
(2-1) Data Structures & The Basics of a
Linked List I

Instructor - Andrew S. O’Fallon

CptS 122 (January 17, 2024)

Washington State University

How do we Select a Data
Structure? (1)

 Select a data structure as follows:

– Analyze the problem and requirements to

determine the resource constraints for the

solution

– Determine basic operations that must be

supported

 Quantify resource constraints for each operation

– Select the data structure that best fits these

requirements/constraints

 Courtesy of Will Thacker, Winthrop University

A. O’Fallon, J. Hagemeister2

How do we Select a Data
Structure? (2)

 Questions that must be considered:

– Is the data inserted into the structure at the

beginning or the end? Or are insertions

interspersed with other operations?

– Can data be deleted?

– Is the data processed in some well-defined order,

or is random access allowed?

 Courtesy of Will Thacker, Winthrop University

A. O’Fallon, J. Hagemeister3

Other Considerations for Data
Structures? (1)

 Each data structure has costs and benefits

 Rarely is one data structure better than

another in all situations

 A data structure requires:

– Space for each data item it stores,

– Time to perform each basic operation,

– Programming effort

 Courtesy of Will Thacker, Winthrop University

A. O’Fallon, J. Hagemeister4

Other Considerations for Data
Structures? (2)

 Each problem has constraints on available

time and space

 Only after a careful analysis of problem

characteristics can we know the best data

structure for the task

 Courtesy of Will Thacker, Winthrop University

A. O’Fallon, J. Hagemeister5

The List ADT

A. O’Fallon, J. Hagemeister6

A. O’Fallon, J. Hagemeister7

Definition of Linked List

 A finite sequence of nodes, where each node

may be only accessed sequentially (through

links or pointers), starting from the first node

 It is also defined as a linear collection of self-

referential structures connected by pointers

A. O’Fallon, J. Hagemeister8

Conventions

 An uppercase first character of a function

name indicates that we are referencing the

List ADT operation

 A lowercase first character of a function

indicates our implementation

A. O’Fallon, J. Hagemeister9

Struct Node

 For these examples, we’ll use the following definition
for Node:

typedef struct node

{

char data;

// self-referential

struct node *pNext;

} Node;

A. O’Fallon, J. Hagemeister10

Initializing a List (1)

 InitList (L) Procedure to initialize the list L to empty

 Our implementation:

void initList (Node **pList)

{

// Recall: we must dereference a

// pointer to retain changes

*pList = NULL;

}

A. O’Fallon, J. Hagemeister11

Initializing a List (2)

 The initList() function is elementary and is not
always implemented

 We may instead initialize the pointer to the start of
the list with NULL within main()

int main (void)

{

Node *pList = NULL;

…

}

A. O’Fallon, J. Hagemeister12

Checking for Empty List (1)

 ListIsEmpty (L) -> b: Boolean function to return TRUE if L is empty

 Our implementation:

int isEmpty (Node *pList)

{

int status = 0; // False initially

if (pList == NULL) // The list is empty

{

status = 1; // True

}

return status;

}

A. O’Fallon, J. Hagemeister13

Checking for Empty List (2)

 Note: we could substitute the int return type

with an enumerated type such as Boolean

typedef enum boolean

{

FALSE, TRUE

} Boolean;

A. O’Fallon, J. Hagemeister14

Checking for Empty List (3)

 Our implementation with Boolean defined:

Boolean isEmpty (Node *pList)

{

Boolean status = FALSE;

if (pList == NULL)

{

status = TRUE;

}

return status;

}

A. O’Fallon, J. Hagemeister15

Printing Data in List (1)

 Our implementation:

void printListIterative (Node *pList)

{

printf (“X -> “);

while (pList != NULL)

{

printf (“%c -> “, pList -> data);

// Get to the next item

pList = pList -> pNext;

}

printf (“NULL\n”);

}

A. O’Fallon, J. Hagemeister16

Printing Data in List (2)

