
(7-2) Classes: A Deeper Look
D & D Chapter 9

Instructor - Andrew S. O’Fallon

CptS 122 (February 23, 2024)

Washington State University



Key Concepts

 Composition relationship

 const objects

 const member functions

 The “this” pointer

A. O’Fallon, J. Hagemeister2



Composition Relationship

 A class can have objects of other classes as 

members – this is composition

 Composition is also referred to as a has-a

relationship (we will not distinguish between 

composition and aggregation at this point)

– For example: a car has-an engine, a pencil has-

an eraser, etc.

A. O’Fallon, J. Hagemeister3



const Objects

 Some objects need to be mutable and some 

do not (immutable)

– A mutable object’s attributes may be modified 

(given different values) after creation of the object

– An immutable object’s attributes have to be set 

during construction and cannot be modified later

 Objects can be declared as immutable using keyword 
const

 For example, consider a ComplexNumber with an 

imaginary and real part:

ComplexNumber c1(2.5, 3.0) // mutable

const ComplexNumber c2(4.5, 6.0); // immutable

A. O’Fallon, J. Hagemeister4



const Member Functions

 Getter/accessor functions in most cases should be 
declared as const member functions

– For example:
double getRealPart () const; // declaration in ComplexNumber

 const member function cannot modify members of 

the object

– They also cannot call functions that try to modify 

members of the object

 NOTE: const objects cannot call non-const

member functions!!! However non-const objects 

can call const member functions

A. O’Fallon, J. Hagemeister5



Copy Constructors for const
Objects

 How do we copy a const object?

– We could use a copy constructor where the 
argument is a reference to a const object

– ComplexNumber (const ComplexNumber &copy);

 For example:
const ComplexNumber c2(4.5, 6.0); // immutable

ComplexNumber c3(c2); // invokes the copy constructor with the const argument

ComplexNumber c4 = c3; // will actually invoke the copy constructor, not overloaded 

// assignment because we are constructing (instantiating) 

// an object here!

A. O’Fallon, J. Hagemeister6



The “this” Pointer (1)

 Every object has access to a pointer called 
keyword this

 It stores the address of the object

 The pointer is not part of the object itself, but 

is an implicit argument (passed by the 

compiler) to each of the object’s non-static

member functions

 It can be used explicitly to reference data 

members in order to avoid name conflicts

A. O’Fallon, J. Hagemeister7



The “this” Pointer (2)

 Let’s say we named one of the private data 

members of class ComplexNumber realPart:

private:
double realPart; // of course we’ll generally name mRealPart

 We want to create a setter for the realPart. 

We need to avoid ambiguous statements!:

public:

void setRealPart (double realPart)

{

realPart = realPart; // ambiguous statement! 

this->realPart = realPart; // use “ this” explicitly instead!

}
A. O’Fallon, J. Hagemeister8



Type of “this” Pointer

 The type is dependent on the type of object

 For a non-const member function of 

ComplexNumber, the this pointer type 

would be ComplexNumber *

– For a const member function, the this pointer 

type would be const ComplexNumber * --

meaning it could not be used to modify members 

of the object!

A. O’Fallon, J. Hagemeister9



A. O’Fallon, J. Hagemeister10

References

 P.J. Deitel & H.M. Deitel, C++: How to 

Program (9th ed.), Prentice Hall, 2014

 J.R. Hanly & E.B. Koffman, Problem Solving 

and Program Design in C (7th Ed.), Addison-

Wesley, 2013



A. O’Fallon, J. Hagemeister11

Collaborators

 Jack Hagemeister

http://eecs.wsu.edu/~jackrh

