
(5 - 1) Object-Oriented Programming 
(OOP) and C++

Instructor - Andrew S. O’Fallon

CptS 122 (February 5, 2024)

Washington State University



Key Concepts

 Object-Oriented Design

 Object-Oriented Programming (OOP)

 Class and Objects

 Data Encapsulation

 Abstraction/Information Hiding

 C++ I/O

 References and Reference Parameters

 Unary Scope Resolution Operator

 Function Overloading
A. O’Fallon, J. Hagemeister2



Object-Oriented Design (OOD)

 Model software in ways that are similar to 

how people view/describe real-world objects

 Descriptions and designs include properties 

or attributes of the real-world objects

 The Unified Modeling Language (UML) 

provides a specification for illustrating 

properties of objects along with interactions 

between them

A. O’Fallon, J. Hagemeister3



Object-Oriented Programming 
(OOP) (I)

 Programming language model which 

institutes mechanisms to support 

implementing object driven software systems

– C++, C#, Java

 Procedural programming, such as instituted 

by C, is action oriented

 In C, the unit of programming is a function

 In C++ the unit is a class

A. O’Fallon, J. Hagemeister4



Object-Oriented Programming 
(OOP) (II)

 We’ll explore OOP with classes, 

encapsulation, objects, operator overloading, 

inheritance, and polymorphism

 We’ll also explore generic programming with 

function templates and class templates

A. O’Fallon, J. Hagemeister5



Classes and Objects

 What is a class?

– A user defined type or data structure

– Contains data members (attributes) and member 

functions (operations)

– A blueprint for an object

 What is an object?

– An instantiation of a class

– The class is the type and the object is the variable 

with allocated memory for that type

A. O’Fallon, J. Hagemeister6



Data Encapsulation (I)

 A way of organizing or wrapping of 

data/attributes and methods/operations into a 

structure (or capsule) 

– Demonstrated by objects

 Objects naturally impose encapsulation –

attributes and operations are closely tied 

together

 How does making a function or class a 
friend of another class impact 

encapsulation?
A. O’Fallon, J. Hagemeister7



Abstraction/Information Hiding (I)

 A design principle which states a design 

decision should be hidden from the rest of 

the system

 In other words, objects should communicate 

with each other through well-defined 

interfaces, but not know how other objects 

are implemented

A. O’Fallon, J. Hagemeister8



Abstraction/Information Hiding (II)

 Prevents access to data aside from the 

methods specified by the object

 Guarantees integrity of data

 Access specifiers in C++ control the access 

to information

– public, protected, and private

A. O’Fallon, J. Hagemeister9



Programming in C++

 When programming in an object-oriented 

language, we’ll be exposed to encapsulation, 

abstraction, and information hiding in action

 We need to start thinking in an object-

oriented way so that we can leverage the 

software design benefits of objects and the 

richness of C++!

 Always remember, objects contain data and 

associated operations!

A. O’Fallon, J. Hagemeister10



Basics of C++ and I/O (I)

 In C++, just like in C, every program begins 

execution with function main ()

 To perform input and output (I/O) we need to 

include the C++ Standard Library 
<iostream>

– Essentially replaces <stdio.h>, but with even 

more richness and convenience

A. O’Fallon, J. Hagemeister11



Basics of C++ and I/O (II)

 In tandem with including <iostream>, we’ll 

need to use the following:

– A standard output stream object (std::cout) and 

stream insertion operator (<<) to display 

information on the screen 

 Replaces the need for printf ()

– A standard input stream object (std::cin) and the 

stream extraction operator (>>) to read data from 

the keyboard

 Replaces the need for scanf ()

A. O’Fallon, J. Hagemeister12



Basics of C++ and I/O Example

#include <iostream>

using std::cin; // replaces need for std:: in front of cin

using std::cout; // replaces need for std:: in front of cout

using std::endl; // replaces need for std:: in front of endl

int main (void)

{

int n1 = 0;

cout << “Enter a number: “;

cin >> n1; // Notice no address of (&) required!

int n2 = 0, sum = 0; // Can declare variables right 

// before their use in C++!

cout << “Enter a second number: “;

cin >> n2;

sum = n1 + n2;

cout << “The sum is: “ << sum << endl; // endl outputs a 

// newline, then flushes buffer

return 0;

