
(14-3) More with UML

Instructor - Andrew O’Fallon

CptS 122

Washington State University

A. O’Fallon, J. Hagemeister2

UML as a Model

 UML is a notational syntax for expressing

Object Oriented models

 Merges Booch, Rumbaugh, and Jacobson

 Not a methodology (although the Unified

Process is)

 UML Models can (should be) an important

source for test

A. O’Fallon, J. Hagemeister3

Relationships in UML Models

Relationships in models
can show a dependency
between two instances

The example shows a
relationship such that a
student takes 0 to many
classes; We might
question the many
(limiting it to some max
value) but we can
definitely look for tests
about this relationship

Student Class

takes 0..*

Built in relationships have a

corresponding generic test

requirements that can be identified by

applying a relational test strategy to

each UML diagram

A. O’Fallon, J. Hagemeister4

General Purpose Elements of UML

 Organize diagrams

 Express details

A. O’Fallon, J. Hagemeister5

Packages and Package Diagrams

 Package

– A group of UML diagrams and diagram elements of any

kind, including other packages

 A package diagram shows the organization of packages

A. O’Fallon, J. Hagemeister6

Expressions, Constraints,
Comments, and NOTES

 Expression  a string from an executable language that can

be evaluated to produce a result

 Constraints  a predicate expression on an element

 Comments  a natural language constraint

A note is a box with a dog

eared corner. It may or may not

be connected to a diagram

element. It contains a textual

description or explanation.

A. O’Fallon, J. Hagemeister7

Use Case Models (1)

Query

weather&snow

forecast

Book room

Book kids’

SB course

Visitor

Cancel

course

Book SB

course

Cancel

room

Enter

personal info

<<extend>>

(Enter kid’s age)

<<include>>

<<include>>

A. O’Fallon, J. Hagemeister8

Use Case Models (2)

 Use Case: Book SB course

 Precond: -

 Main flow:

1. Visitor enters date

2. Include (Enter personal info)

3. (Enter kid’s age)

4. Store reservation

5. Confirm reservation to Visitor

 Exceptional flow:

– If number of course participants for specified date > 8, then tell

visitor so and let him choose another date

A. O’Fallon, J. Hagemeister9

Use Case Models (3)

 Use Case: Book kids’ SB course

 Precond: SB course is for a kid

 Main flow:

1. Enter kid’s age

2. Store reservation

3. Confirm reservation to Visitor

 Exceptional flow:

– If course for specified date is adult course, then tell visitor so and let
him choose another date

 Exceptional flow:

– If course for specified date is kids’ course, and the specified age is
outside the course’s age range, then tell visitor so and let him choose
another date

A. O’Fallon, J. Hagemeister10

Use Case

 An abstraction of the system to model

behavior to external interaction

 Accomplish important tasks from the user’s

point of view

 Represent system requirements
– Functional

– Allocation to classes

– Object interaction and interfacing

– User interfaces

– User documentation

A. O’Fallon, J. Hagemeister11

Class Diagram

 Central for OO modeling

 Shows static structure of the system
– Types of objects

– Static relationships
 Association

(e.g.: a company has many employees)

 Generalization (subtypes)
(e.g.: an employee is a kind of person)

 Dependencies (Aggregation)
(e.g.: a company is using trucks to ship products)

A. O’Fallon, J. Hagemeister12

Class

 Set of objects

 Defines

– Name

– Attributes

(optional: type

optional: initial value)

– Operations

Task

startDate: Date = default
endDate: Date

name

setStartDate (d : Date)
setEndDate (d : Date)
getDuration () : Date

A. O’Fallon, J. Hagemeister13

Class diagram example

Light

off()
on()

Heater Cooler

Environmental Controller

define_climate()
terminate_climate()

0..*

1

1

1

1

1

SystemLog

display()
recordEvent()

Actuator

startUp()
shutDown()

Temperature

generalization

aggregation

association

A. O’Fallon, J. Hagemeister14

Sequence Diagrams

 Shows object interactions arranged in time

sequence

 It focuses on

– Objects (and classes)

– Message exchange to carry out the scenarios

functionality

 The objects are organized in an horizontal

line and the events in a vertical time line

A. O’Fallon, J. Hagemeister15

Notation Example (simple version)

 Messages point from client to supplier

: Professor

CourseManager
Math 101 - Section

1 : CourseOffering

Add professor (Professor)

Lifeline Message

A. O’Fallon, J. Hagemeister16

Sequence Diagram: Larger Example

course form :

CourseForm

theManager :

CurriculumManager

aCourse :

Course

: Registrar

1 : set course info

2 : process
3 : add course

4 : <<create>>

Object

creation

A. O’Fallon, J. Hagemeister17

Sequence Diagrams: More Details

an Order
Entry window

an Order
an Order

Line
a Stock Item

1: prepare()
2: * prepare() 3: check()

4: [check = true]

remove()
5: needsToReorder()

Iteration
Condition

Self

delegation

Asynchronous

Message

Activation

a Reorder

Item

6: [needsToReorder = true]

<<create>>

Return arrow

A. O’Fallon, J. Hagemeister18

From: G. Booch, J.Rumbaugh, I. Jacobson: The Unified Modeling Language User Guide.

Addison Wesley, 1999, fig 18-2 page 247

Example of a Transaction

A. O’Fallon, J. Hagemeister19

Content of Sequence Diagrams

 Objects

– They exchange messages among each other

 Messages

– Synchronous: “call events,” denoted by the full arrow;

Duration of synchronization should be indicated by

activation bar or return arrow

–Asynchronous: “signals,” denoted by a half arrow

–There are also «create» and «destroy» messages

A. O’Fallon, J. Hagemeister20

Asynchronous messages

 Do not block the caller

 Can do 3 things:

– Create a new thread

– Create a new object

– Communicate with a thread that is already running

A. O’Fallon, J. Hagemeister21

References

 Robert V. Binder, Testing Object-Oriented

Systems: Models, Patterns, and Tools, Addison-

Wesley, 2000.

A. O’Fallon, J. Hagemeister22

Collaborators

 Jack Hagemeister

http://eecs.wsu.edu/~jackrh

