
(2-1) Data Structures & The Basics of a
Linked List I

Instructor - Andrew S. O’Fallon

CptS 122 (January 17, 2024)

Washington State University

How do we Select a Data
Structure? (1)

 Select a data structure as follows:

– Analyze the problem and requirements to

determine the resource constraints for the

solution

– Determine basic operations that must be

supported

 Quantify resource constraints for each operation

– Select the data structure that best fits these

requirements/constraints

 Courtesy of Will Thacker, Winthrop University

A. O’Fallon, J. Hagemeister2

How do we Select a Data
Structure? (2)

 Questions that must be considered:

– Is the data inserted into the structure at the

beginning or the end? Or are insertions

interspersed with other operations?

– Can data be deleted?

– Is the data processed in some well-defined order,

or is random access allowed?

 Courtesy of Will Thacker, Winthrop University

A. O’Fallon, J. Hagemeister3

Other Considerations for Data
Structures? (1)

 Each data structure has costs and benefits

 Rarely is one data structure better than

another in all situations

 A data structure requires:

– Space for each data item it stores,

– Time to perform each basic operation,

– Programming effort

 Courtesy of Will Thacker, Winthrop University

A. O’Fallon, J. Hagemeister4

Other Considerations for Data
Structures? (2)

 Each problem has constraints on available

time and space

 Only after a careful analysis of problem

characteristics can we know the best data

structure for the task

 Courtesy of Will Thacker, Winthrop University

A. O’Fallon, J. Hagemeister5

The List ADT

A. O’Fallon, J. Hagemeister6

A. O’Fallon, J. Hagemeister7

Definition of Linked List

 A finite sequence of nodes, where each node

may be only accessed sequentially (through

links or pointers), starting from the first node

 It is also defined as a linear collection of self-

referential structures connected by pointers

A. O’Fallon, J. Hagemeister8

Conventions

 An uppercase first character of a function

name indicates that we are referencing the

List ADT operation

 A lowercase first character of a function

indicates our implementation

A. O’Fallon, J. Hagemeister9

Struct Node

 For these examples, we’ll use the following definition
for Node:

typedef struct node

{

char data;

// self-referential

struct node *pNext;

} Node;

A. O’Fallon, J. Hagemeister10

Initializing a List (1)

 InitList (L) Procedure to initialize the list L to empty

 Our implementation:

void initList (Node **pList)

{

// Recall: we must dereference a

// pointer to retain changes

*pList = NULL;

}

A. O’Fallon, J. Hagemeister11

Initializing a List (2)

 The initList() function is elementary and is not
always implemented

 We may instead initialize the pointer to the start of
the list with NULL within main()

int main (void)

{

Node *pList = NULL;

…

}

A. O’Fallon, J. Hagemeister12

Checking for Empty List (1)

 ListIsEmpty (L) -> b: Boolean function to return TRUE if L is empty

 Our implementation:

int isEmpty (Node *pList)

{

int status = 0; // False initially

if (pList == NULL) // The list is empty

{

status = 1; // True

}

return status;

}

A. O’Fallon, J. Hagemeister13

Checking for Empty List (2)

 Note: we could substitute the int return type

with an enumerated type such as Boolean

typedef enum boolean

{

FALSE, TRUE

} Boolean;

A. O’Fallon, J. Hagemeister14

Checking for Empty List (3)

 Our implementation with Boolean defined:

Boolean isEmpty (Node *pList)

{

Boolean status = FALSE;

if (pList == NULL)

{

status = TRUE;

}

return status;

}

A. O’Fallon, J. Hagemeister15

Printing Data in List (1)

 Our implementation:

void printListIterative (Node *pList)

{

printf (“X -> “);

while (pList != NULL)

{

printf (“%c -> “, pList -> data);

// Get to the next item

pList = pList -> pNext;

}

printf (“NULL\n”);

}

A. O’Fallon, J. Hagemeister16

Printing Data in List (2)

