
(9 - 1) Container Classes & Class
Templates

D & D Chapter 18, 19

Instructor - Andrew S. O’Fallon

CptS 122 (March 4, 2024)

Washington State University

Key Concepts

 Class and block scope

 Access and utility functions

 Container classes

 Iterators

 Class templates

A. O’Fallon, J. Hagemeister2

Class Scope and Accessing Class
Members Explored Further (I)

 A class’ data members (attributes) and

member functions (operations) belong to the

class’ scope

 Nonmember functions do not belong to any

class’ scope; they are global namespace

scope

 Within a class’ scope data members are

directly accessible by the member functions

A. O’Fallon, J. Hagemeister3

Class Scope and Accessing Class
Members Explored Further (II)

 Outside of the class’ scope, public members

are accessed through one of three different

handles:

– An object name, a reference to an object, or a

pointer to an object

– Note: the “this” pointer is considered an implicit

handle available only within an object

 Local variables declared inside of a member

function have block scope

A. O’Fallon, J. Hagemeister4

Access Functions

 Functions that can read or display data are

considered access functions

 Predicate functions are access functions that

test a condition and return true or false;

generally we append “is” to the front of the

name of the function

– isEmpty (), isFull(), etc.

A. O’Fallon, J. Hagemeister5

Utility Functions

 A utility or helper function is a private

member function used to support other

member functions’ operations

A. O’Fallon, J. Hagemeister6

Container Classes (I)

 Classes designed to hold and organize a

collection of other classes

– Examples of sequence containers include: lists,

vectors, etc.

– Example of container adapters include: stacks,

queues, etc.

 Container adapters are adaptations or interfaces

designed to restrict functionality for an already existing

container – they provide a different set of functionality

 The Standard Template Library (STL) stack and queue

adapt the double-ended queue (deque)

A. O’Fallon, J. Hagemeister7

Container Classes (II)

 Container classes are generally separated into four

categories:

– Sequence containers – represent linear data structures

 Array, deque, list (doubly-linked), vector, forward_list (C++ 11)

– Container adapters

– Ordered associative containers – represent nonlinear

ordered data structures

– Set, multiset, map, multimap (CptS 223!)

– Unordered associative containers – represent nonlinear

unordered data structures

A. O’Fallon, J. Hagemeister8

Properties of STL Sequence
Containers (I)

 Array

– Fixed size; direct access to any element

 Deque

– Rapid insertions and deletions at front or back;

direct access to any element

 List

– Doubly linked list; rapid insertions and deletions

anywhere

A. O’Fallon, J. Hagemeister9

Properties of STL Sequence
Containers (II)

 Vector

– Rapid insertions and deletions at back; direct

access to any element

 Forward_list

– Singly linked list, rapid insertions and deletions

anywhere; C++ 11

A. O’Fallon, J. Hagemeister10

Properties of STL Container
Adapters

 Stack

– Last-in, first-out (LIFO)

 Queue

– First-in, first-out (FIFO)

 Priority_queue

– Highest priority element is always the first one out

A. O’Fallon, J. Hagemeister11

Functions Common to Container
Classes (I)

 Default constructor – initializes an empty

container

 Copy constructor – initializes the container to

be a copy of an existing container of the

same type

 Move constructor – available in C++ 11 –

moves the contents of an existing container

into a new container of the same type without

copying each element of the argument

container
A. O’Fallon, J. Hagemeister12

Functions Common to Container
Classes (II)

 Destructor – performs house keeping or

cleanup when container is no longer needed

 Empty – returns true if there are no elements

in the container; false otherwise

 Insert – inserts an item into the container

 Size – returns the number of elements in the

container

A. O’Fallon, J. Hagemeister13

Functions Common to Container
Classes (III)

 Copy operator (=) – copies the elements of

one container into another container of the

same type

 Move operator (=) – available in C++ 11 –

moves the contents of one container into

another without copying each element of the

argument container

 Max_size – returns the maximum number of

elements for a container

A. O’Fallon, J. Hagemeister14

Functions Common to Container
Classes (IV)

 Begin – overloaded to return an iterator that

refers to the first element of the container

 End - overloaded to return an iterator that

refers to the next position after the end of

the container

 Erase – removes one or more elements from

the container

 Clear – removes all elements from the

container

 Others exist!
A. O’Fallon, J. Hagemeister15

Iterators

 Similar properties to a pointer

 An iterator is any object that points to some

element in a sequence of elements, and has

the ability to iterate through the elements

using ++ and indirection (*) operators

 Containers support the use of iterators

A. O’Fallon, J. Hagemeister16

Class Templates

 We have already seen function templates,

we will now extend the idea to classes

 Class templates allow for a way to easily

specify a variety of related overloaded

functions (function-template specializations)

or classes (class-template specializations)

 Allows for generic programming

 Keyword template denotes the start of a

class template

 STL containers are “templated”
A. O’Fallon, J. Hagemeister17

Example using Class Templates

 Developed during lecture – see code posted

to schedule

A. O’Fallon, J. Hagemeister18

Next Lecture..

 More about class templates, data structures,

and containers

A. O’Fallon, J. Hagemeister19

A. O’Fallon, J. Hagemeister20

References

 P.J. Deitel & H.M. Deitel, C++: How to

Program (9th ed.), Prentice Hall, 2014

 J.R. Hanly & E.B. Koffman, Problem Solving

and Program Design in C (7th Ed.), Addison-

Wesley, 2013

A. O’Fallon, J. Hagemeister21

Collaborators

 Jack Hagemeister

http://eecs.wsu.edu/~jackrh

