
(11-1) OOP: Inheritance in C++
D & D Chapter 11

Instructor - Andrew S. O’Fallon

CptS 122 (March 25, 2024)

Washington State University



Key Concepts

 Base and derived classes

 Protected members

 Inheritance

– public, protected, and private accessibility 

modes

– is-a relationship

– Single and multiple

– Multilevel, hierarchical, and hybrid

 Software reuse through inheritance

A. O’Fallon, J. Hagemeister2



Introduction to Inheritance in OOP (I)

 Inheritance may be viewed as a form of software 

reuse or the process of creating new classes from 

existing classes

 Inheritance allows for the implementation of a class 

that acquires another class’ attributes and operations 

(its capabilities)

– The class customizes or enhances the 

capabilities of the acquired class

 Software reuse allows for higher levels of developer 

production through leveraging tested, quality code

A. O’Fallon, J. Hagemeister3



Introduction to Inheritance in OOP (II)

 How inheritance works!

– When implementing a new class some data 

members (attributes) and member functions 

(operations) might be in common between the 

new class and an existing class – the new class 

could inherit the members of the existing class

 The existing class is referred to as the base class (or 

superclass)

 The new class, which acquires the members, is referred 

to as the derived class (or subclass)

– Represents a more customized or specialized version of 

objects

A. O’Fallon, J. Hagemeister4



Introduction to Inheritance in OOP (III)

 The is-a relationship represents inheritance
For example: 

Let’s say we have a base class called Employee and a derived 

class called Manager – A Manager is an Employee (but, note, 

an Employee is not necessarily a Manager)

 In contrast the has-a relationship represents 

composition, where an object contains >= 1 

objects of other classes as members

Some possibilities include:

– An Employee has a “dental plan” (class DentalPlan), has 

an “office” (class Office), etc. 

A. O’Fallon, J. Hagemeister5



What is Inherited?

 A derived class inherits every member of a 

base class except its:

– Constructor(s)

– Destructor

– Friend(s)

– Overloaded assignment operator

A. O’Fallon, J. Hagemeister6



Base and Derived Classes

 Base classes tend to be more general

 Derived classes tend to be more specific

 We’ve established that every derived class is 

an object of it’s base class so…

– The set of objects representative of the base 

class is usually larger than the set of objects 

representative of any of its derived classes
 An Employee class could be representative of all employee 

types including managers, supervisors, directors, officers, etc.

 A Manager class is a smaller, more specific subset of 

employees

A. O’Fallon, J. Hagemeister7



Protected Members

 The access specifier protected provides 

an intermediate level of protection between 
private and public

 Derived classes, and any of its friends, have 
access to protected members of a base 

class, but any nonmembers that are not 

friends do not have access

A. O’Fallon, J. Hagemeister8



Forms of Inheritance

 There are 5 forms of inheritance

– Single

– Multiple

– Multilevel

– Hierarchical

– Hybrid

A. O’Fallon, J. Hagemeister9



Single Inheritance - Inheritance Structure of 
Employees of a Business (I)

A. O’Fallon, J. Hagemeister10

Employee

Manager

Single 

inheritance



Single Inheritance - Inheritance Structure of 
Employees of a Business (II)

 Single inheritance 

– One derived class inherits from only one base 

class

– A Manager inherits capabilities of an Employee 

only

– C++ syntax

class Manager : public Employee

{

// class declarations

};

A. O’Fallon, J. Hagemeister11



Multiple Inheritance - Inheritance Structure 
of University Members (I)

A. O’Fallon, J. Hagemeister12

StudentWorker

TeachingAssistant

Multiple 

inheritance



Multiple Inheritance - Inheritance Structure 
of University Members (II)

 Multiple inheritance

– A derived class inherits from more than one base 

class

– A TeachingAssistant inherits capabilities of a 

Worker and Student

– C++ syntax
class TeachingAssistant: public Worker, public Student

{

// class declarations

};

