(1-1) C Review: Pointers, Arrays,
Strings, & Structs

Instructor - Andrew S. O’Fallon
CptS 122 (January 10, 2024)
Washington State University

WASHINGTON STATE
[ JNIVERSITY




Crash Review on Critical C Topics
.

e Pointers
e Arrays
e Strings
e Structs

2 C. Hundhausen, A. O’Fallon :



CS Discord
7

e https://discord.com/invite/TkMb3deW

3 C. Hundhausen, A. O’Fallon


https://discord.com/invite/TkMb3deW

Pointers
]

4 C. Hundhausen, A. O’Fallon



Pointer Review (1)

e A pointer variable contains the address of another cell
containing a data value

Note that a pointer is “useless” unless we make sure that it
points somewhere:

- 1int num = 3, int *nump = &num;
nump num
2000 1000

e The direct value of num is 3, while the direct value of nump is
the address (1000) of the memory cell which holds the 3

5 C. Hundhausen, A. O’Fallon :



Pointer Review (2)
.

e The integer 3 is the indirect value of nump,
this value can be accessed by following the
pointer stored in nump

e If the indirection, dereferencing, or “pointer-
following” operator is applied to a pointer
variable, the indirect value of the pointer
variable Is accessed

e That s, if we apply *nump, we are able to
access the integer value 3

e [he next slide summarizes... 5

6 C. Hundhausen, A. O’Fallon



Pointer Review (3)
c ]

nump

]

2000

Reference
num

nump
*nump
&nump

7 C. Hundhausen, A. O’Fallon

num

1000

Explanation

Direct value of num
Direct value of nump
Indirect value of nump
Address of nump

Value

1000

2000



Pointers as Function Parameters (1)
c ]

e Recall that we define an output parameter to a

function by passing the address (&) of the variable
to the function

e The output parameter is defined as a pointer in the
formal parameter list

e Also, recall that output parameters allow us to
return more than one value from a function

e The next slide shows a long division function which
uses quotientp and remainderp as pointers

8 C. Hundhausen, A. O’Fallon :



Pointers as Function Parameters (2)
...

° Function with Pointers as Output Parameters

#include <stdio.h>
void long division (int dividend, int divisor, int *quotientp, int *remainderp);

int main (void)
{

int quot, rem;

long division (40, 3, &quot, é&rem);
printf ("40 divided by 3 yields quotient %d ", quot);
printf ("and remainder %d\n", rem);

return 0;

}

void long division (int dividend, int divisor, int *quotientp, int *remainderp)
{

*quotientp = dividend / divisor;

o)

*remainderp = dividend % divisor;

9 C. Hundhausen, A. O’Fallon



Arrays

10 C. Hundhausen, A. O’Fallon



What Is an array?
.

e A sequence of items that are contiguously
allocated in memory

e All items In the array are of the same data
type and of the same size

e All items are accessed by the same name,
but a different index

e The length or size is fixed

11 C. Hundhausen, A. O’Fallon



More About Arrays
-

e An array IS a data structure

- A data structure is a way of storing and organizing
data in memory so that it may be accessed and
manipulated efficiently

12 C. Hundhausen, A. O’Fallon :



Uses for Arrays?
-

e Store related information
— Student ID numbers
- Names of players on the Seattle Seahawks roster
— Scores for each combination in Yahtzee
- Many more...

13 C. Hundhausen, A. O’Fallon :



The Many Dimensions of an Array
.

e A single dimensional array is logically viewed
as a linear structure

e A two dimensional array is logically viewed
as a table consisting of rows and columns

e \What about three, four, etc., dimensions?

14 C. Hundhausen, A. O’Fallon :



Declaring a Single Dimensional Array

(1)
.

e Arrays are declared in much the same way as
variables:

int al[6];
declares an array a with 6 cells that hold integers:

al[O0] al[l] al[2] al[3] al[4] a[5]

10 12 0 89 1 91

Notice that array indexing begins at O.

