(6-2) Basics of a Queue

Instructor - Andrew S. O’Fallon
CptS 122 (February 14, 2024)
Washington State University

WASHINGTON STATE
[JNIVERSITY

What Is a Queue?
-

e A linear data structure with a finite sequence of
nodes, where nodes are removed from the front or
head and nodes are inserted at the back or tall

e A queue is referred to as a first-in, first-out (FIFO)
data structure

- Consider a grocery store line; as the line forms, people
enter at the back or tail of the line; the person at the front or
head of the line is always serviced before the others; once
the front person is serviced, he/she leaves and the next in
line is helped

e A queue is also considered a restricted or

constrained list

e \We will focus most of our attention on linked list
Implementations of gueues _\.. .
2 A. O’FFa)IIon, J. Hagemeister q

Typical Representation of Queue of
Integers

2
head tail
TR TE [T
Dequeue Enqueue

7

A. O’Fallon, J. Hagemeister

Implementation of Queues in C
-

e The following slides will show how to
Implement Queues in C

e \We will implement them in C++ during lecture

4 A. O’Fallon, J. Hagemeister :

Struct QueueNode
-

e For these examples, we’ll use the following definition
for QueueNode:

typedef struct queueNode
{
char data;
// self-referential
struct queueNode *pNext;
} QueueNode;

5 A. O’Fallon, J. Hagemeister :

Initializing a Queue in C (1)
-

e Our implementation:

vold 1nitQueue (QueueNode **pHead,
QueueNode **pTail)

// Recall: we must dereference a

// pointer to retain changes

*pHead = NULL; // Points to front of queue
*pTail = NULL; // Points to back of queue

6 A. O’Fallon, J. Hagemeister :

Initializing a Queue in C (2)
-

e The initQueue () function is elementary and is not always
implemented

e We may instead initialize the pointers to the front and back of
the queue with NULL within main ()

int main (void)

{
QueueNode *pHead = NULL; // points to front
QueueNode *pTail = NULL; // points to back

7 A. O’Fallon, J. Hagemeister :

Initializing a Queue in C (3)
.

e \We can combine the two pointers (pHead and pTail) of a queue
into a single struct called Queue

typedef struct queue
{
QueueNode *pHead;
QueueNode *pTail;
} Queue;

e We can then modify our initQueue () to accept a Queue
struct type

vold 1nitQueue (Queue *pQueue)

{
pQueue -> pHead = NULL;
pQueue -> pTail = NULL;

8 A. O’Fallon, J. Hagemeister t

Checking for Empty Queue in C (1)
-

e Only need to check the head pointer to see if the
gueue Is empty

e Our implementation:

int isEmpty (Queue Q)

{
// Condensed the code into
// one statement; returns 1 1if
// pHead is NULL; 0 otherwise
return (g.pHead == NULL) ;

9 A. O’Fallon, J. Hagemeister :

Checking for Empty Queue in C (2)
-

e Note: we could substitute the int return type
with an enumerated type such as Boolean

typedef enum boolean

{
FALSE, TRUE

} Boolean;

10 A. O’Fallon, J. Hagemeister :

Checking for Empty Queue in C (3)

e Our implementation with Boolean defined:

Boolean isEmpty (Queue Q)
{

Roolean status = FALSE;

if (g.pHead == NULL) // Queue is empty
{

status = TRUE;
}

return status;

11

A. O’Fallon, J. Hagemeister :

Printing Data in Queue in C
-

e A possible implementation using recursion:

volid printQueueRecursive (QueueNode *pHead)
{
if (pHead != NULL) // Recursive step
{
printf (“%c ->\n”, (pHead) -> data);
// Get to the next item
pHead = (pHead) -> pNext;
printQueueRecursive (pHead);
}
else // Base case
{
printf (“NULL\n”):;

12 A. O’Fallon, J. Hagemeister

13

Inserting Data into Back of Queue with
Error Checking in C (1)
|

Let's modify our code so that we can check for dynamic memory allocation errors
We’'ll start with makeNode () :
QueueNode * makeNode (char newData)

{

A. O’Fallon, J. Hagemeister

QueueNode *pMem = NULL;

pMem = (QueueNode *) malloc (sizeof (QueueNode))
if (pMem !'= NULL)
{
// Initialize the dynamic memory
pMem -> data = newData;
pMem -> pNext = NULL;
}
// Otherwise no memory is available; could use else, but
// it’s not necessary

return pMem;

Inserting Data into Back of Queue with
Error Checking in C (2)
|

° Now let's add some error checking to enqueue () :

Boolean enqueue (Queue *pQueue, char newData)

{
QueueNode *pMem = NULL;
Boolean status = FALSE; // Assume can’t insert a new node; out of memory

pMem = makeNode (newData) ;

if (pMem != NULL) // Memory was available
{
// Insert the new node into the back of the queue
if (isEmpty (*pQueue)) // Inserting first node into queue

{

pQueue -> pHead = pMem;
}

else // Already at least one node in queue; update tail only

{
pQueue -> pTail -> pNext = pMem;
}
pQueue -> pTail = pMem;
status = TRUE; // Successfully added a node to the queue!

return status;

14 A. O’Fallon, J. Hagemeister

Removing Data from Front of Queue In

C (1)

15

We will apply defensive design practices and ensure the queue is not empty
This implementation of dequeue () returns the data in the node at the front of the queue
char dequeue (Queue *pQueue)
{
char retbData = ‘\0’;
QueueNode *pFront = NULL;

if (!isEmpty (*pQueue)) // Stack is not empty; defensive design
{

pFront = pQueue -> pHead; // Temp storage of front of queue
retData = pQueue -> pHead -> data;

pQueue -> pHead = pQueue -> pHead -> pNext;

if (pQueue -> pHead == NULL) // Queue is now empty; update tail
{

pQueue -> pTail = NULL;
}

free (pFront); // Remove the front node

return retData;

A. O’Fallon, J. Hagemeister

Queue Applications
.

e Operating systems maintain queues of
processes that are ready to execute

e Printers queue print requests; first-come,
first-serve

e Simulations of real world processes, such as
movie lines, grocery store lines, etc.

16 A. O’Fallon, J. Hagemeister :

Closing Thoughts
.

e Can you build a driver program to test these
functions?

e A queue is essentially a restricted linked list,
where one additional pointer is needed to
keep track of the back, tail, or rear of the
gueue

e You can implement a queue without using
links; Hence, you can use an array as the
underlying structure for the queue

17 A. O’Fallon, J. Hagemeister :

References
7

e P.J. Deitel & H.M. Deitel, C: How to Program
(7th ed.), Prentice Hall, 2013

o J.R.
and
Wes

18 A. O’Fallon, J. Hagemeister

Hanly & E.B. Koffman, Problem Solving
Program Design in C (71 Ed.), Addison-

ey, 2013

Collaborators
7

e Jack Hagemeister

19 A. O’Fallon, J. Hagemeister

http://eecs.wsu.edu/~jackrh