A. O’Fallon, J. Hagemeister13



Multilevel Inheritance - Inheritance Structure 
of Employees of a Business (I)

A. O’Fallon, J. Hagemeister14

Employee

Officer

Manager

Employee is 

the direct

base class of 

Manager

Employee is an 

indirect base 

class of Officer

Multilevel 

inheritance 

(3 levels)



Multilevel Inheritance - Inheritance Structure 
of Employees of a Business (II)

 Multilevel inheritance

– A derived class acts as a base class for another 

derived class

– An Officer is created from a Manager and a 

Manager is created from an Employee

 An Officer is a type of Manager and a Manager is a type 

of Employee

– Generally want no more than a few levels

A. O’Fallon, J. Hagemeister15



Hierarchical Inheritance - Inheritance 
Structure of Employees of a Business (I)

A. O’Fallon, J. Hagemeister16

Officer

COOCEO

Hierarchical 

inheritance



Hierarchical Inheritance - Inheritance 
Structure of Employees of a Business (II)

 Hierarchical inheritance

– Multiple derived classes inherit from the same 

base class

– CEO (Chief Executive Officer) and COO (Chief 

Operations Officer) have attributes of an Officer, 

but also have their own unique attributes

A. O’Fallon, J. Hagemeister17



Hybrid Inheritance - Inheritance Structure of 
Employees of a Business (I)

A. O’Fallon, J. Hagemeister18

Officer

COOCEO
Hybrid 

inheritance

Chairman

The 

Diamond 

Problem!



Hybrid Inheritance - Inheritance Structure of 
Employees of a Business (II)

 Hybrid inheritance

– Two or more inheritance forms are combined

– A Chairman inherits from both CEO (Chief 

Executive Officer) and COO (Chief Operations 

Officer) classes, and CEO and COO inherit from 

Officer – forms a diamond relationship

 Here the “diamond” problem occurs because CEO and 

COO inherit from Officer, which have own copies of the 

data members and methods – Chairman contains two 

subobjects - there is ambiguity in which members are 

accessed by Chairman

– We’ll solve this problem with keyword virtual – to be 

explained along with polymorphism later!
A. O’Fallon, J. Hagemeister19



Accessibility Modes and 
Inheritance in C++ (I)

 public, protected, and private

– X in the table indicates hidden from derived class

– table courtesy of 

http://www.codingunit.com/cplusplus-

tutorial-inheritance

A. O’Fallon, J. Hagemeister20



Accessibility Modes and 
Inheritance in C++ (II)

 public

– C++ syntax

class Manager : public Employee

{

// class declarations

};

 protected

– C++ syntax

class Manager : protected Employee

{

// class declarations

};

 private

– C++ syntax

class Manager : private Employee

{

// class declarations

};

A. O’Fallon, J. Hagemeister21



Summary of Inheritance (I)

 Advantages

– Software reuse

– Reduces code redundancy

– Reduces code size

– Promotes readability

– Promotes extensibility

 Extensibility is a software design principle which 

considers growth of the system – a system’s ability to 

extend the system with new functionality with minimal 

changes and impact to the existing system’s 

functionality

A. O’Fallon, J. Hagemeister22



Summary of Inheritance (II)

 Disadvantages

– Base classes and derived classes are tightly 

coupled – a change to the base class could 

impact all classes derived from it

– With a class hierarchy, many data members could 

remain unused, possibly affecting performance

A. O’Fallon, J. Hagemeister23



In a Few Lectures…

 Soon we will discuss polymorphism! Let 

inheritance sink in first!

A. O’Fallon, J. Hagemeister24



A. O’Fallon, J. Hagemeister25

References

 P.J. Deitel & H.M. Deitel, C++: How to 

Program (9th ed.), Prentice Hall, 2014

 J.R. Hanly & E.B. Koffman, Problem Solving 

and Program Design in C (7th Ed.), Addison-

Wesley, 2013



A. O’Fallon, J. Hagemeister26

Collaborators

 Jack Hagemeister

http://eecs.wsu.edu/~jackrh