15 C. Hundhausen, A. O’Fallon :



Strings
.

16 C. Hundhausen, A. O’Fallon



String Fundamentals
.

e A string is a sequence of characters terminated by
the null character (\0’)

— “This is a string” is considered a string literal
- A string may include letters, digits, and special characters

e A string may always be represented by a character
array, but a character array is not always a string

e A string is accessed via a pointer to the first
character in it

17 C. Hundhausen, A. O’Fallon :



String Basics (1)

e As with other data types, we can even initialize a
string when we declare it:

char name[20] = “Bill Gates";
char *name = “RBill Gates";
char name[] = {‘B’, ‘i’, 1’, 17, M Y, G', Ya’', ‘t’, ‘e’,

\SI , \\OI ; }
// These are equivalent string declarations!
e Here's what the memory allocated to name looks like

after either of the above Is executed:
null character, (terminates all strings)

name B:RENEREE G a t e s \0??

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
18 C. Hundhausen, A. O’Fallon :



String Basics (2)
o]
e \When a variable of type char* Is initialized

with a string literal, it may be placed in
memory where the string can’t be modified

e If you want to ensure modifiability of a string

store It Into a character array when initializing
It

19 C. Hundhausen, A. O’Fallon :



String Basics (3)
-

O Arrays of Strings

Suppose we want to store a list of students in a class

- We can do this by declaring an array of strings, one row
for each student name:

#define NUM STUDENTS 5
#define MAX NAME LENGTH 31
char student names[NUM STUDENTS] [MAX NAME LENGTH];

- We can initialize an array of strings "in line":

char student names[NUM STUDENTS] [MAX NAME LENGTH] =
{"John Doe", "Jane Smith", "Sandra Connor", "Damien White",
"Metilda Cougar"};

- In most cases, however, we're Brobably gomg to want to
read the names in from the keyboard or a file..

20 C. Hundhausen, A. O’Fallon :



String Basics (4)
-

e Use gets () toread a complete line, including
whitespace, from the keyboard until the <enter> key
IS pressed; the <enter> is not included as part of the
string
- Usage: gets (my array)

- If the user enters “Bill Gates” and presses <enter>, the
entire string will be read into my array excluding the

<enter> or newline
e Use puts () to display a string followed by a newline
- Usage: puts (my array)

21 C. Hundhausen, A. O’Fallon :



String Manipulation in C (1)
.

e Standard operators applied to most numerical
(including character) types cannot be applied to
strings in C

22 C. Hundhausen, A. O’Fallon

The assignment operator (=) can’t be applied except during
declaration

The + operator doesn’'t have any true meaning (in some
languages it means append)

The relational operators (==, <, >) don’t perform string
comparisons

Others?



String Manipulation in C (2)
.

e The string-handling library <string.h>
provides many powerful functions which may
be used In place of standard operators

23 C. Hundhausen, A. O’Fallon

strcpy () or strncpy () replaces the assignment
operator

strcat () or strncat () replaces the + or append
operator

strcmp () replaces relational operators
Several others...i.e. strtok (), strlen ()



Pointers Representing Arrays and
Strings (1)
00|

e Consider representing two arrays as follows:
- double list of nums[20];

- char your name[40];

e \When we pass either of these arrays to

functions, we use the array name without a
subscript

e The array name itself represents the
address of the initial array element

24 C. Hundhausen, A. O’Fallon :



Pointers Representing Arrays and
Strings (2)
00|

e Hence, when we pass the array name, we
are actually passing the entire array as a
pointer

e 50, the formal parameter for the string name
may be declared in two ways:
- char name/[]
- char *name

e Note that, in general, it Is a good idea to
pass the maximum size of the array to the
function, e.g.:

- volid func (char *name, 1nt size);

25 C. Hundhausen, A. O’Fallon :



Structs
« ]

