
(12-1) OOP: Polymorphism in C++
D & D Chapter 12

Instructor - Andrew S. O’Fallon

CptS 122 (April 1, 2024)

Washington State University

Key Concepts

 Polymorphism

 virtual functions

 Virtual function tables

A. O’Fallon2

What is Polymorphism? (I)

 Polymorphism is the ability to use the same expression to

denote different operations

 Runtime polymorphism is the ability to associate multiple

meanings to a single function name though the use of late or

dynamic binding

– You can process objects of the same class hierarchy as if they are all

objects of the hierarchy’s base class

 Compile time polymorphism is the type that is achieved through

function overloading, operator overloading, and templates

 Enables you to “program in the general”, instead of “program in

the specific”

 Another form is parametric polymorphism

– the (data) type is left unspecified and later instantiated

– templates provide parametric polymorphism

A. O’Fallon3

What is Polymorphism? (II)

 Provides a mechanism to allow programs to process objects of

classes that are part of the same class inheritance hierarchy as

though they are part of the base class

– This way we can create several base-class pointers or references

at compile and decide the specific object to which they point or

reference at runtime

 Allows you to design and implement systems that are

extensible – classes can be added with little to no modifications

to portions of the program

 virtual functions provide a means to apply runtime

polymorphism

C. Hundhausen, A. O’Fallon4

Virtual Functions

 A virtual function is specified by using the
keyword virtual

 A function whose behavior can be overridden

or replaced

– Function overriding is a feature that allows a

derived class to provide a specific implementation

for a function that is provided by a base class –

this is NOT the same as function overloading –

the return type, name, and parameters are the

same in the base and derived classes

A. O’Fallon5

Pure Virtual Functions

 A pure virtual function is specified by setting

the function “= 0” in the declaration

 Does not provide an implementation for the

function, just a declaration

 Each derived class must override all base-
class pure virtual functions with concrete

implementations – this is not the case for

virtual functions that are not pure

 The compiler will report an error if a pure

virtual function is not overridden
A. O’Fallon6

Virtual Destructors

 Required if you need to delete an instance

of a derived class through a base class

pointer

 If the base class destructor is not virtual,

then trying to delete the derived class object

through a base class pointer may result in

undefined behavior because only the base

class destructor will be invoked

A. O’Fallon7

Abstract Classes

 A class is considered abstract if one or more of its
virtual functions is pure

 Cannot be instantiated

 If you have decided that a class must be abstract,

then you should make each function that must be
overridden pure virtual

– Remember: a “non-pure” virtual function does not

have to be overridden!

 Remember classes that can be instantiated are

called concrete classes

A. O’Fallon8

Hierarchical Inheritance - Inheritance
Structure of Video Game Characters (I)

 Deity, Alien, and Human classes are derived

from a base class Character:

A. O’Fallon9

Character

HumanAlien

Hierarchical

inheritance

Deity

Hierarchical Inheritance - Inheritance
Structure of Video Game Characters (II)

 What should be in the base class Character?
class Character

{

public:

// Will not show setters, getters, constructors explicitly

virtual ~Character (); // virtual destructor

virtual void move (int x, int y);

virtual void render ();

private:

int mPosX;

int mPosY;

Image mSprite;

};

A. O’Fallon10

Hierarchical Inheritance - Inheritance
Structure of Video Game Characters (III)

 Should we define the Character class as an

abstract class, i.e. a class that cannot be

instantiated?
– Will we ever instantiate a Character object? Or will we just

instantiate Deity, Alien, and Human objects?

 In this example, we will make our Character class abstract –

we will use it as a general way to describe all characters in the

game, but will not instantiate a Character object

class Character

{

public:

virtual void render () = 0; // pure virtual

private:

};
A. O’Fallon11

Hierarchical Inheritance - Inheritance
Structure of Video Game Characters (IV)

 Each derived class (Deity, Alien, and Human)

will respond to function render () in a unique

way

– The same message (i.e. render ()) sent to

different objects will provide many different results

or forms – i.e. polymorphism

– Making the function render () pure virtual

ensures that each derived class provides its own

implementation for it

A. O’Fallon12

Hierarchical Inheritance - Inheritance
Structure of Video Game Characters (V)

 How does each of the derived classes declare a render () function?

– These functions should have the same return type, name, and parameter list as the

base class one; however, they don’t need to be virtual unless we plan on overriding

the functions in the derived classes as well (Zeus could be derived from Deity)
class Deity : public Character // public inheritance

{

public:

void render (); // Does NOT necessarily need to be virtual

private:

};

class Alien : public Character

{

public:

void render ();

private:

};

class Human : public Character

{

public:

void render ();

private:

};

A. O’Fallon13

Hierarchical Inheritance - Inheritance
Structure of Video Game Characters (VI)

 What is the impact of virtual functions?

– Well…let’s look at the following code snippet:

Character *pGameChar = NULL;

…

pGameChar = new Alien;

…

pGameChar -> render (); // render () is virtual in the base class!

• If render () was not declared as virtual in the Character

base class, then a decision about which render () to

invoke would be based on the pointer’s or handler’s

type (i.e. Character *) – would not render an Alien!

A. O’Fallon14

Hierarchical Inheritance - Inheritance
Structure of Video Game Characters (VII)

 What is the importance of a virtual

destructor for this example?

– Well…let’s look at the following code snippet:

Character *pGameChar = NULL;

…

pGameChar = new Alien;

…

delete pGameChar;

• The concern is that if the base class destructor (i.e.

~Character ()) is not virtual, then it’s the one that is used to

delete an Alien – this is problematic because an Alien has

attributes (data members) that a general character does not –

undefined behavior could result (memory leaks as well)!

A. O’Fallon15

Virtual Function Tables (I)

 Polymorphism introduces overhead

– i.e. more memory consumption and processor

time

 The compiler will build a virtual function table

(vtable) for each class that has at least one virtual

function – each instance of an object of the same

class, uses the same table

– An executing program uses the vtable for determining the

proper implementation each time a virtual function is called

– The determination of which function to call at runtime

denotes dynamic binding

A. O’Fallon16

Virtual Function Tables (II)

 The vtable consists of pointers to each
virtual function in a class

– If the function is pure virtual, then the function

pointer is set to 0 or NULL – indicates abstract

class!

A. O’Fallon17

Virtual Function Tables (III)

 Three levels of indirection required to

implement polymorphism

– First level – the pointers to functions stored in the

vtable

– Second level - when an object of a class with one
or more virtual functions is instantiated, the

compiler inserts in the object a pointer to the

associated vtable

– Third level – pointers to the objects that are

declared

A. O’Fallon18

Summary

 Polymorphism allows for the developer

to “program in the general”

A. O’Fallon19

A. O’Fallon20

References

 P.J. Deitel & H.M. Deitel, C++ How to

Program (9th Ed.), Pearson Education, Inc.,

2014.

 D.S. Malik, C++ Programming: Program

Design Including Data Structures (8th Ed.),

Cengage Learning, 2018.

 J.R. Hanly & E.B. Koffman, Problem Solving

and Program Design in C (7th Ed.), Addison-

Wesley, 2013