 Another possible implementation using isEmpty():

void printListIterative (Node *pList)

{

printf (“X -> “);

while (!isEmpty (pList))

{

printf (“%c -> “, pList -> data);

// Get to the next item

pList = pList -> pNext;

}

printf (“NULL\n”);

}

A. O’Fallon, J. Hagemeister17

Printing Data in List (3)

 We can determine the end of the list by
searching for the NULL pointer

 If the list is initially empty, no problem, the
while() loop will not execute

A. O’Fallon, J. Hagemeister18

Inserting Data at Front of List

 InsertFront (L,e): Procedure to insert a node

with information e into L as the first node in

the List; in case L is empty, make a node

containing e the only node in L and the

current node

A. O’Fallon, J. Hagemeister19

Inserting Data at Front of List w/o Error
Checking (1)

 Our implementation:

void insertFront (Node **pList, char newData)

{

Node *pMem = NULL;

pMem = (Node *) malloc (sizeof (Node));

// Initialize the dynamic memory

pMem -> data = newData;

pMem -> pNext = NULL;

// Insert the new node into front of list

pMem -> pNext = *pList;

*pList = pMem;

}

A. O’Fallon, J. Hagemeister20

Inserting Data at Front of List w/o Error
Checking (2)

 Let’s define a new function which handles the dynamic allocation and
initialization of a node:

Node * makeNode (char newData)

{

Node *pMem = NULL;

pMem = (Node *) malloc (sizeof (Node));

// Initialize the dynamic memory

pMem -> data = newData;

pMem -> pNext = NULL;

return pMem;

}

A. O’Fallon, J. Hagemeister21

Inserting Data at Front of List w/o Error
Checking (3)

 Now we can reorganize our code and take
advantage of the new function:

void insertFront (Node **pList, char newData)

{

Node *pMem = NULL;

pMem = makeNode (newData);

// Insert the new node into front of list

pMem -> pNext = *pList;

*pList = pMem;

}

A. O’Fallon, J. Hagemeister22

Inserting Data at Front of List w/ Error
Checking (1)

 Let’s modify our code so that we can check for dynamic memory allocation errors

 We’ll start with makeNode():

Node * makeNode (char newData)

{

Node *pMem = NULL;

pMem = (Node *) malloc (sizeof (Node));

if (pMem != NULL)

{

// Initialize the dynamic memory

pMem -> data = newData;

pMem -> pNext = NULL;

}

// Otherwise no memory is available; could use else, but

// it’s not necessary

return pMem;

}

A. O’Fallon, J. Hagemeister23

Inserting Data at Front of List w/ Error
Checking (2)

 Now let’s add some error checking to insertFront():

void insertFront (Node **pList, char newData)

{

Node *pMem = NULL;

pMem = makeNode (newData);

if (pMem != NULL) // Memory was available

{

// Insert the new node into front of list

pMem -> pNext = *pList;

*pList = pMem;

}

else // Can’t allocate anymore dynamic memory

{

printf (“WARNING: No memory is available for data insertion!\n”)

}

}

A. O’Fallon, J. Hagemeister24

Closing Thoughts

 Can you build a driver program to test these

functions?

 Is it possible to return a Boolean for

insertFront() to indicate a memory

allocation error, where TRUE means error

and FALSE means no error?

 insertFront() will be seen again with a

Stack data structure…

A. O’Fallon, J. Hagemeister25

Next Lecture…

 Continue our discussion and implementation

of linked lists

A. O’Fallon, J. Hagemeister26

References

 P.J. Deitel & H.M. Deitel, C: How to Program

(8th ed.), Prentice Hall, 2017

 J.R. Hanly & E.B. Koffman, Problem Solving

and Program Design in C (7th Ed.), Addison-

Wesley, 2013

A. O’Fallon, J. Hagemeister27

Collaborators

 Jack Hagemeister

http://eecs.wsu.edu/~jackrh

