
(3-1) Basics of a Stack

Instructor - Andrew S. O’Fallon

CptS 122 (January 26, 2024)

Washington State University

A. O’Fallon, J. Hagemeister2

What is a Stack?

 A finite sequence of nodes, where only the top node may be

accessed

 Insertions (PUSHes) may only be made at the top and deletions

(POPs) may only be made at the top

– A stack is referred to as a last-in, first-out (LIFO) data structure

– Consider a pile or “stack” of plates; as you unload your

dishwasher, the most recent plate is placed on top of the last plate,

etc.; as you need a plate, you grab one from the top of the stack

 A stack is a restricted or constrained list

 We will focus most of our attention on linked list

implementations of stacks

The Function-Call Stack (1)

 Refer to D & D Section 6.11

 We are aware of the function call stack; it is

LIFO

 Also known as the program-execution stack,

run-time stack, program stack, or simply “the

stack”

 Works behind the scenes – supports the

function call/return mechanism – LIFO

– Necessary to track sequence of called functions

A. O’Fallon, J. Hagemeister3

The Function-Call Stack (2)

 Supports the creation, maintenance, and

destruction of each called function’s local

variables

 Call stack memory is placed in RAM;

monitored closely by CPU

A. O’Fallon, J. Hagemeister4

The Function-Call Stack (3)

 When a function declares a variable, it is

“pushed” onto the stack (dynamic memory is

not though!)

 Parameters are also passed using the call

stack

A. O’Fallon, J. Hagemeister5

The Function-Call Stack (4)

 How to use the call stack when debugging in

MS VS 2015: https://msdn.microsoft.com/en-

us/library/a3694ts5.aspx

 Diagram of call stack - courtesy of

https://en.wikipedia.org/wiki/Call_stack

A. O’Fallon, J. Hagemeister6

https://msdn.microsoft.com/en-us/library/a3694ts5.aspx

Stack Frames (1)

 Each called function must eventually return

control to the calling function
void function1(void) // calling function

{

function2(); // called function

// after executing function2(),

// control returns back to function1()

}

 The system must track the return address

that each called function needs to return

control to the calling function – the function-

call stack handles this info

A. O’Fallon, J. Hagemeister7

Stack Frames (2)

 Each time a function calls another function,

an entry is pushed to the stack

– The entry is called the stack frame or activation

record, which contains the return address

required for the called function to return to the

calling function

– The entry also contains some other information

discussed later

A. O’Fallon, J. Hagemeister8

Stack Frames (3)

 If called function returns, instead of calling

another function before returning, then the

stack frame for the function call is popped,

and control transfers to the return address in

the stack frame

 The information required for the called

function to return to its caller is always at the

top of the call stack!

A. O’Fallon, J. Hagemeister9

Stack Frames (4)

 If a called function makes a call to another

function, then the stack frame for the new

function is pushed to the top of the stack

A. O’Fallon, J. Hagemeister10

Stack Frames and Local Variables (1)

 Local variables including parameters and

variables declared by the function are

reserved in the stack frame

– The reason is these variables need to remain

active if a function makes a call to another

function and “go away” when the function returns

to its caller

A. O’Fallon, J. Hagemeister11

Stack Frames and Local Variables (2)

 Stack Overflow

– If more function calls occur than can be handled

by the finite amount of memory for the function

call-stack, then an error called stack overflow

occurs

– There is high potential for this occurring with

recursion, on problems that require a lot of

recursive steps!

A. O’Fallon, J. Hagemeister12

Video Explanation of Call Stack

 https://www.youtube.com/watch?v=Q2sFmqv

pBe0

A. O’Fallon, J. Hagemeister13

The Heap

 A region of memory that is not managed for

you (unlike with the stack)

 We need to explicitly deallocate (free) the

memory

A. O’Fallon, J. Hagemeister14

A. O’Fallon, J. Hagemeister15

Typical Representation of Stack of
Integers

12

42

5

120

73

99

9999

Push Pop

Top

A. O’Fallon, J. Hagemeister16

Struct StackNode

 For these examples, we’ll use the following definition
for stackNode:

typedef struct stackNode

{

char data;

