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UML as a Model

 UML is a notational syntax for expressing 

Object Oriented models

 Merges Booch, Rumbaugh, and Jacobson

 Not a methodology (although the Unified 

Process is)

 UML Models can (should be) an important 

source for test
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Relationships in UML Models

Relationships in models 
can show a dependency 
between two instances

The example shows a 
relationship such that a 
student takes 0 to many 
classes;  We might 
question the many 
(limiting it to some max 
value) but we can 
definitely look for tests 
about this relationship

Student Class

takes 0..*

Built in relationships have a 

corresponding generic test 

requirements that can be identified by 

applying  a relational test strategy to 

each UML diagram
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General Purpose Elements of UML

 Organize diagrams

 Express details
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Packages and Package Diagrams

 Package

– A group of UML diagrams and diagram elements of any 

kind, including other packages

 A package diagram shows the organization of packages 
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Expressions, Constraints, 
Comments, and NOTES

 Expression  a string from an executable language that can 

be evaluated to produce a result

 Constraints  a predicate expression on an element

 Comments  a natural language constraint

A note is a box with a dog 

eared corner. It may or may not 

be connected to a diagram 

element. It contains a textual 

description or explanation.
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Use Case Models (1) 

Query 

weather&snow 

forecast

Book room

Book kids’ 

SB course

Visitor

Cancel 

course

Book SB 

course

Cancel 

room

Enter 

personal info

<<extend>>

(Enter kid’s age)

<<include>>

<<include>>
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Use Case Models (2)

 Use Case: Book SB course

 Precond: -

 Main flow:

1. Visitor enters date

2. Include (Enter personal info)

3. (Enter kid’s age)

4. Store reservation

5. Confirm reservation to Visitor

 Exceptional flow:

– If number of course participants for specified date > 8, then tell 

visitor so and let him choose another date
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Use Case Models (3) 

 Use Case: Book kids’ SB course

 Precond: SB course is for a kid

 Main flow:

1. Enter kid’s age

2. Store reservation

3. Confirm reservation to Visitor

 Exceptional flow:

– If course for specified date is adult course, then tell visitor so and let 
him choose another date

 Exceptional flow:

– If course for specified date is kids’ course, and the specified age is 
outside the course’s age range, then tell visitor so and let him choose 
another date
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Use Case

 An abstraction of the system to model 

behavior to external interaction

 Accomplish important tasks from the user’s 

point of view

 Represent system requirements
– Functional

– Allocation to classes

– Object interaction and interfacing

– User interfaces

– User documentation
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Class Diagram

 Central for OO modeling

 Shows static structure of the system
– Types of objects

– Static relationships
 Association

(e.g.: a company has many employees)

 Generalization (subtypes)
(e.g.: an employee is a kind of person)

 Dependencies (Aggregation)
(e.g.: a company is using trucks to ship products)
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Class

 Set of objects

 Defines

– Name

– Attributes

(optional: type

optional: initial value)

– Operations

Task

startDate: Date = default
endDate: Date

name

setStartDate (d : Date)
setEndDate (d : Date)
getDuration () : Date
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Class diagram example

Light

off( )
on( )

Heater Cooler

Environmental Controller

define_climate( )
terminate_climate( )

0..*

1

1

1

1

1

SystemLog

display( )
recordEvent( )

Actuator

startUp( )
shutDown( )

Temperature

generalization

aggregation

association
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Sequence Diagrams

 Shows object interactions arranged in time 

sequence

 It focuses on

– Objects (and classes)

– Message exchange to carry out the scenarios 

functionality

 The objects are organized in an horizontal 

line and the events in a vertical time line
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Notation Example (simple version)

 Messages point from client to supplier

: Professor

CourseManager
Math 101 - Section

1 : CourseOffering

Add professor (Professor)

Lifeline Message
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Sequence Diagram: Larger Example

course form :

CourseForm

theManager :

CurriculumManager

aCourse :

Course

: Registrar

1 : set course info

2 : process
3 : add course

4 : <<create>>

Object

creation
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Sequence Diagrams: More Details

an Order 
Entry window

an Order
an Order 

Line
a Stock Item

1: prepare()
2: * prepare() 3: check()

4: [check = true]

remove()
5: needsToReorder()

Iteration
Condition

Self 

delegation

Asynchronous

Message

Activation

a Reorder

Item

6: [needsToReorder = true]

<<create>>

Return arrow
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From: G. Booch, J.Rumbaugh, I. Jacobson: The Unified Modeling Language User Guide.

Addison Wesley, 1999, fig 18-2 page 247

Example of a Transaction
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Content of Sequence Diagrams

 Objects

– They exchange messages among each other

 Messages

– Synchronous: “call events,” denoted by the full arrow; 

Duration of synchronization should be indicated by 

activation bar or return arrow 

–Asynchronous: “signals,” denoted by a half arrow

–There are also «create» and «destroy» messages
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Asynchronous messages

 Do not block the caller

 Can do 3 things:

– Create a new thread

– Create a new object

– Communicate with a thread that is already running
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