
(7-2) Classes: A Deeper Look
D & D Chapter 9

Instructor - Andrew S. O’Fallon

CptS 122 (February 23, 2024)

Washington State University



Key Concepts

 Composition relationship

 const objects

 const member functions

 The “this” pointer

A. O’Fallon, J. Hagemeister2



Composition Relationship

 A class can have objects of other classes as 

members – this is composition

 Composition is also referred to as a has-a

relationship (we will not distinguish between 

composition and aggregation at this point)

– For example: a car has-an engine, a pencil has-

an eraser, etc.

A. O’Fallon, J. Hagemeister3



const Objects

 Some objects need to be mutable and some 

do not (immutable)

– A mutable object’s attributes may be modified 

(given different values) after creation of the object

– An immutable object’s attributes have to be set 

during construction and cannot be modified later

 Objects can be declared as immutable using keyword 
const

 For example, consider a ComplexNumber with an 

imaginary and real part:

ComplexNumber c1(2.5, 3.0) // mutable

const ComplexNumber c2(4.5, 6.0); // immutable

A. O’Fallon, J. Hagemeister4



const Member Functions

 Getter/accessor functions in most cases should be 
declared as const member functions

– For example:
double getRealPart () const; // declaration in ComplexNumber

 const member function cannot modify members of 

the object

– They also cannot call functions that try to modify 

members of the object

 NOTE: const objects cannot call non-const

member functions!!! However non-const objects 

can call const member functions

A. O’Fallon, J. Hagemeister5



Copy Constructors for const
Objects

 How do we copy a const object?

– We could use a copy constructor where the 
argument is a reference to a const object

– ComplexNumber (const ComplexNumber &copy);

 For example:
const ComplexNumber c2(4.5, 6.0); // immutable

ComplexNumber c3(c2); // invokes the copy constructor with the const argument

ComplexNumber c4 = c3; // will actually invoke the copy constructor, not overloaded 

// assignment because we are constructing (instantiating) 

// an object here!

A. O’Fallon, J. Hagemeister6



The “this” Pointer (1)

 Every object has access to a pointer called 
keyword this

 It stores the address of the object

 The pointer is not part of the object itself, but 

is an implicit argument (passed by the 

compiler) to each of the object’s non-static

member functions

 It can be used explicitly to reference data 

members in order to avoid name conflicts

A. O’Fallon, J. Hagemeister7



The “this” Pointer (2)

 Let’s say we named one of the private data 

members of class ComplexNumber realPart:

private:
double realPart; // of course we’ll generally name mRealPart

 We want to create a setter for the realPart. 

We need to avoid ambiguous statements!:

public:

void setRealPart (double realPart)

{

realPart = realPart; // ambiguous statement! 

this->realPart = realPart; // use “ this” explicitly instead!

}
A. O’Fallon, J. Hagemeister8



Type of “this” Pointer

 The type is dependent on the type of object

 For a non-const member function of 

ComplexNumber, the this pointer type 

would be ComplexNumber *

– For a const member function, the this pointer 

type would be const ComplexNumber * --

meaning it could not be used to modify members 

of the object!

A. O’Fallon, J. Hagemeister9



A. O’Fallon, J. Hagemeister10

References

 P.J. Deitel & H.M. Deitel, C++: How to 

Program (9th ed.), Prentice Hall, 2014

 J.R. Hanly & E.B. Koffman, Problem Solving 

and Program Design in C (7th Ed.), Addison-

Wesley, 2013



A. O’Fallon, J. Hagemeister11

Collaborators

 Jack Hagemeister

http://eecs.wsu.edu/~jackrh

