
(7 - 1) Operator Overloading
D & D Chapter 10

Instructor - Andrew S. O’Fallon

CptS 122 (February 21, 2024)

Washington State University



Key Concepts

 Keyword operator

 Operator overloading

A. O’Fallon, J. Hagemeister2



What is Operator Overloading?

 A generalization of function overloading

 An extension to C++ standard operators to 

define how they should work with user-

defined types such as classes

A. O’Fallon, J. Hagemeister3



Why Overload Operators?

 Improves readability

 Allows for a more natural way to implement 

code

A. O’Fallon, J. Hagemeister4



Rules and Restrictions on 
Operator Overloading

 The precedence of an operator cannot be 

changed

 The associativity of an operator cannot be 

changed, i.e. left-to-right or right-to-left

 The “arity” of an operator cannot be 

changed, i.e. if the operator accepts one 

operand (unary) or two operands (binary)

 Only existing operators may be overloaded

A. O’Fallon, J. Hagemeister5



Which Operators Cannot be 
Overloaded?

 .

 .* (pointer to member)

 ::

 ?:

A. O’Fallon, J. Hagemeister6



Recall Class ComplexNumber’s 
Add () Function

 Let’s write the definition for the add() 

member function
// Prototype: ComplexNumber add (const ComplexNumber &operand);

// Definition – notice the binary scope resolution operator

ComplexNumber ComplexNumber::add (const ComplexNumber &operand)

{

// This adds the real part of the “operand” object

// to the real part of the object that invokes the

// call to the function; it also adds the imaginary

// parts

ComplexNumber result; // Declare local ComplexNumber

// Recall we use the dot member operator (.) to access

// members of a class; no dot (.) denotes accessing the

// instantiated object’s members; note we don’t have to apply “special” 

// operators to access an object passed by reference!

result.mRealPart = mRealPart + operand.mRealPart; 

result.mImaginaryPart = mImaginaryPart + operand.mImaginaryPart;

// Don’t want to pass back by reference; cause undefined behavior

return result; 

}
7



We Can Replace Add () by Overloading 
+ (Using a Friend Function)

 Let’s write a function to overload the binary + 

operator; this function is a non-member
function, but is a friend of ComplexNumber

// Prototype: friend ComplexNumber operator+ (const ComplexNumber &lhs, 

const ComplexNumber &rhs);

// Definition – notice the operator is not preceded by ComplexNumber::, because

// it’s a non-member operator. Made this function a friend of ComplexNumber

// to efficiently access the private data members of ComplexNumber.

ComplexNumber operator+ (const ComplexNumber &lhs, const ComplexNumber &rhs)

{

ComplexNumber result; // Declare local ComplexNumber

result.mRealPart = lhs.mRealPart + rhs.mRealPart; 

result.mImaginaryPart = lhs.mImaginaryPart + rhs.mImaginaryPart;

// Don’t want to pass back by reference; cause undefined behavior

return result; 

} A. O’Fallon, J. Hagemeister8



We Can Replace Add () by Overloading 
+ (without Using a Friend Function)

 Let’s write a function to overload the binary + 

operator; this function is a non-member function, but 
is NOT a friend of ComplexNumber

// Prototype: ComplexNumber operator+ (const ComplexNumber &lhs, 

const ComplexNumber &rhs);

// Definition – notice the operator is not preceded by ComplexNumber::, because

// it’s a non-member operator. This function is NOT a friend of ComplexNumber.

// Need to use setters/getters now!

ComplexNumber operator+ (const ComplexNumber &lhs, const ComplexNumber &rhs)

{

ComplexNumber result; // Declare local ComplexNumber

result.setRealPart (lhs.getRealPart() + rhs.getRealPart()); 

result.setImaginaryPart (lhs.getImaginaryPart() + 

rhs.getImaginaryPart());

// Don’t want to pass back by reference; cause undefined behavior

return result; 

}

A. O’Fallon, J. Hagemeister9



Why Non-Member Overloaded 
Operators?

 Enables “symmetry” and communitivity

among operators, i.e.

– ComplexNumber operator+ (const 

ComplexNumber &lhs, int rhs);

– ComplexNumber operator+ (int lhs, 

const ComplexNumber &rhs);

 Important to make non-member operator+ 

when lhs is not a class! Since lhs is not 

an object in this case!

A. O’Fallon, J. Hagemeister10



A. O’Fallon, J. Hagemeister11

References

 P.J. Deitel & H.M. Deitel, C++: How to 

Program (9th ed.), Prentice Hall, 2014

 J.R. Hanly & E.B. Koffman, Problem Solving 

and Program Design in C (7th Ed.), Addison-

Wesley, 2013



A. O’Fallon, J. Hagemeister12

Collaborators

 Jack Hagemeister

http://eecs.wsu.edu/~jackrh

