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Key Concepts

 Class and block scope

 Access and utility functions

 Container classes

 Iterators

 Class templates
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Class Scope and Accessing Class 
Members Explored Further (I)

 A class’ data members (attributes) and 

member functions (operations) belong to the 

class’ scope

 Nonmember functions do not belong to any 

class’ scope; they are global namespace 

scope

 Within a class’ scope data members are 

directly accessible by the member functions
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Class Scope and Accessing Class 
Members Explored Further (II)

 Outside of the class’ scope, public members 

are accessed through one of three different 

handles:

– An object name, a reference to an object, or a 

pointer to an object

– Note: the “this” pointer is considered an implicit 

handle available only within an object

 Local variables declared inside of a member 

function have block scope
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Access Functions

 Functions that can read or display data are 

considered access functions

 Predicate functions are access functions that 

test a condition and return true or false; 

generally we append “is” to the front of the 

name of the function

– isEmpty (), isFull(), etc.
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Utility Functions

 A utility or helper function is a private 

member function used to support other 

member functions’ operations
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Container Classes (I)

 Classes designed to hold and organize a 

collection of other classes

– Examples of sequence containers include: lists, 

vectors, etc.

– Example of container adapters include: stacks, 

queues, etc.

 Container adapters are adaptations or interfaces 

designed to restrict functionality for an already existing 

container – they provide a different set of functionality

 The Standard Template Library  (STL) stack and queue 

adapt the double-ended queue (deque)
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Container Classes (II)

 Container classes are generally separated into four 

categories:

– Sequence containers – represent linear data structures

 Array, deque, list (doubly-linked), vector, forward_list (C++ 11)

– Container adapters

– Ordered associative containers – represent nonlinear

ordered data structures

– Set, multiset, map, multimap (CptS 223!)

– Unordered associative containers – represent nonlinear

unordered data structures
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Properties of STL Sequence 
Containers (I)

 Array

– Fixed size; direct access to any element

 Deque

– Rapid insertions and deletions at front or back; 

direct access to any element

 List

– Doubly linked list; rapid insertions and deletions 

anywhere
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Properties of STL Sequence 
Containers (II)

 Vector

– Rapid insertions and deletions at back; direct 

access to any element

 Forward_list

– Singly linked list, rapid insertions and deletions 

anywhere; C++ 11
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Properties of STL Container 
Adapters

 Stack

– Last-in, first-out (LIFO)

 Queue

– First-in, first-out (FIFO)

 Priority_queue

– Highest priority element is always the first one out
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Functions Common to Container 
Classes (I)

 Default constructor – initializes an empty

container

 Copy constructor – initializes the container to 

be a copy of an existing container of the 

same type

 Move constructor – available in C++ 11 –

moves the contents of an existing container 

into a new container of the same type without 

copying each element of the argument 

container
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Functions Common to Container 
Classes (II)

 Destructor – performs house keeping or 

cleanup when container is no longer needed

 Empty – returns true if there are no elements 

in the container; false otherwise

 Insert – inserts an item into the container

 Size – returns the number of elements in the 

container
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Functions Common to Container 
Classes (III)

 Copy operator (=) – copies the elements of 

one container into another container of the 

same type

 Move operator (=) – available in C++ 11 –

moves the contents of one container into 

another without copying each element of the 

argument container

 Max_size – returns the maximum number of 

elements for a container

A. O’Fallon, J. Hagemeister14



Functions Common to Container 
Classes (IV)

 Begin – overloaded to return an iterator that 

refers to the first element of the container

 End - overloaded to return an iterator that 

refers to the next  position after the end of 

the container

 Erase – removes one or more elements from 

the container

 Clear – removes all elements from the 

container

 Others exist!
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Iterators

 Similar properties to a pointer

 An iterator is any object that points to some 

element in a sequence of elements, and has 

the ability to iterate through the elements 

using ++ and indirection (*) operators

 Containers support the use of iterators
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Class Templates

 We have already seen function templates, 

we will now extend the idea to classes

 Class templates allow for a way to easily 

specify a variety of related overloaded 

functions (function-template specializations) 

or classes (class-template specializations)

 Allows for generic programming

 Keyword template denotes the start of a 

class template

 STL containers are “templated”
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Example using Class Templates

 Developed during lecture – see code posted 

to schedule
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Next Lecture..

 More about class templates, data structures, 

and containers
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