
(6-2) Basics of a Queue

Instructor - Andrew S. O’Fallon

CptS 122 (February 14, 2024)

Washington State University

A. O’Fallon, J. Hagemeister2

What is a Queue?

 A linear data structure with a finite sequence of
nodes, where nodes are removed from the front or
head and nodes are inserted at the back or tail

 A queue is referred to as a first-in, first-out (FIFO)
data structure

– Consider a grocery store line; as the line forms, people
enter at the back or tail of the line; the person at the front or
head of the line is always serviced before the others; once
the front person is serviced, he/she leaves and the next in
line is helped

 A queue is also considered a restricted or
constrained list

 We will focus most of our attention on linked list
implementations of queues

A. O’Fallon, J. Hagemeister3

Typical Representation of Queue of
Integers

2

7

Dequeue Enqueue

7 78 53 2

head tail

Implementation of Queues in C

 The following slides will show how to

implement Queues in C

 We will implement them in C++ during lecture

A. O’Fallon, J. Hagemeister4

A. O’Fallon, J. Hagemeister5

Struct QueueNode

 For these examples, we’ll use the following definition
for QueueNode:

typedef struct queueNode

{

char data;

// self-referential

struct queueNode *pNext;

} QueueNode;

A. O’Fallon, J. Hagemeister6

Initializing a Queue in C (1)

 Our implementation:

void initQueue (QueueNode **pHead,

QueueNode **pTail)

{

// Recall: we must dereference a

// pointer to retain changes

*pHead = NULL; // Points to front of queue

*pTail = NULL; // Points to back of queue

}

A. O’Fallon, J. Hagemeister7

Initializing a Queue in C (2)

 The initQueue() function is elementary and is not always
implemented

 We may instead initialize the pointers to the front and back of
the queue with NULL within main()

int main (void)

{

QueueNode *pHead = NULL; // points to front

QueueNode *pTail = NULL; // points to back

…

}

A. O’Fallon, J. Hagemeister8

Initializing a Queue in C (3)

 We can combine the two pointers (pHead and pTail) of a queue
into a single struct called Queue

typedef struct queue

{

QueueNode *pHead;

QueueNode *pTail;

} Queue;

 We can then modify our initQueue() to accept a Queue
struct type

void initQueue (Queue *pQueue)

{

pQueue -> pHead = NULL;

pQueue -> pTail = NULL;

}

A. O’Fallon, J. Hagemeister9

Checking for Empty Queue in C (1)

 Only need to check the head pointer to see if the
queue is empty

 Our implementation:

int isEmpty (Queue q)

{

// Condensed the code into

// one statement; returns 1 if

// pHead is NULL; 0 otherwise

return (q.pHead == NULL);

}

A. O’Fallon, J. Hagemeister10

Checking for Empty Queue in C (2)

 Note: we could substitute the int return type

with an enumerated type such as Boolean

typedef enum boolean

{

FALSE, TRUE

} Boolean;

A. O’Fallon, J. Hagemeister11

Checking for Empty Queue in C (3)

 Our implementation with Boolean defined:

Boolean isEmpty (Queue q)

{

Boolean status = FALSE;

if (q.pHead == NULL) // Queue is empty

{

status = TRUE;

}

return status;

}

A. O’Fallon, J. Hagemeister12

Printing Data in Queue in C

 A possible implementation using recursion:

void printQueueRecursive (QueueNode *pHead)

{

if (pHead != NULL) // Recursive step

{

printf (“%c ->\n”, (pHead) -> data);

// Get to the next item

pHead = (pHead) -> pNext;

printQueueRecursive (pHead);

}

else // Base case

{

printf (“NULL\n”);

}

}

A. O’Fallon, J. Hagemeister13

Inserting Data into Back of Queue with
Error Checking in C (1)

 Let’s modify our code so that we can check for dynamic memory allocation errors

 We’ll start with makeNode():

QueueNode * makeNode (char newData)

{

QueueNode *pMem = NULL;

pMem = (QueueNode *) malloc (sizeof (QueueNode));

if (pMem != NULL)

{

// Initialize the dynamic memory

pMem -> data = newData;

pMem -> pNext = NULL;

}

// Otherwise no memory is available; could use else, but

// it’s not necessary

return pMem;

}

A. O’Fallon, J. Hagemeister14

Inserting Data into Back of Queue with
Error Checking in C (2)

 Now let’s add some error checking to enqueue():

Boolean enqueue (Queue *pQueue, char newData)

{

QueueNode *pMem = NULL;

Boolean status = FALSE; // Assume can’t insert a new node; out of memory

pMem = makeNode (newData);

if (pMem != NULL) // Memory was available

{

// Insert the new node into the back of the queue

if (isEmpty (*pQueue)) // Inserting first node into queue

{

pQueue -> pHead = pMem;

}

else // Already at least one node in queue; update tail only

{

pQueue -> pTail -> pNext = pMem;

}

pQueue -> pTail = pMem;

status = TRUE; // Successfully added a node to the queue!

}

return status;

}

A. O’Fallon, J. Hagemeister15

Removing Data from Front of Queue in
C (1)

 We will apply defensive design practices and ensure the queue is not empty

 This implementation of dequeue() returns the data in the node at the front of the queue

char dequeue (Queue *pQueue)

{

char retData = ‘\0’;

QueueNode *pFront = NULL;

if (!isEmpty (*pQueue)) // Stack is not empty; defensive design

{

pFront = pQueue -> pHead; // Temp storage of front of queue

retData = pQueue -> pHead -> data;

pQueue -> pHead = pQueue -> pHead -> pNext;

if (pQueue -> pHead == NULL) // Queue is now empty; update tail

{

pQueue -> pTail = NULL;

}

free (pFront); // Remove the front node

}

return retData;

}

A. O’Fallon, J. Hagemeister16

Queue Applications

 Operating systems maintain queues of

processes that are ready to execute

 Printers queue print requests; first-come,

first-serve

 Simulations of real world processes, such as

movie lines, grocery store lines, etc.

A. O’Fallon, J. Hagemeister17

Closing Thoughts

 Can you build a driver program to test these

functions?

 A queue is essentially a restricted linked list,

where one additional pointer is needed to

keep track of the back, tail, or rear of the

queue

 You can implement a queue without using

links; Hence, you can use an array as the

underlying structure for the queue

A. O’Fallon, J. Hagemeister18

References

 P.J. Deitel & H.M. Deitel, C: How to Program

(7th ed.), Prentice Hall, 2013

 J.R. Hanly & E.B. Koffman, Problem Solving

and Program Design in C (7th Ed.), Addison-

Wesley, 2013

A. O’Fallon, J. Hagemeister19

Collaborators

 Jack Hagemeister

http://eecs.wsu.edu/~jackrh

