
(5 - 1) Object-Oriented Programming 
(OOP) and C++

Instructor - Andrew S. O’Fallon

CptS 122 (February 5, 2024)

Washington State University



Key Concepts

 Object-Oriented Design

 Object-Oriented Programming (OOP)

 Class and Objects

 Data Encapsulation

 Abstraction/Information Hiding

 C++ I/O

 References and Reference Parameters

 Unary Scope Resolution Operator

 Function Overloading
A. O’Fallon, J. Hagemeister2



Object-Oriented Design (OOD)

 Model software in ways that are similar to 

how people view/describe real-world objects

 Descriptions and designs include properties 

or attributes of the real-world objects

 The Unified Modeling Language (UML) 

provides a specification for illustrating 

properties of objects along with interactions 

between them

A. O’Fallon, J. Hagemeister3



Object-Oriented Programming 
(OOP) (I)

 Programming language model which 

institutes mechanisms to support 

implementing object driven software systems

– C++, C#, Java

 Procedural programming, such as instituted 

by C, is action oriented

 In C, the unit of programming is a function

 In C++ the unit is a class

A. O’Fallon, J. Hagemeister4



Object-Oriented Programming 
(OOP) (II)

 We’ll explore OOP with classes, 

encapsulation, objects, operator overloading, 

inheritance, and polymorphism

 We’ll also explore generic programming with 

function templates and class templates

A. O’Fallon, J. Hagemeister5



Classes and Objects

 What is a class?

– A user defined type or data structure

– Contains data members (attributes) and member 

functions (operations)

– A blueprint for an object

 What is an object?

– An instantiation of a class

– The class is the type and the object is the variable 

with allocated memory for that type

A. O’Fallon, J. Hagemeister6



Data Encapsulation (I)

 A way of organizing or wrapping of 

data/attributes and methods/operations into a 

structure (or capsule) 

– Demonstrated by objects

 Objects naturally impose encapsulation –

attributes and operations are closely tied 

together

 How does making a function or class a 
friend of another class impact 

encapsulation?
A. O’Fallon, J. Hagemeister7



Abstraction/Information Hiding (I)

 A design principle which states a design 

decision should be hidden from the rest of 

the system

 In other words, objects should communicate 

with each other through well-defined 

interfaces, but not know how other objects 

are implemented

A. O’Fallon, J. Hagemeister8



Abstraction/Information Hiding (II)

 Prevents access to data aside from the 

methods specified by the object

 Guarantees integrity of data

 Access specifiers in C++ control the access 

to information

– public, protected, and private

A. O’Fallon, J. Hagemeister9



Programming in C++

 When programming in an object-oriented 

language, we’ll be exposed to encapsulation, 

abstraction, and information hiding in action

 We need to start thinking in an object-

oriented way so that we can leverage the 

software design benefits of objects and the 

richness of C++!

 Always remember, objects contain data and 

associated operations!

A. O’Fallon, J. Hagemeister10



Basics of C++ and I/O (I)

 In C++, just like in C, every program begins 

execution with function main ()

 To perform input and output (I/O) we need to 

include the C++ Standard Library 
<iostream>

– Essentially replaces <stdio.h>, but with even 

more richness and convenience

A. O’Fallon, J. Hagemeister11



Basics of C++ and I/O (II)

 In tandem with including <iostream>, we’ll 

need to use the following:

– A standard output stream object (std::cout) and 

stream insertion operator (<<) to display 

information on the screen 

 Replaces the need for printf ()

– A standard input stream object (std::cin) and the 

stream extraction operator (>>) to read data from 

the keyboard

 Replaces the need for scanf ()

A. O’Fallon, J. Hagemeister12



Basics of C++ and I/O Example

#include <iostream>

using std::cin; // replaces need for std:: in front of cin

using std::cout; // replaces need for std:: in front of cout

using std::endl; // replaces need for std:: in front of endl

int main (void)

{

int n1 = 0;

cout << “Enter a number: “;

cin >> n1; // Notice no address of (&) required!

int n2 = 0, sum = 0; // Can declare variables right 

// before their use in C++!

cout << “Enter a second number: “;

cin >> n2;

sum = n1 + n2;

cout << “The sum is: “ << sum << endl; // endl outputs a 

// newline, then flushes buffer

return 0;

