
(1-1) C Review: Pointers, Arrays, 
Strings, & Structs

Instructor - Andrew S. O’Fallon

CptS 122 (January 10, 2024)

Washington State University



Crash Review on Critical C Topics

 Pointers

 Arrays

 Strings

 Structs

C. Hundhausen, A. O’Fallon2



CS Discord

 https://discord.com/invite/TkMb3deW

C. Hundhausen, A. O’Fallon3

https://discord.com/invite/TkMb3deW


Pointers

C. Hundhausen, A. O’Fallon4



C. Hundhausen, A. O’Fallon5

 A pointer variable contains the address of another cell 

containing a data value

 Note that a pointer is “useless” unless we make sure that it 

points somewhere:

– int num = 3, int *nump = &num;

 The direct value of num is 3, while the direct value of nump is 

the address (1000) of the memory cell which holds the 3

Pointer Review (1)

3

nump num

2000 1000



C. Hundhausen, A. O’Fallon6

Pointer Review (2)

 The integer 3 is the indirect value of nump, 

this value can be accessed by following the 

pointer stored in nump

 If the indirection, dereferencing, or “pointer-

following” operator is applied to a pointer 

variable, the indirect value of the pointer 

variable is accessed

 That is, if we apply *nump, we are able to 

access the integer value 3

 The next slide summarizes…



C. Hundhausen, A. O’Fallon7

Pointer Review (3)

3

nump num

2000 1000

Reference Explanation Value

num Direct value of num 3

nump Direct value of nump 1000

*nump Indirect value of nump 3

&nump Address of nump 2000



C. Hundhausen, A. O’Fallon8

Pointers as Function Parameters (1)

 Recall that we define an output parameter to a 

function by passing the address (&) of the variable 

to the function

 The output parameter is defined as a pointer in the 

formal parameter list

 Also, recall that output parameters allow us to 

return more than one value from a function

 The next slide shows a long division function which 

uses quotientp and remainderp as pointers



C. Hundhausen, A. O’Fallon9

Pointers as Function Parameters (2)

 Function with Pointers as Output Parameters

#include <stdio.h>

void long_division (int dividend, int divisor, int *quotientp, int *remainderp);

int main (void)

{

int quot, rem;

long_division (40, 3, &quot, &rem);

printf ("40 divided by 3 yields quotient %d ", quot);

printf ("and remainder %d\n", rem);

return 0;

}

void long_division (int dividend, int divisor, int *quotientp, int *remainderp)

{

*quotientp = dividend / divisor;

*remainderp = dividend % divisor;

}



Arrays

C. Hundhausen, A. O’Fallon10



C. Hundhausen, A. O’Fallon11

What is an array?

 A sequence of items that are contiguously 

allocated in memory

 All items in the array are of the same data 

type and of the same size

 All items are accessed by the same name, 

but a different index

 The length or size is fixed



C. Hundhausen, A. O’Fallon12

More About Arrays

 An array is a data structure

– A data structure is a way of storing and organizing 

data in memory so that it may be accessed and 

manipulated efficiently



C. Hundhausen, A. O’Fallon13

Uses for Arrays?

 Store related information

– Student ID numbers

– Names of players on the Seattle Seahawks roster

– Scores for each combination in Yahtzee

– Many more…



C. Hundhausen, A. O’Fallon14

The Many Dimensions of an Array

 A single dimensional array is logically viewed 

as a linear structure

 A two dimensional array is logically viewed 

as a table consisting of rows and columns

 What about three, four, etc., dimensions?



C. Hundhausen, A. O’Fallon15

Declaring a Single Dimensional Array 
(1)

 Arrays are declared in much the same way as 

variables:

int a[6];

declares an array a with 6 cells that hold integers:

Notice that array indexing begins at 0.