// self-referential

struct stackNode *pNext;

} StackNode;

A. O’Fallon, J. Hagemeister17

Initializing a Stack (1)

 InitStack (S) Procedure to initialize the stack S to
empty

 Our implementation:

void initStack (StackNode **pStack)

{

// Recall: we must dereference a

// pointer to retain changes

*pStack = NULL;

}

A. O’Fallon, J. Hagemeister18

Initializing a Stack (2)

 The initStack() function is elementary and is not always
implemented

 We may instead initialize the pointer to the top of the stack with
NULL within main()

int main (void)

{

StackNode *pStack = NULL; // points to

// stack top

…

}

A. O’Fallon, J. Hagemeister19

Checking for Empty Stack (1)

 StackIsEmpty (L) -> b: Boolean function to return TRUE if S is empty

 Our implementation:

int isEmpty (StackNode *pStack)

{

int status = 0; // False initially

if (pStack == NULL) // The stack is empty

{

status = 1; // True

}

return status;

}

A. O’Fallon, J. Hagemeister20

Checking for Empty Stack (2)

 Note: we could substitute the int return type

with an enumerated type such as Boolean

typedef enum boolean

{

FALSE, TRUE

} Boolean;

A. O’Fallon, J. Hagemeister21

Checking for Empty Stack (3)

 Our implementation with Boolean defined:

Boolean isEmpty (StackNode *pStack)

{

Boolean status = FALSE;

if (pStack == NULL)

{

status = TRUE;

}

return status;

}

A. O’Fallon, J. Hagemeister22

Printing Data in Stack (1)

 Our implementation:

void printStackIterative (StackNode *pStack)

{

printf (“X -> “);

while (!isEmpty (pStack))

{

printf (“%c -> “, pStack -> data);

// Get to the next item

pStack = pStack -> pNext;

}

printf (“NULL\n”);

}

A. O’Fallon, J. Hagemeister23

Printing Data in Stack (2)

 Another possible implementation using recursion:

void printStackRecursive (StackNode *pStack)

{

if (!isEmpty (pStack)) // Recursive step

{

printf (“| %c |\n”, pStack -> data);

printf (“ | \n”); // Trying to imitate link

printf (“ V \n”);

// Get to the next item

pStack = pStack -> pNext;

printStackRecursive (pStack);

}

else // Base case

{

printf (“NULL\n”);

}

}

A. O’Fallon, J. Hagemeister24

Inserting Data into a Stack

 Push (S,e): Procedure to insert a node with

information e into S; in case S is empty,

make a node containing e the only node in S

and the current node

 Please consider these basic specifications

for stack operations in the future; However, I

will only show code from this point forward

A. O’Fallon, J. Hagemeister25

Inserting Data onto Top of Stack w/o
Error Checking (1)

 Our implementation:

void push (StackNode **pStack, char newData)

{

StackNode *pMem = NULL;

pMem = (StackNode *) malloc (sizeof (StackNode));

// Initialize the dynamic memory

pMem -> data = newData;

pMem -> pNext = NULL;

// Insert the new node onto top of stack

pMem -> pNext = *pStack;

*pStack = pMem;

}

 Does this look similar to insertAtFront () for a linked list? Yes!!!!!!

A. O’Fallon, J. Hagemeister26

Inserting Data onto Top of Stack w/o
Error Checking (2)

 Let’s define a new function which handles the dynamic allocation and
initialization of a node:

StackNode * makeNode (char newData)

{

StackNode *pMem = NULL;

pMem = (StackNode *) malloc (sizeof (StackNode));

// Initialize the dynamic memory

pMem -> data = newData;

pMem -> pNext = NULL;

return pMem;

}

A. O’Fallon, J. Hagemeister27

Inserting Data onto Top of Stack w/o
Error Checking (3)

 Now we can reorganize our code and take
advantage of the new function:

void push (StackNode **pStack, char newData)

{

StackNode *pMem = NULL;

pMem = makeNode (newData);

// Insert the new node onto top of stack

pMem -> pNext = *pStack;

*pStack = pMem;

}

A. O’Fallon, J. Hagemeister28

Inserting Data onto Top of Stack with
Error Checking (1)

