
(1-1) C Review: Pointers, Arrays,
Strings, & Structs

Instructor - Andrew S. O’Fallon

CptS 122 (January 10, 2024)

Washington State University

Crash Review on Critical C Topics

 Pointers

 Arrays

 Strings

 Structs

C. Hundhausen, A. O’Fallon2

CS Discord

 https://discord.com/invite/TkMb3deW

C. Hundhausen, A. O’Fallon3

https://discord.com/invite/TkMb3deW

Pointers

C. Hundhausen, A. O’Fallon4

C. Hundhausen, A. O’Fallon5

 A pointer variable contains the address of another cell

containing a data value

 Note that a pointer is “useless” unless we make sure that it

points somewhere:

– int num = 3, int *nump = #

 The direct value of num is 3, while the direct value of nump is

the address (1000) of the memory cell which holds the 3

Pointer Review (1)

3

nump num

2000 1000

C. Hundhausen, A. O’Fallon6

Pointer Review (2)

 The integer 3 is the indirect value of nump,

this value can be accessed by following the

pointer stored in nump

 If the indirection, dereferencing, or “pointer-

following” operator is applied to a pointer

variable, the indirect value of the pointer

variable is accessed

 That is, if we apply *nump, we are able to

access the integer value 3

 The next slide summarizes…

C. Hundhausen, A. O’Fallon7

Pointer Review (3)

3

nump num

2000 1000

Reference Explanation Value

num Direct value of num 3

nump Direct value of nump 1000

*nump Indirect value of nump 3

&nump Address of nump 2000

C. Hundhausen, A. O’Fallon8

Pointers as Function Parameters (1)

 Recall that we define an output parameter to a

function by passing the address (&) of the variable

to the function

 The output parameter is defined as a pointer in the

formal parameter list

 Also, recall that output parameters allow us to

return more than one value from a function

 The next slide shows a long division function which

uses quotientp and remainderp as pointers

C. Hundhausen, A. O’Fallon9

Pointers as Function Parameters (2)

 Function with Pointers as Output Parameters

#include <stdio.h>

void long_division (int dividend, int divisor, int *quotientp, int *remainderp);

int main (void)

{

int quot, rem;

long_division (40, 3, ", &rem);

printf ("40 divided by 3 yields quotient %d ", quot);

printf ("and remainder %d\n", rem);

return 0;

}

void long_division (int dividend, int divisor, int *quotientp, int *remainderp)

{

*quotientp = dividend / divisor;

*remainderp = dividend % divisor;

}

Arrays

C. Hundhausen, A. O’Fallon10

C. Hundhausen, A. O’Fallon11

What is an array?

 A sequence of items that are contiguously

allocated in memory

 All items in the array are of the same data

type and of the same size

 All items are accessed by the same name,

but a different index

 The length or size is fixed

C. Hundhausen, A. O’Fallon12

More About Arrays

 An array is a data structure

– A data structure is a way of storing and organizing

data in memory so that it may be accessed and

manipulated efficiently

C. Hundhausen, A. O’Fallon13

Uses for Arrays?

 Store related information

– Student ID numbers

– Names of players on the Seattle Seahawks roster

– Scores for each combination in Yahtzee

– Many more…

C. Hundhausen, A. O’Fallon14

The Many Dimensions of an Array

 A single dimensional array is logically viewed

as a linear structure

 A two dimensional array is logically viewed

as a table consisting of rows and columns

 What about three, four, etc., dimensions?

C. Hundhausen, A. O’Fallon15

Declaring a Single Dimensional Array
(1)

 Arrays are declared in much the same way as

variables:

int a[6];

declares an array a with 6 cells that hold integers:

Notice that array indexing begins at 0.

10 12 0 89 1 91

a[0] a[1] a[2] a[3] a[4] a[5]

Strings

C. Hundhausen, A. O’Fallon16

C. Hundhausen, A. O’Fallon17

String Fundamentals

 A string is a sequence of characters terminated by
the null character (‘\0’)

– “This is a string” is considered a string literal

– A string may include letters, digits, and special characters

 A string may always be represented by a character
array, but a character array is not always a string

 A string is accessed via a pointer to the first
character in it

C. Hundhausen, A. O’Fallon18

String Basics (1)

 As with other data types, we can even initialize a

string when we declare it:

char name[20] = “Bill Gates";

char *name = “Bill Gates";

char name[] = {‘B’, ‘i’, ‘l’, ‘l’, ‘ ‘, ‘G’, ‘a’, ‘t’, ‘e’,

‘s’, ‘\0’;}

// These are equivalent string declarations!

 Here's what the memory allocated to name looks like

after either of the above is executed:

B i l l G a t e s \0 ? ? ? ? ? ? ?? ?

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

name

null character (terminates all strings)

C. Hundhausen, A. O’Fallon19

String Basics (2)

 When a variable of type char* is initialized

with a string literal, it may be placed in

memory where the string can’t be modified

 If you want to ensure modifiability of a string

store it into a character array when initializing

it

C. Hundhausen, A. O’Fallon20

String Basics (3)

 Arrays of Strings
– Suppose we want to store a list of students in a class
– We can do this by declaring an array of strings, one row

for each student name:

#define NUM_STUDENTS 5
#define MAX_NAME_LENGTH 31
char student_names[NUM_STUDENTS][MAX_NAME_LENGTH];

– We can initialize an array of strings "in line":
char student_names[NUM_STUDENTS][MAX_NAME_LENGTH] =

{"John Doe", "Jane Smith", "Sandra Connor", "Damien White",

"Metilda Cougar"};

– In most cases, however, we're probably going to want to
read the names in from the keyboard or a file…

C. Hundhausen, A. O’Fallon21

String Basics (4)

 Use gets() to read a complete line, including

whitespace, from the keyboard until the <enter> key

is pressed; the <enter> is not included as part of the

string
– Usage: gets(my_array)

– If the user enters “Bill Gates” and presses <enter>, the
entire string will be read into my_array excluding the

<enter> or newline

 Use puts() to display a string followed by a newline

– Usage: puts(my_array)

C. Hundhausen, A. O’Fallon22

String Manipulation in C (1)

 Standard operators applied to most numerical

(including character) types cannot be applied to

strings in C

– The assignment operator (=) can’t be applied except during

declaration

– The + operator doesn’t have any true meaning (in some

languages it means append)

– The relational operators (==, <, >) don’t perform string

comparisons

– Others?

