(11-1) OOP: Inheritance in C++
D & D Chapter 11

Instructor - Andrew S. O’Fallon
CptS 122 (March 25, 2024)
Washington State University

WASHINGTON STATE
[JNIVERSITY

Key Concepts
S

e Base and derived classes
® Protected members

e Inheritance

- public, protected, and private accessibility
modes

— Is-a relationship
— Single and multiple
- Multilevel, hierarchical, and hybrid

e Software reuse through inheritance

2 A. O’Fallon, J. Hagemeister :

Introduction to Inheritance in OOP (l)

e Inheritance may be viewed as a form of software
reuse or the process of creating new classes from

existing classes

e Inheritance allows for the implementation of a class
that acquires another class’ attributes and operations

(its capabilities)
- The class customizes or enhances the
capabillities of the acquired class

e Software reuse allows for higher levels of developer
production through leveraging tested, quality code

3 ~¢

A. O’Fallon, J. Hagemeister

Introduction to Inheritance in OOP (ll)
c]

e How Inheritance works!

- When implementing a new class some data
members (attributes) and member functions
(operations) might be in common between the
new class and an existing class — the new class
could inherit the members of the existing class

e The existing class is referred to as the base class (or
superclass)

e The new class, which acquires the members, is referred
to as the derived class (or subclass)

— Represents a more customized or specialized version of
objects

4 A. O’Fallon, J. Hagemeister t

Introduction to Inheritance in OOP (llI)

e The is-a relationship represents inheritance

For example:

Let’'s say we have a base class called Employee and a derived
class called Manager — A Manager is an Employee (but, note,
an Employee is not necessarily a Manager)

e In contrast the has-a relationship represents
composition, where an object contains >= 1
objects of other classes as members

Some possibilities include:

- An Employee has a “dental plan” (c1ass DentalPlan), has
an “office” (class Office), etc.

5 A. O’Fallon, J. Hagemeister

What is Inherited?
7

e A derived class inherits every member of a
base class except its:
- Constructor(s)
— Destructor
— Friend(s)
- Overloaded assignment operator

6 A. O’Fallon, J. Hagemeister :

Base and Derived Classes
7

e Base classes tend to be more general
e Derived classes tend to be more specific

e \We've established that every derived class is
an object of it's base class so...

- The set of objects representative of the base
class is usually larger than the set of objects

representative of any of its derived classes

e An Employee class could be representative of all employee
types including managers, supervisors, directors, officers, etc.

e A Manager class is a smaller, more specific subset of
employees

7 A. O’Fallon, J. Hagemeister t

Protected Members
7

e The access specifier protected provides

an intermediate level of protection between
private and public

e Derived classes, and any of its friends, have
access to protected members of a base

class, but any nonmembers that are not
friends do not have access

8 A. O’Fallon, J. Hagemeister :

Forms of Inheritance
1

e There are 5 forms of inheritance
—- Single
- Multiple
— Multilevel
— Hierarchical
— Hybrid

9 A. O’Fallon, J. Hagemeister

Single Inheritance - Inheritance Structure of
Employees of a Business ()

Employee

Single
Inheritance

Manager

10 A. O’Fallon, J. Hagemeister :

Single Inheritance - Inheritance Structure of
Employees of a Business (ll)

e Single inheritance

- One derived class inherits from only one base
class

- A Manager inherits capabilities of an Employee
only

— C++ syntax
class Manager : public Employee

{

/| class declarations

11 A. O’Fallon, J. Hagemeister :

Multiple Inheritance - Inheritance Structure
of University Members (l)

Worker Student

Multiple
iInheritance

TeachingAssistant

12 A. O’Fallon, J. Hagemeister :

Multiple Inheritance - Inheritance Structure
of University Members (ll)

e Multiple inheritance

— A derived class inherits from more than one base
class

— A TeachingAssistant inherits capabilities of a
Worker and Student

— C++ syntax
class TeachingAssistant: public Worker, public Student

{

/| class declarations

%

13 A. O’Fallon, J. Hagemeister :

Multilevel Inheritance - Inheritance Structure

of Employees of a Business ()