 Another possible implementation using isEmpty():

void printListIterative (Node *pList)

{

printf (“X -> “);

while (!isEmpty (pList))

{

printf (“%c -> “, pList -> data);

// Get to the next item

pList = pList -> pNext;

}

printf (“NULL\n”);

}

A. O’Fallon, J. Hagemeister17

Printing Data in List (3)

 We can determine the end of the list by
searching for the NULL pointer

 If the list is initially empty, no problem, the
while() loop will not execute

A. O’Fallon, J. Hagemeister18

Inserting Data at Front of List

 InsertFront (L,e): Procedure to insert a node

with information e into L as the first node in

the List; in case L is empty, make a node

containing e the only node in L and the

current node

A. O’Fallon, J. Hagemeister19

Inserting Data at Front of List w/o Error
Checking (1)

 Our implementation:

void insertFront (Node **pList, char newData)

{

Node *pMem = NULL;

pMem = (Node *) malloc (sizeof (Node));

// Initialize the dynamic memory

pMem -> data = newData;

pMem -> pNext = NULL;

// Insert the new node into front of list

pMem -> pNext = *pList;

*pList = pMem;

}

A. O’Fallon, J. Hagemeister20

Inserting Data at Front of List w/o Error
Checking (2)

 Let’s define a new function which handles the dynamic allocation and
initialization of a node:

Node * makeNode (char newData)

{

Node *pMem = NULL;

pMem = (Node *) malloc (sizeof (Node));

// Initialize the dynamic memory

pMem -> data = newData;

pMem -> pNext = NULL;

return pMem;

}

A. O’Fallon, J. Hagemeister21

Inserting Data at Front of List w/o Error
Checking (3)

 Now we can reorganize our code and take
advantage of the new function:

void insertFront (Node **pList, char newData)

{

Node *pMem = NULL;

pMem = makeNode (newData);

// Insert the new node into front of list

pMem -> pNext = *pList;

*pList = pMem;

}

A. O’Fallon, J. Hagemeister22

Inserting Data at Front of List w/ Error
Checking (1)

 Let’s modify our code so that we can check for dynamic memory allocation errors

 We’ll start with makeNode():

Node * makeNode (char newData)

{

Node *pMem = NULL;

pMem = (Node *) malloc (sizeof (Node));

if (pMem != NULL)

{

// Initialize the dynamic memory

pMem -> data = newData;

pMem -> pNext = NULL;

}

// Otherwise no memory is available; could use else, but

// it’s not necessary

return pMem;

}

A. O’Fallon, J. Hagemeister23

Inserting Data at Front of List w/ Error
Checking (2)

 Now let’s add some error checking to insertFront():

void insertFront (Node **pList, char newData)

{

Node *pMem = NULL;

pMem = makeNode (newData);

if (pMem != NULL) // Memory was available

{

// Insert the new node into front of list

pMem -> pNext = *pList;

*pList = pMem;

}

else // Can’t allocate anymore dynamic memory

{

printf (“WARNING: No memory is available for data insertion!\n”)

}

}

A. O’Fallon, J. Hagemeister24

Closing Thoughts

 Can you build a driver program to test these

functions?

 Is it possible to return a Boolean for

insertFront() to indicate a memory

allocation error, where TRUE means error

and FALSE means no error?

 insertFront() will be seen again with a

Stack data structure…

A. O’Fallon, J. Hagemeister25

Next Lecture…

 Continue our discussion and implementation

of linked lists

A. O’Fallon, J. Hagemeister26

References

 P.J. Deitel & H.M. Deitel, C: How to Program

(8th ed.), Prentice Hall, 2017

 J.R. Hanly & E.B. Koffman, Problem Solving

and Program Design in C (7th Ed.), Addison-

Wesley, 2013

A. O’Fallon, J. Hagemeister27

Collaborators

 Jack Hagemeister

http://eecs.wsu.edu/~jackrh

