
(7 - 1) Operator Overloading
D & D Chapter 10

Instructor - Andrew S. O’Fallon

CptS 122 (February 21, 2024)

Washington State University



Key Concepts

 Keyword operator

 Operator overloading

A. O’Fallon, J. Hagemeister2



What is Operator Overloading?

 A generalization of function overloading

 An extension to C++ standard operators to 

define how they should work with user-

defined types such as classes

A. O’Fallon, J. Hagemeister3



Why Overload Operators?

 Improves readability

 Allows for a more natural way to implement 

code

A. O’Fallon, J. Hagemeister4



Rules and Restrictions on 
Operator Overloading

 The precedence of an operator cannot be 

changed

 The associativity of an operator cannot be 

changed, i.e. left-to-right or right-to-left

 The “arity” of an operator cannot be 

changed, i.e. if the operator accepts one 

operand (unary) or two operands (binary)

 Only existing operators may be overloaded

A. O’Fallon, J. Hagemeister5



Which Operators Cannot be 
Overloaded?

 .

 .* (pointer to member)

 ::

 ?:

A. O’Fallon, J. Hagemeister6



Recall Class ComplexNumber’s 
Add () Function

 Let’s write the definition for the add() 

member function
// Prototype: ComplexNumber add (const ComplexNumber &operand);

// Definition – notice the binary scope resolution operator

ComplexNumber ComplexNumber::add (const ComplexNumber &operand)

{

// This adds the real part of the “operand” object

// to the real part of the object that invokes the

// call to the function; it also adds the imaginary

// parts

ComplexNumber result; // Declare local ComplexNumber

// Recall we use the dot member operator (.) to access

// members of a class; no dot (.) denotes accessing the

// instantiated object’s members; note we don’t have to apply “special” 

// operators to access an object passed by reference!

result.mRealPart = mRealPart + operand.mRealPart; 

result.mImaginaryPart = mImaginaryPart + operand.mImaginaryPart;

// Don’t want to pass back by reference; cause undefined behavior

return result; 

}
7



We Can Replace Add () by Overloading 
+ (Using a Friend Function)

 Let’s write a function to overload the binary + 

operator; this function is a non-member
function, but is a friend of ComplexNumber

// Prototype: friend ComplexNumber operator+ (const ComplexNumber &lhs, 

const ComplexNumber &rhs);

// Definition – notice the operator is not preceded by ComplexNumber::, because

// it’s a non-member operator. Made this function a friend of ComplexNumber

// to efficiently access the private data members of ComplexNumber.

ComplexNumber operator+ (const ComplexNumber &lhs, const ComplexNumber &rhs)

{

ComplexNumber result; // Declare local ComplexNumber

result.mRealPart = lhs.mRealPart + rhs.mRealPart; 

result.mImaginaryPart = lhs.mImaginaryPart + rhs.mImaginaryPart;

// Don’t want to pass back by reference; cause undefined behavior

return result; 

} A. O’Fallon, J. Hagemeister8



We Can Replace Add () by Overloading 
+ (without Using a Friend Function)

 Let’s write a function to overload the binary + 

operator; this function is a non-member function, but 
is NOT a friend of ComplexNumber

// Prototype: ComplexNumber operator+ (const ComplexNumber &lhs, 

const ComplexNumber &rhs);

// Definition – notice the operator is not preceded by ComplexNumber::, because

// it’s a non-member operator. This function is NOT a friend of ComplexNumber.

// Need to use setters/getters now!

ComplexNumber operator+ (const ComplexNumber &lhs, const ComplexNumber &rhs)

{

ComplexNumber result; // Declare local ComplexNumber

result.setRealPart (lhs.getRealPart() + rhs.getRealPart()); 

result.setImaginaryPart (lhs.getImaginaryPart() + 

rhs.getImaginaryPart());

// Don’t want to pass back by reference; cause undefined behavior

return result; 

}

A. O’Fallon, J. Hagemeister9



Why Non-Member Overloaded 
Operators?

 Enables “symmetry” and communitivity

among operators, i.e.

– ComplexNumber operator+ (const 

ComplexNumber &lhs, int rhs);

– ComplexNumber operator+ (int lhs, 

const ComplexNumber &rhs);

 Important to make non-member operator+ 

when lhs is not a class! Since lhs is not 

an object in this case!

A. O’Fallon, J. Hagemeister10



A. O’Fallon, J. Hagemeister11

References

 P.J. Deitel & H.M. Deitel, C++: How to 

Program (9th ed.), Prentice Hall, 2014

 J.R. Hanly & E.B. Koffman, Problem Solving 

and Program Design in C (7th Ed.), Addison-

Wesley, 2013



A. O’Fallon, J. Hagemeister12

Collaborators

 Jack Hagemeister

http://eecs.wsu.edu/~jackrh