26 C. Hundhausen, A. O’Fallon



struct Type (1)
c--

e C supports another kind of user-defined type: the
struct

e structsS are away to combine multiple variables
Into a single "package" (this is called
"encapsulation”)

e Sometimes referred to as an aggregate, where all
variables are under one name

e Suppose, for example, that we want to create a
database of students in a course. We could define a

student struct as follows:

27 C. Hundhausen, A. O’Fallon :



struct Type (2)

28

typedef enum {freshman, sophomore, junior, senior}
class t; /* class standing */

typedef enum {anthropology, biology, chemistry,
english, compsci, polisci,

psychology,
physics, englneering, socilology}
major t; /* representative majors */

typedef struct
{

int id number;
class t class standing; /* see above */
major t major; /* see above */
double gpa;
int credits taken;
} student t;

C. Hundhausen, A. O’Fallon



struct Type (3)
c_—

e We can then define some students:

student t studentl, student2;
studentl.id num = 123456789;
studentl.class standing = freshman;
studentl.major = anthropology;
studentl.gpa = 3.5;
studentl.credits taken = 15;
student2.id num = 321123456;
student2.class standing = senior;
student?2.major = biology;
studnet2.gpa = 3.2;
student2.credits taken = 100;

Notice how we use the "." (selection) operator to access the
"flelds" of the struct

29 C. Hundhausen, A. O’Fallon



More About Structs
7

e Recall structs are used to represent real world
objects

e They contain attributes that describe these objects

- Such as a car, where the attributes of the struct car could
Include steering wheel, seats, engine, etc.

— Such as a student, where the attributes of the struct student
could include ID#, name, standing, etc.

e In many cases, we need a list or array of these
objects
— Allist of cars representing a car lot
— A list of students representing an attendance sheet

30 C. Hundhausen, A. O’Fallon :



Arrays of Structs (1)
-

e Let's first define a struct student
typedef struct student

{
int ID;
char name[100];
Int present; // Attended class or not

} Student;
®* Next we will build up an attendance sheet

31 C. Hundhausen, A. O’Fallon :



Arrays of Structs (2)
.

Int main (void)
{

Student attendance_sheet[100]; // 100 students in the class

return O;

® Let's look at a logical view of this attendance sheet on the next
slide

32 C. Hundhausen, A. O’Fallon :



Arrays of Structs (3)
.

e Attendance sheet, which consists of multiple struct

student types
0 1 2 99
{ID, {ID, {ID, {ID,
name, |name, |hame, name,
present} | present} | present} present}
1000 1108 1216 10692

33 C. Hundhausen, A. O’Fallon :



Arrays of Structs (4)
-

e To Initialize one item In the array, try:
attendance_sheet[index].ID = 1111;
strcpy (attendance_sheet[index].name, “Bill Gates”);
Attendance_sheet[index].present = 1;
/[ 1 means in attendance, 0 means not in present

34 C. Hundhausen, A. O’Fallon :



Pointers to Structures
7

e Recall that when we have a pointer to a structure, we can use
the indirect component selection operator -> to access
components within the structure

typedef struct

{
double x;
double vy;
} Point;

int main (void)
{
Point pl, *struct ptr;
pl.x = 12.3;
pl.y = 2.5;
struct ptr = &pl;

struct ptr->x; /* Access the x component in Point, i.e. 12.3 */

35 C. Hundhausen, A. O’Fallon :



Keep Reviewing C Material!
.

36 C. Hundhausen, A. O’Fallon



References
7

o J.R.
and
Wes

o P.J.

Hanly & E.B. Koffman, Problem Solving
Program Design in C (8™ Ed.), Addison-
ey, 2016.

Deltel & H.M. Deitel, C How to Program

(7t Ed.), Pearson Education, Inc., 2013.

37 C. Hundhausen, A. O’Fallon



Collaborators
7

e Chris Hundhausen

38 C. Hundhausen, A. O’Fallon


http://eecs.wsu.edu/~hundhaus/