} A. O’Fallon, J. Hagemeister13



References and Reference 
Parameters (I)

 There are two ways to pass arguments to 

functions in C++
– Pass-by-value (PBV) – a copy of the contents/value of each 

argument is made and passed (on the function call stack) to the 

called function

 One disadvantage of pass-by-value is copying the contents of 

a large data item or object introduces longer execution times 

and memory space

 In general, should only be used with simple types

 Passing-by-pointer falls under this category

– Pass-by-reference (PBR) – NO copy of the contents/value of each 

argument is made

 The called function can access the caller’s data directly, and 

modify the data

A. O’Fallon, J. Hagemeister14



References and Reference 
Parameters (II)

 Thoughts: we don’t use pass-by-reference strictly so 

that we can modify the data in an object directly, in 

many cases we use it so that the overhead of 

copying data is circumvented

 We use the ampersand (&) to represent pass-by-

reference

– i.e. void cube (int &n); // this is a prototype

– Don’t confuse with the address of (&) operator! 

Context determines which one’s in play!

 Check out: 

http://www.cplusplus.com/articles/z6vU7k9E/
A. O’Fallon, J. Hagemeister15

http://www.cplusplus.com/articles/z6vU7k9E/


References and Reference 
Parameters (III)

 We can return a reference to a variable as 

well – however we have to be very careful!

– i.e. int & someFunction (int &n);

 If we return a reference to an automatic local 

variable, the variable becomes “undefined” 

when the function exits; unless the variable is 

declared as “static” (keyword)
– References to undefined variables are called dangling

references 

– Note: dangling references and dangling pointers are NOT 

the same!

A. O’Fallon, J. Hagemeister16



References and Reference 
Parameters Example

…

void cubeByRef (int &n);

void cubeByPtr (int *pN);

int main (void)

{

int n = 5;

cubeByRef (n); // Don’t need &, the formal parameter list indicates PBR

cubeByPtr (&n); // Need address of (&) operator to satisfy pointer; applying PBV

…

}

void cubeByRef (int &n)

{

n = n * n * n; // We have direct access to n, don’t need to dereference; 

// changes are retained

}

void cubeByPtr (int *pN)

{

*pN = (*pN) * (*pN) * (*pN); // Need to dereference to indirectly change value

} A. O’Fallon, J. Hagemeister17



Unary Scope Resolution Operator

 It’s possible to declare local and global 

variables of the same name

– Unary Scope Resolution Operator (::) allows a 

global variable to be accessed without confusing 

it with a local variable
…

int num = 42; // global variable

int main (void)

{

double num = 100.25; // local variable

cout << num << endl; // displays 100.25

cout << ::num << endl; // displays 42

}
A. O’Fallon, J. Hagemeister18



Function Overloading (I)

 The ability to define multiple functions with 

the same name

– Requires that each function has different types of 

parameters and/or different number of parameters 

and/or different order of parameters

– i.e. int cube (int n); 

double cube (double n);

 The C++ compiler selects the appropriate 

function based on the number, types, and 

order of arguments in the function call

A. O’Fallon, J. Hagemeister19



Function Overloading (II)

 We use function overloading to increase 

readability and understandability

– Of course, we only want to overload functions that 

perform similar tasks

A. O’Fallon, J. Hagemeister20



C++ Standard Template Library 
(STL) Class Vector

 STL class vector represents a more robust 

array with many more capabilities

 May operate with different types of data 

because they’re templated! 

– i.e. vector<int> v1(10); // declares a 10 element
// vector of integers

vector<double> v2(5); // declares a 5 element vector 

// of doubles

A. O’Fallon, J. Hagemeister21



A. O’Fallon, J. Hagemeister22

Closing Thoughts

 OOP and C++ opens us up to an entirely 

different world!

 We need to start thinking more in terms of 

data and “capsules” instead of just actions 

and logic

 Learning C++ is a challenge, but provides 

features that will increase levels of 

production!



A. O’Fallon, J. Hagemeister23

References

 P.J. Deitel & H.M. Deitel, C++: How to 

Program (9th ed.), Prentice Hall, 2014.



A. O’Fallon, J. Hagemeister24

Collaborators

 Jack Hagemeister

http://eecs.wsu.edu/~jackrh

