
(9-3) Efficiency of Algorithms
D & D Chapter 20

Instructor - Andrew S. O’Fallon

CptS 122 (March 8, 2024)

Washington State University

C. Hundhausen, A. O’Fallon2

Analysis of Algorithms (1)

 In general, we want…
– to determine central unit of work by considering the operations

applied in the algorithm
– to express unit of work as function of size of input data: How

quickly does amount of work grow as size of input grows?
– classify algorithms according to how their running time and/or

space requirements grow as input size grows

 For example, recall Sequential Search algorithm
– Get list of n names to search, and target name to search for
– Examine each name in sequence

 If all names have been examined, set found to false and stop
 If name equals target, set found to true and stop
 If name not equal to target, advance to next name

– Main unit of work: comparisons
– Analysis

 In best case, one comparison must be made (target is first item in list)
 In worst case, n comparisons must be made (target not found; all

items examined)
 In average case n/2 comparisons must be made

C. Hundhausen, A. O’Fallon3

Analysis of Algorithms (2)

 Order of magnitude analysis (“Big-O”)

– Constant factors do not change shape of graph!

C. Hundhausen, A. O’Fallon4

Analysis of Algorithms (3)

 Order of magnitude (“Big-O”) (cont.)

– Any algorithm whose work can be expressed as c

* n where c is a constant and n is the input size is

said to be “order of magnitude n”, or O(n)

– Likewise, any algorithm whose work varies as a

constant times the square of the input size is said

to be “order of magnitude n-squared”, or O(n2)

C. Hundhausen, A. O’Fallon5

Analysis of Algorithms (4)

 Order of magnitude (“Big-O”) (cont.)

– O(n2) always gets bigger than O(n) eventually!

C. Hundhausen, A. O’Fallon6

Analysis of Algorithms (5)

 Big-O Analysis of Sequential Search
– Best case: O(1)

– Worst case: O(n)

– Average case: O(n/2) = O(n)

C. Hundhausen, A. O’Fallon7

Analysis of Algorithms (6)

 Recall Selection Sort…

– Input: a list of numbers

– Output: a list of the same numbers in ascending

order

– Method:

 Set marker that divides “unsorted” and “sorted” sections

of list to the end of the list

 While the unsorted section of the list is not empty

– Find largest value in “unsorted” section of list

– Swap with last value in “unsorted” section of list

– Move marker left one position

C. Hundhausen, A. O’Fallon8

Analysis of Algorithms (7)

 Selection Sort (cont.)

– Big-O Analysis

 Units of work: comparisons and exchanges

 In all cases, we need n + (n - 1) + … + 1 comparisons =

[n * (n – 1)]/2 comparisons = 1/2n2 – 1/2n comparisons =

O(n2) comparisons

 In best case, items are already in order, so 0 exchanges

needed: O(n2) comparisons + 0 exchanges = O(n2)

 In worst case, items are in reverse order, so n

exchanges needed: O(n2) comparisons + n exchanges =

O(n2)

C. Hundhausen, A. O’Fallon9

Analysis of Algorithms (8)

 Selection Sort (cont.)

– Space Analysis

 Major space requirement is list of numbers (n)

 Other space requirements:

– Extra memory location needed for marker between sorted

and unsorted list

– Extra memory location needed to store LargestSoFar

used to find largest item in unsorted list

– Extra memory location needed to exchange two values

(why?)

– Overall, space requirement is proportional to n.

C. Hundhausen, A. O’Fallon10

Analysis of Algorithms (9)

 Recall Binary Search…
– Input: a list of n sorted values and a target value
– Output: True if target value exists in list and location of

target value, false otherwise
– Method:

 Set startindex to 1 and endindex to n
 Set found to false
 While found is false and startindex is less than or equal to

endindex
– Set mid to midpoint between startindex and endindex

– If target = item at mid then set found to true

– If target < item then set endindex to mid – 1

– If target > item then set to startindex to mid + 1 pointSet marker
that divides “unsorted” and “sorted” sections of list to the end of
the list

 If found = true then print “Target found at location mid”
 Else print “Sorry, target value could not be found.”

C. Hundhausen, A. O’Fallon11

Analysis of Algorithms (10)

 Binary Search (cont.)
– Big-O Analysis

 Unit of work: comparisons

 Best case

– target value is at first midpoint

– O(1) comparisons

 Worst case

– target value is not found

– list is cut in half until it is reduced to a list of size 0 (startindex is
greater than or equal to endindex)

– How many times can the list be cut in half? The number of
times a number n is divisible by another number m is defined
to be the logb(a), so the answer is log2(n) =
O(lg n)

C. Hundhausen, A. O’Fallon12

Analysis of Algorithms (11)

n

Order 10 50 100 1000

lg n 0.0003 sec 0.0006 sec 0.0007 sec 0.001 sec

n 0.001 sec 0.005 sec 0.01 sec 0.1 sec

n2 0.01 sec 0.25 sec 1 sec 1.67 min

2n 0.1024 sec 3570 yrs 4 * 1016

centuries

Too big to

compute

C. Hundhausen, A. O’Fallon13

Summary of Orders of Magnitude

 O(lg n) = flying

 O(n) = driving

 O(n2) = walking

 O(n3) = crawling

 O(n4) = barely moving

 O(n5) = no visible progress

 O(2n) = forget it, it will never happen

C. Hundhausen, A. O’Fallon14

References

 P.J. Deitel & H.M. Deitel, C++ How to

Program (9th Ed.), Pearson Education , Inc.,

2014.

 J.R. Hanly & E.B. Koffman, Problem Solving

and Program Design in C (7th Ed.), Addison-

Wesley, 2013

C. Hundhausen, A. O’Fallon15

Collaborators

 Chris Hundhausen

http://eecs.wsu.edu/~hundhaus/

