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Crash Review on Critical C Topics
.

e Pointers
e Arrays
e Strings
e Structs
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CS Discord
7

e https://discord.com/invite/TkMb3deW
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Pointers
]
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Pointer Review (1)

e A pointer variable contains the address of another cell
containing a data value

Note that a pointer is “useless” unless we make sure that it
points somewhere:

- 1int num = 3, int *nump = &num;
nump num
2000 1000

e The direct value of num is 3, while the direct value of nump is
the address (1000) of the memory cell which holds the 3
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Pointer Review (2)
.

e The integer 3 is the indirect value of nump,
this value can be accessed by following the
pointer stored in nump

e If the indirection, dereferencing, or “pointer-
following” operator is applied to a pointer
variable, the indirect value of the pointer
variable Is accessed

e That s, if we apply *nump, we are able to
access the integer value 3

e [he next slide summarizes... 5
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Pointer Review (3)
c ]

nump

]

2000

Reference
num

nump
*nump
&nump
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num

1000

Explanation

Direct value of num
Direct value of nump
Indirect value of nump
Address of nump

Value

1000

2000



Pointers as Function Parameters (1)
c ]

e Recall that we define an output parameter to a

function by passing the address (&) of the variable
to the function

e The output parameter is defined as a pointer in the
formal parameter list

e Also, recall that output parameters allow us to
return more than one value from a function

e The next slide shows a long division function which
uses quotientp and remainderp as pointers
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Pointers as Function Parameters (2)
...

° Function with Pointers as Output Parameters

#include <stdio.h>
void long division (int dividend, int divisor, int *quotientp, int *remainderp);

int main (void)
{

int quot, rem;

long division (40, 3, &quot, é&rem);
printf ("40 divided by 3 yields quotient %d ", quot);
printf ("and remainder %d\n", rem);

return 0;

}

void long division (int dividend, int divisor, int *quotientp, int *remainderp)
{

*quotientp = dividend / divisor;

o)

*remainderp = dividend % divisor;
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Arrays
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What Is an array?
.

e A sequence of items that are contiguously
allocated in memory

e All items In the array are of the same data
type and of the same size

e All items are accessed by the same name,
but a different index

e The length or size is fixed
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More About Arrays
-

e An array IS a data structure

- A data structure is a way of storing and organizing
data in memory so that it may be accessed and
manipulated efficiently
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Uses for Arrays?
-

e Store related information
— Student ID numbers
- Names of players on the Seattle Seahawks roster
— Scores for each combination in Yahtzee
- Many more...
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The Many Dimensions of an Array
.

e A single dimensional array is logically viewed
as a linear structure

e A two dimensional array is logically viewed
as a table consisting of rows and columns

e \What about three, four, etc., dimensions?
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Declaring a Single Dimensional Array

(1)
.

e Arrays are declared in much the same way as
variables:

int al[6];
declares an array a with 6 cells that hold integers:

al[O0] al[l] al[2] al[3] al[4] a[5]

10 12 0 89 1 91

Notice that array indexing begins at O.
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Strings
.
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String Fundamentals
.

e A string is a sequence of characters terminated by
the null character (\0’)

— “This is a string” is considered a string literal
- A string may include letters, digits, and special characters

e A string may always be represented by a character
array, but a character array is not always a string

e A string is accessed via a pointer to the first
character in it
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String Basics (1)

e As with other data types, we can even initialize a
string when we declare it:

char name[20] = “Bill Gates";
char *name = “RBill Gates";
char name[] = {‘B’, ‘i’, 1’, 17, M Y, G', Ya’', ‘t’, ‘e’,

\SI , \\OI ; }
// These are equivalent string declarations!
e Here's what the memory allocated to name looks like

after either of the above Is executed:
null character, (terminates all strings)

name B:RENEREE G a t e s \0??

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
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String Basics (2)
o]
e \When a variable of type char* Is initialized

with a string literal, it may be placed in
memory where the string can’t be modified

e If you want to ensure modifiability of a string

store It Into a character array when initializing
It
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String Basics (3)
-

O Arrays of Strings

Suppose we want to store a list of students in a class

- We can do this by declaring an array of strings, one row
for each student name:

#define NUM STUDENTS 5
#define MAX NAME LENGTH 31
char student names[NUM STUDENTS] [MAX NAME LENGTH];

- We can initialize an array of strings "in line":

char student names[NUM STUDENTS] [MAX NAME LENGTH] =
{"John Doe", "Jane Smith", "Sandra Connor", "Damien White",
"Metilda Cougar"};

- In most cases, however, we're Brobably gomg to want to
read the names in from the keyboard or a file..
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String Basics (4)
-

e Use gets () toread a complete line, including
whitespace, from the keyboard until the <enter> key
IS pressed; the <enter> is not included as part of the
string
- Usage: gets (my array)

- If the user enters “Bill Gates” and presses <enter>, the
entire string will be read into my array excluding the

<enter> or newline
e Use puts () to display a string followed by a newline
- Usage: puts (my array)
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String Manipulation in C (1)
.

e Standard operators applied to most numerical
(including character) types cannot be applied to
strings in C
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The assignment operator (=) can’t be applied except during
declaration

The + operator doesn’'t have any true meaning (in some
languages it means append)

The relational operators (==, <, >) don’t perform string
comparisons

Others?