C. Hundhausen, A. O’Fallon23

String Manipulation in C (2)

 The string-handling library <string.h>

provides many powerful functions which may

be used in place of standard operators

– strcpy () or strncpy () replaces the assignment

operator

– strcat () or strncat () replaces the + or append

operator

– strcmp () replaces relational operators

– Several others…i.e. strtok (), strlen ()

C. Hundhausen, A. O’Fallon24

Pointers Representing Arrays and
Strings (1)

 Consider representing two arrays as follows:

– double list_of_nums[20];

– char your_name[40];

 When we pass either of these arrays to

functions, we use the array name without a

subscript

 The array name itself represents the

address of the initial array element

C. Hundhausen, A. O’Fallon25

Pointers Representing Arrays and
Strings (2)

 Hence, when we pass the array name, we
are actually passing the entire array as a
pointer

 So, the formal parameter for the string name
may be declared in two ways:
– char name[]

– char *name

 Note that, in general, it is a good idea to
pass the maximum size of the array to the
function, e.g.:
– void func (char *name, int size);

Structs

C. Hundhausen, A. O’Fallon26

C. Hundhausen, A. O’Fallon27

struct Type (1)

 C supports another kind of user-defined type: the
struct

 structs are a way to combine multiple variables

into a single "package" (this is called

"encapsulation")

 Sometimes referred to as an aggregate, where all

variables are under one name

 Suppose, for example, that we want to create a

database of students in a course. We could define a

student struct as follows:

C. Hundhausen, A. O’Fallon28

struct Type (2)

typedef enum {freshman, sophomore, junior, senior}

class_t; /* class standing */

typedef enum {anthropology, biology, chemistry,
english, compsci, polisci,

psychology,
physics, engineering, sociology}

major_t; /* representative majors */

typedef struct

{
int id_number;

class_t class_standing; /* see above */

major_t major; /* see above */

double gpa;

int credits_taken;

} student_t;

C. Hundhausen, A. O’Fallon29

struct Type (3)

 We can then define some students:
student_t student1, student2;

student1.id_num = 123456789;

student1.class_standing = freshman;

student1.major = anthropology;

student1.gpa = 3.5;

student1.credits_taken = 15;

student2.id_num = 321123456;

student2.class_standing = senior;

student2.major = biology;

studnet2.gpa = 3.2;

student2.credits_taken = 100;

Notice how we use the "." (selection) operator to access the
"fields" of the struct

C. Hundhausen, A. O’Fallon30

More About Structs

 Recall structs are used to represent real world
objects

 They contain attributes that describe these objects
– Such as a car, where the attributes of the struct car could

include steering wheel, seats, engine, etc.

– Such as a student, where the attributes of the struct student
could include ID#, name, standing, etc.

 In many cases, we need a list or array of these
objects

– A list of cars representing a car lot

– A list of students representing an attendance sheet

C. Hundhausen, A. O’Fallon31

Arrays of Structs (1)

 Let’s first define a struct student

typedef struct student

{

int ID;

char name[100];

int present; // Attended class or not

} Student;

• Next we will build up an attendance sheet

C. Hundhausen, A. O’Fallon32

Arrays of Structs (2)

int main (void)

{

Student attendance_sheet[100]; // 100 students in the class

return 0;

}

• Let’s look at a logical view of this attendance sheet on the next

slide

C. Hundhausen, A. O’Fallon33

Arrays of Structs (3)

 Attendance sheet, which consists of multiple struct

student types

0 1 2 … 99

{ID,

name,

present}

{ID,

name,

present}

{ID,

name,

present}

… {ID,

name,

present}

1000 1108 1216 10692

C. Hundhausen, A. O’Fallon34

Arrays of Structs (4)

 To initialize one item in the array, try:

attendance_sheet[index].ID = 1111;

strcpy (attendance_sheet[index].name, “Bill Gates”);

Attendance_sheet[index].present = 1;

// 1 means in attendance, 0 means not in present

C. Hundhausen, A. O’Fallon35

Pointers to Structures

 Recall that when we have a pointer to a structure, we can use
the indirect component selection operator -> to access
components within the structure

typedef struct

{

double x;

double y;

} Point;

int main (void)

{

Point p1, *struct_ptr;

p1.x = 12.3;

p1.y = 2.5;

struct_ptr = &p1;

struct_ptr->x; /* Access the x component in Point, i.e. 12.3 */

.

.

.

}

Keep Reviewing C Material!

C. Hundhausen, A. O’Fallon36

C. Hundhausen, A. O’Fallon37

References

 J.R. Hanly & E.B. Koffman, Problem Solving

and Program Design in C (8th Ed.), Addison-

Wesley, 2016.

 P.J. Deitel & H.M. Deitel, C How to Program

(7th Ed.), Pearson Education , Inc., 2013.

C. Hundhausen, A. O’Fallon38

Collaborators

 Chris Hundhausen

http://eecs.wsu.edu/~hundhaus/