10 12 0 89 1 91

a[0] a[1] a[2] a[3] a[4] a[5]



Strings

C. Hundhausen, A. O’Fallon16



C. Hundhausen, A. O’Fallon17

String Fundamentals

 A string is a sequence of characters terminated by 
the null character (‘\0’)

– “This is a string” is considered a string literal

– A string may include letters, digits, and special characters

 A string may always be represented by a character 
array, but a character array is not always a string

 A string is accessed via a pointer to the first 
character in it



C. Hundhausen, A. O’Fallon18

String Basics (1)

 As with other data types, we can even initialize a 

string when we declare it:

char name[20] = “Bill Gates"; 

char *name = “Bill Gates";

char name[] = {‘B’, ‘i’, ‘l’, ‘l’, ‘ ‘, ‘G’, ‘a’, ‘t’, ‘e’,

‘s’, ‘\0’;}

// These are equivalent string declarations!

 Here's what the memory allocated to name looks like 

after either of the above is executed:

B i l l G a t e s \0 ? ? ? ? ? ? ?? ?

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

name

null character (terminates all strings)



C. Hundhausen, A. O’Fallon19

String Basics (2)

 When a variable of type char* is initialized 

with a string literal, it may be placed in 

memory where the string can’t be modified

 If you want to ensure modifiability of a string 

store it into a character array when initializing 

it



C. Hundhausen, A. O’Fallon20

String Basics (3)

 Arrays of Strings
– Suppose we want to store a list of students in a class
– We can do this by declaring an array of strings, one row 

for each student name:

#define NUM_STUDENTS 5
#define MAX_NAME_LENGTH 31
char student_names[NUM_STUDENTS][MAX_NAME_LENGTH];

– We can initialize an array of strings "in line":
char student_names[NUM_STUDENTS][MAX_NAME_LENGTH] = 

{"John Doe", "Jane Smith", "Sandra Connor", "Damien White",

"Metilda Cougar"};

– In most cases, however, we're probably going to want to 
read the names in from the keyboard or a file…



C. Hundhausen, A. O’Fallon21

String Basics (4)

 Use gets() to read a complete line, including 

whitespace, from the keyboard until the <enter> key 

is pressed; the <enter> is not included as part of the 

string
– Usage: gets(my_array)

– If the user enters “Bill Gates” and presses <enter>, the 
entire string will be read into my_array excluding the 

<enter> or newline

 Use puts() to display a string followed by a newline

– Usage: puts(my_array)



C. Hundhausen, A. O’Fallon22

String Manipulation in C (1)

 Standard operators applied to most numerical 

(including character) types cannot be applied to 

strings in C

– The assignment operator (=) can’t be applied except during 

declaration

– The + operator doesn’t have any true meaning (in some 

languages it means append)

– The relational operators (==, <, >) don’t perform string 

comparisons

– Others?



C. Hundhausen, A. O’Fallon23

String Manipulation in C (2)

 The string-handling library <string.h> 

provides many powerful functions which may 

be used in place of standard operators

– strcpy ( ) or strncpy () replaces the assignment 

operator

– strcat ( )  or strncat () replaces the + or append 

operator

– strcmp ( ) replaces relational operators

– Several others…i.e. strtok ( ), strlen ( )



C. Hundhausen, A. O’Fallon24

Pointers Representing Arrays and 
Strings (1)

 Consider representing two arrays as follows:

– double list_of_nums[20];

– char your_name[40];

 When we pass either of these arrays to 

functions, we use the array name without a 

subscript 

 The array name itself represents the 

address of the initial array element



C. Hundhausen, A. O’Fallon25

Pointers Representing Arrays and 
Strings (2)

 Hence, when we pass the array name, we 
are actually passing the entire array as a 
pointer

 So, the formal parameter for the string name
may be declared in two ways:
– char name[]

– char *name

 Note that, in general, it is a good idea to 
pass the maximum size of the array to the 
function, e.g.:
– void func (char *name, int size);



Structs

C. Hundhausen, A. O’Fallon26



C. Hundhausen, A. O’Fallon27

struct Type (1)