 Let’s modify our code so that we can check for dynamic memory allocation errors

 We’ll start with makeNode():

StackNode * makeNode (char newData)

{

StackNode *pMem = NULL;

pMem = (StackNode *) malloc (sizeof (StackNode));

if (pMem != NULL)

{

// Initialize the dynamic memory

pMem -> data = newData;

pMem -> pNext = NULL;

}

// Otherwise no memory is available; could use else, but

// it’s not necessary

return pMem;

}

A. O’Fallon, J. Hagemeister29

Inserting Data onto Top of Stack with
Error Checking (2)

 Let’s define a Boolean enumerated type as follows:

typedef enum boolean

{

FALSE, TRUE

} Boolean; // To be used to indicate success of push ()

 Now let’s add some error checking to push():

Boolean push (StackNode **pStack, char newData)

{

StackNode *pMem = NULL;

Boolean status = FALSE; // Assume can’t insert a new node; out of memory

pMem = makeNode (newData);

if (pMem != NULL) // Memory was available

{

// Insert the new node onto top of stack

pMem -> pNext = *pStack;

*pStack = pMem;

status = TRUE; // Successfully added a node to the stack!

}

return status;

}

A. O’Fallon, J. Hagemeister30

Removing Data from Top of Stack (1)

 We will sometimes apply defensive design practices and ensure the stack is not empty; if we do not, then
the precondition that must be satisfied is that the stack is not empty!

 This implementation of pop() checks for removal errors and doesn’t return the data popped from the
stack:

Boolean pop(StackNode **pStack)

{

Boolean status = FALSE;

StackNode *pTop = NULL;

if (!isEmpty (*pStack)) // Stack is not empty; defensive design

{

pTop = *pStack; // Temp storage of top of stack

*pStack = (*pStack)->pNext;

free (pTop); // Remove the top node

status = TRUE; // Successfully removed the top node

}

return status;

}

A. O’Fallon, J. Hagemeister31

Removing Data from Top of Stack (2)

 This implementation of pop() returns the data removed from the top of the stack

char pop(StackNode **pStack)

{

StackNode *pTop = NULL;

character retData = ‘\0’;

if (!isEmpty (*pStack)) // Stack is not empty; defensive design

{

pTop = *pStack; // Temp storage of top of stack

retData = (*pStack) -> data; // Keep data in top node

*pStack = (*pStack) -> pNext;

free (pTop); // Remove the top node

}

return retData;

}

A. O’Fallon, J. Hagemeister32

Retrieving Data from Top of Stack w/o
Deleting Nodes

 The peek() or top() function does not modify the stack; it just returns the
data in the top of the stack (it “peeks” at the data)

char peek (StackNode *pStack)

{

character retData = ‘\0’;

if (!isEmpty (pStack)) // Stack is not empty; defensive design

{

retData = pStack -> data;

}

return retData;

}

A. O’Fallon, J. Hagemeister33

Stack Applications

 Reversing strings

 Checking for palindromes

 Searching for a path in a maze

 Tower of Hanoi

 Evaluating infix expressions

 Function call stacks

 Many others…

A. O’Fallon, J. Hagemeister34

Closing Thoughts

 Can you build a driver program to test these functions?

 push() for a stack is essentially the same operation as
insertFront() for a linked list…

 pop() is deleteFront() for a linked list

 If you know how to implement a linked list you should be able to
implement a stack…

 You can implement a stack without using links; Hence, you can

use an array as the underlying structure for the stack

 Continue to discuss why you would use a dynamic linked list
instead of a dynamic linked stack and vice versa

A. O’Fallon, J. Hagemeister35

Next Lecture…

 Queues

A. O’Fallon, J. Hagemeister36

References

 P.J. Deitel & H.M. Deitel, C: How to Program

(8th ed.), Prentice Hall, 2016

 J.R. Hanly & E.B. Koffman, Problem Solving

and Program Design in C (7th Ed.), Addison-

Wesley, 2013

A. O’Fallon, J. Hagemeister37

Collaborators

 Jack Hagemeister

http://eecs.wsu.edu/~jackrh

