
(6-2) Basics of a Queue

Instructor - Andrew S. O’Fallon

CptS 122 (February 14, 2024)

Washington State University

A. O’Fallon, J. Hagemeister2

What is a Queue?

 A linear data structure with a finite sequence of
nodes, where nodes are removed from the front or
head and nodes are inserted at the back or tail

 A queue is referred to as a first-in, first-out (FIFO)
data structure

– Consider a grocery store line; as the line forms, people
enter at the back or tail of the line; the person at the front or
head of the line is always serviced before the others; once
the front person is serviced, he/she leaves and the next in
line is helped

 A queue is also considered a restricted or
constrained list

 We will focus most of our attention on linked list
implementations of queues

A. O’Fallon, J. Hagemeister3

Typical Representation of Queue of
Integers

2

7

Dequeue Enqueue

7 78 53 2

head tail

Implementation of Queues in C

 The following slides will show how to

implement Queues in C

 We will implement them in C++ during lecture

A. O’Fallon, J. Hagemeister4

A. O’Fallon, J. Hagemeister5

Struct QueueNode

 For these examples, we’ll use the following definition
for QueueNode:

typedef struct queueNode

{

char data;

// self-referential

struct queueNode *pNext;

} QueueNode;

A. O’Fallon, J. Hagemeister6

Initializing a Queue in C (1)

 Our implementation:

void initQueue (QueueNode **pHead,

QueueNode **pTail)

{

// Recall: we must dereference a

// pointer to retain changes

*pHead = NULL; // Points to front of queue

*pTail = NULL; // Points to back of queue

}

A. O’Fallon, J. Hagemeister7

Initializing a Queue in C (2)

 The initQueue() function is elementary and is not always
implemented

 We may instead initialize the pointers to the front and back of
the queue with NULL within main()

int main (void)

{

QueueNode *pHead = NULL; // points to front

QueueNode *pTail = NULL; // points to back

…

}

A. O’Fallon, J. Hagemeister8

Initializing a Queue in C (3)

 We can combine the two pointers (pHead and pTail) of a queue
into a single struct called Queue

typedef struct queue

{

QueueNode *pHead;

QueueNode *pTail;

} Queue;

 We can then modify our initQueue() to accept a Queue
struct type

void initQueue (Queue *pQueue)

{

pQueue -> pHead = NULL;

pQueue -> pTail = NULL;

}

A. O’Fallon, J. Hagemeister9

Checking for Empty Queue in C (1)

 Only need to check the head pointer to see if the
queue is empty

 Our implementation:

int isEmpty (Queue q)

{

// Condensed the code into

// one statement; returns 1 if

// pHead is NULL; 0 otherwise

return (q.pHead == NULL);

}

A. O’Fallon, J. Hagemeister10

Checking for Empty Queue in C (2)

 Note: we could substitute the int return type

with an enumerated type such as Boolean

typedef enum boolean

{

FALSE, TRUE

} Boolean;

A. O’Fallon, J. Hagemeister11

Checking for Empty Queue in C (3)

 Our implementation with Boolean defined:

Boolean isEmpty (Queue q)

{

Boolean status = FALSE;

if (q.pHead == NULL) // Queue is empty

{

status = TRUE;

}

return status;

}

A. O’Fallon, J. Hagemeister12

Printing Data in Queue in C

 A possible implementation using recursion:

void printQueueRecursive (QueueNode *pHead)

{

if (pHead != NULL) // Recursive step

{

printf (“%c ->\n”, (pHead) -> data);

// Get to the next item

pHead = (pHead) -> pNext;

printQueueRecursive (pHead);

}

else // Base case

{

printf (“NULL\n”);

}

}

A. O’Fallon, J. Hagemeister13

Inserting Data into Back of Queue with
Error Checking in C (1)

 Let’s modify our code so that we can check for dynamic memory allocation errors

 We’ll start with makeNode():

QueueNode * makeNode (char newData)

{

QueueNode *pMem = NULL;

pMem = (QueueNode *) malloc (sizeof (QueueNode));

if (pMem != NULL)

{

// Initialize the dynamic memory

pMem -> data = newData;

pMem -> pNext = NULL;

}

// Otherwise no memory is available; could use else, but

// it’s not necessary

return pMem;

}

A. O’Fallon, J. Hagemeister14

Inserting Data into Back of Queue with
Error Checking in C (2)

 Now let’s add some error checking to enqueue():

Boolean enqueue (Queue *pQueue, char newData)

{

QueueNode *pMem = NULL;

Boolean status = FALSE; // Assume can’t insert a new node; out of memory

pMem = makeNode (newData);

if (pMem != NULL) // Memory was available

{

// Insert the new node into the back of the queue

if (isEmpty (*pQueue)) // Inserting first node into queue

{

pQueue -> pHead = pMem;

}

else // Already at least one node in queue; update tail only

{

pQueue -> pTail -> pNext = pMem;

}

pQueue -> pTail = pMem;

status = TRUE; // Successfully added a node to the queue!

}

return status;

}

A. O’Fallon, J. Hagemeister15

Removing Data from Front of Queue in
C (1)

 We will apply defensive design practices and ensure the queue is not empty

 This implementation of dequeue() returns the data in the node at the front of the queue

char dequeue (Queue *pQueue)

{

char retData = ‘\0’;

QueueNode *pFront = NULL;

if (!isEmpty (*pQueue)) // Stack is not empty; defensive design

{

pFront = pQueue -> pHead; // Temp storage of front of queue

retData = pQueue -> pHead -> data;

pQueue -> pHead = pQueue -> pHead -> pNext;

if (pQueue -> pHead == NULL) // Queue is now empty; update tail

{

pQueue -> pTail = NULL;

}

free (pFront); // Remove the front node

}

return retData;

}

A. O’Fallon, J. Hagemeister16

Queue Applications

 Operating systems maintain queues of

processes that are ready to execute

 Printers queue print requests; first-come,

first-serve

 Simulations of real world processes, such as

movie lines, grocery store lines, etc.

A. O’Fallon, J. Hagemeister17

Closing Thoughts

 Can you build a driver program to test these

functions?

 A queue is essentially a restricted linked list,

where one additional pointer is needed to

keep track of the back, tail, or rear of the

queue

 You can implement a queue without using

links; Hence, you can use an array as the

underlying structure for the queue

A. O’Fallon, J. Hagemeister18

References

 P.J. Deitel & H.M. Deitel, C: How to Program

(7th ed.), Prentice Hall, 2013

 J.R. Hanly & E.B. Koffman, Problem Solving

and Program Design in C (7th Ed.), Addison-

Wesley, 2013

A. O’Fallon, J. Hagemeister19

Collaborators

 Jack Hagemeister

http://eecs.wsu.edu/~jackrh