} A. O’Fallon, J. Hagemeister13



References and Reference 
Parameters (I)

 There are two ways to pass arguments to 

functions in C++
– Pass-by-value (PBV) – a copy of the contents/value of each 

argument is made and passed (on the function call stack) to the 

called function

 One disadvantage of pass-by-value is copying the contents of 

a large data item or object introduces longer execution times 

and memory space

 In general, should only be used with simple types

 Passing-by-pointer falls under this category

– Pass-by-reference (PBR) – NO copy of the contents/value of each 

argument is made

 The called function can access the caller’s data directly, and 

modify the data

A. O’Fallon, J. Hagemeister14



References and Reference 
Parameters (II)

 Thoughts: we don’t use pass-by-reference strictly so 

that we can modify the data in an object directly, in 

many cases we use it so that the overhead of 

copying data is circumvented

 We use the ampersand (&) to represent pass-by-

reference

– i.e. void cube (int &n); // this is a prototype

– Don’t confuse with the address of (&) operator! 

Context determines which one’s in play!

 Check out: 

http://www.cplusplus.com/articles/z6vU7k9E/
A. O’Fallon, J. Hagemeister15

http://www.cplusplus.com/articles/z6vU7k9E/


References and Reference 
Parameters (III)

 We can return a reference to a variable as 

well – however we have to be very careful!

– i.e. int & someFunction (int &n);

 If we return a reference to an automatic local 

variable, the variable becomes “undefined” 

when the function exits; unless the variable is 

declared as “static” (keyword)
– References to undefined variables are called dangling

references 

– Note: dangling references and dangling pointers are NOT 

the same!

A. O’Fallon, J. Hagemeister16



References and Reference 
Parameters Example

…

void cubeByRef (int &n);

void cubeByPtr (int *pN);

int main (void)

{

int n = 5;

cubeByRef (n); // Don’t need &, the formal parameter list indicates PBR

cubeByPtr (&n); // Need address of (&) operator to satisfy pointer; applying PBV

…

}

void cubeByRef (int &n)

{

n = n * n * n; // We have direct access to n, don’t need to dereference; 

// changes are retained

}

void cubeByPtr (int *pN)

{

*pN = (*pN) * (*pN) * (*pN); // Need to dereference to indirectly change value

} A. O’Fallon, J. Hagemeister17



Unary Scope Resolution Operator

 It’s possible to declare local and global 

variables of the same name

– Unary Scope Resolution Operator (::) allows a 

global variable to be accessed without confusing 

it with a local variable
…

int num = 42; // global variable

int main (void)

{

double num = 100.25; // local variable

cout << num << endl; // displays 100.25

cout << ::num << endl; // displays 42

}
A. O’Fallon, J. Hagemeister18



Function Overloading (I)

 The ability to define multiple functions with 

the same name

– Requires that each function has different types of 

parameters and/or different number of parameters 

and/or different order of parameters

– i.e. int cube (int n); 

double cube (double n);

 The C++ compiler selects the appropriate 

function based on the number, types, and 

order of arguments in the function call

A. O’Fallon, J. Hagemeister19



Function Overloading (II)

 We use function overloading to increase 

readability and understandability

– Of course, we only want to overload functions that 

perform similar tasks

A. O’Fallon, J. Hagemeister20



C++ Standard Template Library 
(STL) Class Vector

 STL class vector represents a more robust 

array with many more capabilities

 May operate with different types of data 

because they’re templated! 

– i.e. vector<int> v1(10); // declares a 10 element
// vector of integers

vector<double> v2(5); // declares a 5 element vector 

// of doubles

A. O’Fallon, J. Hagemeister21



A. O’Fallon, J. Hagemeister22

Closing Thoughts

 OOP and C++ opens us up to an entirely 

different world!

 We need to start thinking more in terms of 

data and “capsules” instead of just actions 

and logic

 Learning C++ is a challenge, but provides 

features that will increase levels of 

production!



A. O’Fallon, J. Hagemeister23

References

 P.J. Deitel & H.M. Deitel, C++: How to 

Program (9th ed.), Prentice Hall, 2014.



A. O’Fallon, J. Hagemeister24

Collaborators

 Jack Hagemeister

http://eecs.wsu.edu/~jackrh