14

Employee is
the direct
base class of
Manager

Employee is an
indirect base
class of Officer

A. O’Fallon, J. Hagemeister

Employee

i

Manager

i

Offi-cer

Multilevel
inheritance
(3 levels)

Multilevel Inheritance - Inheritance Structure
of Employees of a Business (ll)

e Multilevel inheritance

-~ A derived class acts as a base class for another
derived class

- An Officer is created from a Manager and a
Manager is created from an Employee

e An Officer is a type of Manager and a Manager Is a type
of Employee

- Generally want no more than a few levels

15 A. O’Fallon, J. Hagemeister t

16

Hierarchical Inheritance - Inheritance
Structure of Employees of a Business ()

Officer

—

i

CEO

COO

A. O’Fallon, J. Hagemeister

Hierarchical
inheritance

Hierarchical Inheritance - Inheritance
Structure of Employees of a Business (ll)

e Hierarchical inheritance

— Multiple derived classes inherit from the same
base class

— CEO (Chief Executive Officer) and COO (Chief
Operations Officer) have attributes of an Officer,
but also have their own unigue attributes

17 A. O’Fallon, J. Hagemeister :

Hybrid Inheritance - Inheritance Structure of

Employees of a Business ()

The
Diamond
Problem!

18 A. O’Fallon, J. Hagemeister

Officer

—

K

CEO

COO

N

Chairman

Hybrid
Inheritance

Hybrid Inheritance - Inheritance Structure of
Employees of a Business (ll)

e Hybrid inheritance

— Two or more inheritance forms are combined

— A Chairman inherits from both CEO (Chief
Executive Officer) and COO (Chief Operations
Officer) classes, and CEO and COQO inherit from
Officer — forms a diamond relationship

e Here the “diamond” problem occurs because CEO and
COO inherit from Officer, which have own copies of the
data members and methods — Chairman contains two
subobjects - there is ambiguity in which members are
accessed by Chairman

— We'll solve this problem with keyword virtual —to be

explained along with polymorphism later! .}t
19 A. O’Fallon, J. Hagemeister

Accessibility Modes and
Inheritance in C++ ()
-

e public, protected, and private
-~ X In the table indicates hidden from derived class

Inheritance Mode

public protected | private

Members public public protected | private

in Base | protected | protected | protected | private
Class private X X X

Members in derived class

- table courtesy of
http://www.codingunit.com/cplusplus-
tutorial-inheritance

20 A. O’Fallon, J. Hagemeister :

Accessibility Modes and

Inheritance in C++ (I
-

° public
- C++ syntax
class Manager : public Employee
{
Il class declarations
h
° protected
- C++ syntax
class Manager : protected Employee

{

/I class declarations

h

° private
- C++ syntax
class Manager : private Employee

{

/I class declarations

h

21 A. O’Fallon, J. Hagemeister

Summary of Inheritance (l)
.

e Advantages
- Software reuse
- Reduces code redundancy
- Reduces code size
- Promotes readability

- Promotes extensibility

e Extensibility is a software design principle which
considers growth of the system — a system’s ability to
extend the system with new functionality with minimal
changes and impact to the existing system’s
functionality

22 A. O’Fallon, J. Hagemeister t

Summary of Inheritance (ll)

e Disadvantages

- Base classes and derived classes are tightly
coupled — a change to the base class could
Impact all classes derived from it

- With a class hierarchy, many data members could
remain unused, possibly affecting performance

23 A. O’Fallon, J. Hagemeister

In a Few Lectures...
7

e Soon we will discuss polymorphism! Let
Inheritance sink Iin first!

24 A. O’Fallon, J. Hagemeister

References
7

e P.J. Deitel & H.M. Deitel, C++: How to
Program (9th ed.), Prentice Hall, 2014

o J.R.
and
Wes

25 A. O’Fallon, J. Hagemeister

Hanly & E.B. Koffman, Problem Solving
Program Design in C (71 Ed.), Addison-

ey, 2013

Collaborators
7

e Jack Hagemeister

26 A. O’Fallon, J. Hagemeister

http://eecs.wsu.edu/~jackrh

