
(12-1) OOP: Polymorphism in C++
D & D Chapter 12

Instructor - Andrew S. O’Fallon

CptS 122 (April 1, 2024)

Washington State University

Key Concepts

 Polymorphism

 virtual functions

 Virtual function tables

A. O’Fallon2

What is Polymorphism? (I)

 Polymorphism is the ability to use the same expression to

denote different operations

 Runtime polymorphism is the ability to associate multiple

meanings to a single function name though the use of late or

dynamic binding

– You can process objects of the same class hierarchy as if they are all

objects of the hierarchy’s base class

 Compile time polymorphism is the type that is achieved through

function overloading, operator overloading, and templates

 Enables you to “program in the general”, instead of “program in

the specific”

 Another form is parametric polymorphism

– the (data) type is left unspecified and later instantiated

– templates provide parametric polymorphism

A. O’Fallon3

What is Polymorphism? (II)

 Provides a mechanism to allow programs to process objects of

classes that are part of the same class inheritance hierarchy as

though they are part of the base class

– This way we can create several base-class pointers or references

at compile and decide the specific object to which they point or

reference at runtime

 Allows you to design and implement systems that are

extensible – classes can be added with little to no modifications

to portions of the program

 virtual functions provide a means to apply runtime

polymorphism

C. Hundhausen, A. O’Fallon4

Virtual Functions

 A virtual function is specified by using the
keyword virtual

 A function whose behavior can be overridden

or replaced

– Function overriding is a feature that allows a

derived class to provide a specific implementation

for a function that is provided by a base class –

this is NOT the same as function overloading –

the return type, name, and parameters are the

same in the base and derived classes

A. O’Fallon5

Pure Virtual Functions

 A pure virtual function is specified by setting

the function “= 0” in the declaration

 Does not provide an implementation for the

function, just a declaration

 Each derived class must override all base-
class pure virtual functions with concrete

implementations – this is not the case for

virtual functions that are not pure

 The compiler will report an error if a pure

virtual function is not overridden
A. O’Fallon6

Virtual Destructors

 Required if you need to delete an instance

of a derived class through a base class

pointer

 If the base class destructor is not virtual,

then trying to delete the derived class object

through a base class pointer may result in

undefined behavior because only the base

class destructor will be invoked

A. O’Fallon7

Abstract Classes

 A class is considered abstract if one or more of its
virtual functions is pure

 Cannot be instantiated

 If you have decided that a class must be abstract,

then you should make each function that must be
overridden pure virtual

– Remember: a “non-pure” virtual function does not

have to be overridden!

 Remember classes that can be instantiated are

called concrete classes

A. O’Fallon8

Hierarchical Inheritance - Inheritance
Structure of Video Game Characters (I)

 Deity, Alien, and Human classes are derived

from a base class Character:

A. O’Fallon9

Character

HumanAlien

Hierarchical

inheritance

Deity

Hierarchical Inheritance - Inheritance
Structure of Video Game Characters (II)

 What should be in the base class Character?
class Character

{

public:

// Will not show setters, getters, constructors explicitly

virtual ~Character (); // virtual destructor

virtual void move (int x, int y);

virtual void render ();

private:

int mPosX;

int mPosY;

Image mSprite;

};

A. O’Fallon10

Hierarchical Inheritance - Inheritance
Structure of Video Game Characters (III)

 Should we define the Character class as an

abstract class, i.e. a class that cannot be

instantiated?
– Will we ever instantiate a Character object? Or will we just

instantiate Deity, Alien, and Human objects?

 In this example, we will make our Character class abstract –

we will use it as a general way to describe all characters in the

game, but will not instantiate a Character object

class Character

{

public:

virtual void render () = 0; // pure virtual

private:

};
A. O’Fallon11

Hierarchical Inheritance - Inheritance
Structure of Video Game Characters (IV)

 Each derived class (Deity, Alien, and Human)

will respond to function render () in a unique

way

– The same message (i.e. render ()) sent to

different objects will provide many different results

or forms – i.e. polymorphism

– Making the function render () pure virtual

ensures that each derived class provides its own

implementation for it

A. O’Fallon12

Hierarchical Inheritance - Inheritance
Structure of Video Game Characters (V)

 How does each of the derived classes declare a render () function?

– These functions should have the same return type, name, and parameter list as the

base class one; however, they don’t need to be virtual unless we plan on overriding

the functions in the derived classes as well (Zeus could be derived from Deity)
class Deity : public Character // public inheritance

{

public:

void render (); // Does NOT necessarily need to be virtual

private:

};

class Alien : public Character

{

public:

void render ();

private:

};

class Human : public Character

{

public:

void render ();

private:

};

A. O’Fallon13

Hierarchical Inheritance - Inheritance
Structure of Video Game Characters (VI)

 What is the impact of virtual functions?

– Well…let’s look at the following code snippet:

Character *pGameChar = NULL;

…

pGameChar = new Alien;

…

pGameChar -> render (); // render () is virtual in the base class!

• If render () was not declared as virtual in the Character

base class, then a decision about which render () to

invoke would be based on the pointer’s or handler’s

type (i.e. Character *) – would not render an Alien!

A. O’Fallon14

Hierarchical Inheritance - Inheritance
Structure of Video Game Characters (VII)

 What is the importance of a virtual

destructor for this example?

– Well…let’s look at the following code snippet:

Character *pGameChar = NULL;

…

pGameChar = new Alien;

…

delete pGameChar;

• The concern is that if the base class destructor (i.e.

~Character ()) is not virtual, then it’s the one that is used to

delete an Alien – this is problematic because an Alien has

attributes (data members) that a general character does not –

undefined behavior could result (memory leaks as well)!

A. O’Fallon15

Virtual Function Tables (I)

 Polymorphism introduces overhead

– i.e. more memory consumption and processor

time

 The compiler will build a virtual function table

(vtable) for each class that has at least one virtual

function – each instance of an object of the same

class, uses the same table

– An executing program uses the vtable for determining the

proper implementation each time a virtual function is called

– The determination of which function to call at runtime

denotes dynamic binding

A. O’Fallon16

Virtual Function Tables (II)

 The vtable consists of pointers to each
virtual function in a class

– If the function is pure virtual, then the function

pointer is set to 0 or NULL – indicates abstract

class!

A. O’Fallon17

Virtual Function Tables (III)

 Three levels of indirection required to

implement polymorphism

– First level – the pointers to functions stored in the

vtable

– Second level - when an object of a class with one
or more virtual functions is instantiated, the

compiler inserts in the object a pointer to the

associated vtable

– Third level – pointers to the objects that are

declared

A. O’Fallon18

Summary

 Polymorphism allows for the developer

to “program in the general”

A. O’Fallon19

A. O’Fallon20

References

 P.J. Deitel & H.M. Deitel, C++ How to

Program (9th Ed.), Pearson Education, Inc.,

2014.

 D.S. Malik, C++ Programming: Program

Design Including Data Structures (8th Ed.),

Cengage Learning, 2018.

 J.R. Hanly & E.B. Koffman, Problem Solving

and Program Design in C (7th Ed.), Addison-

Wesley, 2013