 C supports another kind of user-defined type: the 
struct

 structs are a way to combine multiple variables 

into a single "package" (this is called 

"encapsulation")

 Sometimes referred to as an aggregate, where all 

variables are under one name

 Suppose, for example, that we want to create a 

database of students in a course. We could define a 

student struct as follows:



C. Hundhausen, A. O’Fallon28

struct Type (2)

typedef enum {freshman, sophomore, junior, senior}

class_t; /* class standing */

typedef enum {anthropology, biology, chemistry, 
english, compsci, polisci, 

psychology,
physics, engineering, sociology} 

major_t; /* representative majors */

typedef struct 

{
int id_number;

class_t class_standing; /* see above */

major_t major; /* see above */

double gpa;

int credits_taken;

} student_t;



C. Hundhausen, A. O’Fallon29

struct Type (3)

 We can then define some students:
student_t student1, student2;

student1.id_num = 123456789;

student1.class_standing = freshman;

student1.major = anthropology;

student1.gpa = 3.5;

student1.credits_taken = 15;

student2.id_num = 321123456;

student2.class_standing = senior;

student2.major = biology;

studnet2.gpa = 3.2;

student2.credits_taken = 100;

Notice how we use the "." (selection) operator to access the 
"fields" of the struct



C. Hundhausen, A. O’Fallon30

More About Structs

 Recall structs are used to represent real world 
objects

 They contain attributes that describe these objects
– Such as a car, where the attributes of the struct car could 

include steering wheel, seats, engine, etc.

– Such as a student, where the attributes of the struct student 
could include ID#, name, standing, etc.

 In many cases, we need a list or array of these 
objects

– A list of cars representing a car lot

– A list of students representing an attendance sheet



C. Hundhausen, A. O’Fallon31

Arrays of Structs (1)

 Let’s first define a struct student

typedef struct student

{

int ID;

char name[100];

int present; // Attended class or not

} Student;

• Next we will build up an attendance sheet



C. Hundhausen, A. O’Fallon32

Arrays of Structs (2)

int main (void)

{

Student attendance_sheet[100]; // 100 students in the class

return 0;

}

• Let’s look at a logical view of this attendance sheet on the next 

slide



C. Hundhausen, A. O’Fallon33

Arrays of Structs (3)

 Attendance sheet, which consists of multiple struct 

student types

0 1 2 … 99

{ID, 

name, 

present}

{ID, 

name, 

present}

{ID, 

name, 

present}

… {ID, 

name, 

present}

1000 1108 1216 10692



C. Hundhausen, A. O’Fallon34

Arrays of Structs (4)

 To initialize one item in the array, try:

attendance_sheet[index].ID = 1111;

strcpy (attendance_sheet[index].name, “Bill Gates”);

Attendance_sheet[index].present = 1; 

// 1 means in attendance, 0 means not in present



C. Hundhausen, A. O’Fallon35

Pointers to Structures

 Recall that when we have a pointer to a structure, we can use 
the indirect component selection operator -> to access 
components within the structure

typedef struct

{

double x;

double y;

} Point;

int main (void)

{

Point p1, *struct_ptr;

p1.x = 12.3;

p1.y = 2.5;

struct_ptr = &p1;

struct_ptr->x; /* Access the x component in Point, i.e. 12.3 */

.

.

.

}



Keep Reviewing C Material!

C. Hundhausen, A. O’Fallon36



C. Hundhausen, A. O’Fallon37

References

 J.R. Hanly & E.B. Koffman, Problem Solving 

and Program Design in C (8th Ed.), Addison-

Wesley, 2016.

 P.J. Deitel & H.M. Deitel, C How to Program 

(7th Ed.), Pearson Education , Inc., 2013.



C. Hundhausen, A. O’Fallon38

Collaborators

 Chris Hundhausen

http://eecs.wsu.edu/~hundhaus/