String Manipulation in C (2)
.

e The string-handling library <string.h>
provides many powerful functions which may
be used In place of standard operators
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strcpy () or strncpy () replaces the assignment
operator

strcat () or strncat () replaces the + or append
operator

strcmp () replaces relational operators
Several others...i.e. strtok (), strlen ()



Pointers Representing Arrays and
Strings (1)
00|

e Consider representing two arrays as follows:
- double list of nums[20];

- char your name[40];

e \When we pass either of these arrays to

functions, we use the array name without a
subscript

e The array name itself represents the
address of the initial array element
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Pointers Representing Arrays and
Strings (2)
00|

e Hence, when we pass the array name, we
are actually passing the entire array as a
pointer

e 50, the formal parameter for the string name
may be declared in two ways:
- char name/[]
- char *name

e Note that, in general, it Is a good idea to
pass the maximum size of the array to the
function, e.g.:

- volid func (char *name, 1nt size);
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Structs
« ]
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struct Type (1)
c--

e C supports another kind of user-defined type: the
struct

e structsS are away to combine multiple variables
Into a single "package" (this is called
"encapsulation”)

e Sometimes referred to as an aggregate, where all
variables are under one name

e Suppose, for example, that we want to create a
database of students in a course. We could define a

student struct as follows:
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struct Type (2)

28

typedef enum {freshman, sophomore, junior, senior}
class t; /* class standing */

typedef enum {anthropology, biology, chemistry,
english, compsci, polisci,

psychology,
physics, englneering, socilology}
major t; /* representative majors */

typedef struct
{

int id number;
class t class standing; /* see above */
major t major; /* see above */
double gpa;
int credits taken;
} student t;
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struct Type (3)
c_—

e We can then define some students:

student t studentl, student2;
studentl.id num = 123456789;
studentl.class standing = freshman;
studentl.major = anthropology;
studentl.gpa = 3.5;
studentl.credits taken = 15;
student2.id num = 321123456;
student2.class standing = senior;
student?2.major = biology;
studnet2.gpa = 3.2;
student2.credits taken = 100;

Notice how we use the "." (selection) operator to access the
"flelds" of the struct
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More About Structs
7

e Recall structs are used to represent real world
objects

e They contain attributes that describe these objects

- Such as a car, where the attributes of the struct car could
Include steering wheel, seats, engine, etc.

— Such as a student, where the attributes of the struct student
could include ID#, name, standing, etc.

e In many cases, we need a list or array of these
objects
— Allist of cars representing a car lot
— A list of students representing an attendance sheet
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Arrays of Structs (1)
-

e Let's first define a struct student
typedef struct student

{
int ID;
char name[100];
Int present; // Attended class or not

} Student;
®* Next we will build up an attendance sheet
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Arrays of Structs (2)
.

Int main (void)
{

Student attendance_sheet[100]; // 100 students in the class

return O;

® Let's look at a logical view of this attendance sheet on the next
slide
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Arrays of Structs (3)
.

e Attendance sheet, which consists of multiple struct

student types
0 1 2 99
{ID, {ID, {ID, {ID,
name, |name, |hame, name,
present} | present} | present} present}
1000 1108 1216 10692
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Arrays of Structs (4)
-

e To Initialize one item In the array, try:
attendance_sheet[index].ID = 1111;
strcpy (attendance_sheet[index].name, “Bill Gates”);
Attendance_sheet[index].present = 1;
/[ 1 means in attendance, 0 means not in present
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Pointers to Structures
7

e Recall that when we have a pointer to a structure, we can use
the indirect component selection operator -> to access
components within the structure

typedef struct

{
double x;
double vy;
} Point;

int main (void)
{
Point pl, *struct ptr;
pl.x = 12.3;
pl.y = 2.5;
struct ptr = &pl;

struct ptr->x; /* Access the x component in Point, i.e. 12.3 */

35 C. Hundhausen, A. O’Fallon :



Keep Reviewing C Material!
.
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