
(12-2) OOP: More Polymorphism in
C++

D & D Chapter 12

Instructor - Andrew S. O’Fallon

CptS 122 (April 3, 2024)

Washington State University

Key Concepts

 Downcasting

 Keyword dynamic_cast

 Keyword static_cast

A. O’Fallon2

What is Downcasting?

 The compiler provides a means to access

derived-class-only members via a base-class

pointer that refers to a derived-class object

– We can explicitly cast the base-class pointer to a

derived-class pointer – this is downcasting

– C++ provides a few different ways for

downcasting – some are safer than others

 Be very careful and cautious when working

with a downcast!

A. O’Fallon3

Hierarchical Inheritance - Inheritance
Structure of Video Game Characters (I)

 Let’s revisit our example - Deity, Alien, and

Human classes are derived from a base

class Character:

A. O’Fallon4

Character

HumanAlien

Hierarchical

inheritance

Deity

Hierarchical Inheritance - Inheritance
Structure of Video Game Characters (II)

 Recall the following for the base class Character:
class Character

{

public:

// Will not show setters, getters, constructors explicitly

virtual ~Character (); // virtual destructor

virtual void move (int x, int y);

virtual void render ();

private:

int mPosX;

int mPosY;

Image mSprite;

};

A. O’Fallon5

Hierarchical Inheritance - Inheritance
Structure of Video Game Characters (III)

 Let’s add some extra attributes to the three derived classes, which are not

accessible in the base class
class Deity : public Character // public inheritance

{

public:

private:

string mType;

};

class Alien : public Character

{

public:

private:

int mPower;

};

class Human : public Character

{

public:

private:

char mGender;

};

A. O’Fallon6

Explicit Downcast – C Style

 Given the following fragment:
Character *pBase1, *pBase2, *pBase3;

pBase1 = new Deity; // Character * - base-class pointer

pBase2 = new Alien;

pBase3 = new Human;

// We will NOT be able to access the derived-class-only members

// through the base-class pointer unless we downcast to each

// of the specific derived-class types

((Deity *) pBase1)->mType

((Alien *) pBase2)->mPower

((Human *) pBase3)->mGender

 Generally, this form of downcasting is not considered

type-safe

A. O’Fallon7

Dynamic Downcast – C++ Style

 Safely converts pointers and references to derived-class types in an

inheritance hierarchy – allows for runtime checks – only works with

polymorphic types (i.e. must have at least one virtual function)
// Note: if the dynamic cast is successful, then dynamic_cast

// returns a value of the new type, i.e. Deity *, Alien *, or

// Human *. If the cast fails, then null pointer is returned for pointers

// or an exception is thrown for references.

(dynamic_cast <Deity *> (pBase1))mType

(dynamic_cast <Alien *> (pBase2))mPower

(dynamic_cast <Human *> (pBase3))mGender

 If you want to check the result of dynamic_cast, then consider

(runtime check):

Deity *pDeity = dynamic_cast <Deity *> (pBase1);

if (pDeity != nullptr) // Was address to object returned?

{

// pDeity->mType – access mType

}
A. O’Fallon8

Static Downcast – C++ Style

 Not guaranteed to safely convert pointers and

references to derived-class types in an inheritance

hierarchy – avoids the cost of a runtime check, but

only safe if program has other logic to guarantee that

a valid cast can be performed

(static_cast <Deity *> (pBase1))mType

(static_cast <Alien *> (pBase2))mPower

(static_cast <Human *> (pBase3))mGender

A. O’Fallon9

Summary

 We can explicitly cast the base-class pointer

to a derived-class pointer – this is

downcasting – to access members in the

derived-class that are not in the base-class

 The casts should only be performed between

types that are in the same inheritance

hierarchy

A. O’Fallon10

A. O’Fallon11

References

 P.J. Deitel & H.M. Deitel, C++ How to

Program (9th Ed.), Pearson Education , Inc.,

2014.

 J.R. Hanly & E.B. Koffman, Problem Solving

and Program Design in C (7th Ed.), Addison-

Wesley, 2013

