. Traverse the BST inorder (you will need to modify inorder) and place the
inorder strings back into the original array. The array of people's names is now sorted.
QUESTION: When would it be a good idea to use a BST for sorting items? Do you know

of other algorithms and data structures that are more efficient for a sorting task?

IV. Submitting Labs:

 You are not required to submit your lab solutions. You should keep them in a
folder that you may continue to access throughout the semester.

V. Grading Guidelines:

Andrew S. O’Fallon 4

 This lab is worth 10 points. Your lab grade is assigned based on completeness
and effort. To receive full credit for the lab you must show up on time, work in
a team, complete 2/3 of the problems, and continue to work on the problems
until the TA has dismissed you.

