
(9-3) Efficiency of Algorithms
D & D Chapter 20

Instructor - Andrew S. O’Fallon

CptS 122 (March 8, 2024)

Washington State University

C. Hundhausen, A. O’Fallon2

Analysis of Algorithms (1)

 In general, we want…
– to determine central unit of work by considering the operations

applied in the algorithm
– to express unit of work as function of size of input data: How

quickly does amount of work grow as size of input grows?
– classify algorithms according to how their running time and/or

space requirements grow as input size grows

 For example, recall Sequential Search algorithm
– Get list of n names to search, and target name to search for
– Examine each name in sequence

 If all names have been examined, set found to false and stop
 If name equals target, set found to true and stop
 If name not equal to target, advance to next name

– Main unit of work: comparisons
– Analysis

 In best case, one comparison must be made (target is first item in list)
 In worst case, n comparisons must be made (target not found; all

items examined)
 In average case n/2 comparisons must be made

C. Hundhausen, A. O’Fallon3

Analysis of Algorithms (2)

 Order of magnitude analysis (“Big-O”)

– Constant factors do not change shape of graph!

C. Hundhausen, A. O’Fallon4

Analysis of Algorithms (3)

 Order of magnitude (“Big-O”) (cont.)

– Any algorithm whose work can be expressed as c

* n where c is a constant and n is the input size is

said to be “order of magnitude n”, or O(n)

– Likewise, any algorithm whose work varies as a

constant times the square of the input size is said

to be “order of magnitude n-squared”, or O(n2)

C. Hundhausen, A. O’Fallon5

Analysis of Algorithms (4)

 Order of magnitude (“Big-O”) (cont.)

– O(n2) always gets bigger than O(n) eventually!

C. Hundhausen, A. O’Fallon6

Analysis of Algorithms (5)

 Big-O Analysis of Sequential Search
– Best case: O(1)

– Worst case: O(n)

– Average case: O(n/2) = O(n)

C. Hundhausen, A. O’Fallon7

Analysis of Algorithms (6)

 Recall Selection Sort…

– Input: a list of numbers

– Output: a list of the same numbers in ascending

order

– Method:

 Set marker that divides “unsorted” and “sorted” sections

of list to the end of the list

 While the unsorted section of the list is not empty

– Find largest value in “unsorted” section of list

– Swap with last value in “unsorted” section of list

– Move marker left one position

C. Hundhausen, A. O’Fallon8

Analysis of Algorithms (7)

 Selection Sort (cont.)

– Big-O Analysis

 Units of work: comparisons and exchanges

 In all cases, we need n + (n - 1) + … + 1 comparisons =

[n * (n – 1)]/2 comparisons = 1/2n2 – 1/2n comparisons =

O(n2) comparisons

 In best case, items are already in order, so 0 exchanges

needed: O(n2) comparisons + 0 exchanges = O(n2)

 In worst case, items are in reverse order, so n

exchanges needed: O(n2) comparisons + n exchanges =

O(n2)

C. Hundhausen, A. O’Fallon9

Analysis of Algorithms (8)

 Selection Sort (cont.)

– Space Analysis

 Major space requirement is list of numbers (n)

 Other space requirements:

– Extra memory location needed for marker between sorted

and unsorted list

– Extra memory location needed to store LargestSoFar

used to find largest item in unsorted list

– Extra memory location needed to exchange two values

(why?)

– Overall, space requirement is proportional to n.

C. Hundhausen, A. O’Fallon10

Analysis of Algorithms (9)

 Recall Binary Search…
– Input: a list of n sorted values and a target value
– Output: True if target value exists in list and location of

target value, false otherwise
– Method:

 Set startindex to 1 and endindex to n
 Set found to false
 While found is false and startindex is less than or equal to

endindex
– Set mid to midpoint between startindex and endindex

– If target = item at mid then set found to true

– If target < item then set endindex to mid – 1

– If target > item then set to startindex to mid + 1 pointSet marker
that divides “unsorted” and “sorted” sections of list to the end of
the list

 If found = true then print “Target found at location mid”
 Else print “Sorry, target value could not be found.”

C. Hundhausen, A. O’Fallon11

Analysis of Algorithms (10)

 Binary Search (cont.)
– Big-O Analysis

 Unit of work: comparisons

 Best case

– target value is at first midpoint

– O(1) comparisons

 Worst case

– target value is not found

– list is cut in half until it is reduced to a list of size 0 (startindex is
greater than or equal to endindex)

– How many times can the list be cut in half? The number of
times a number n is divisible by another number m is defined
to be the logb(a), so the answer is log2(n) =
O(lg n)

C. Hundhausen, A. O’Fallon12

Analysis of Algorithms (11)

n

Order 10 50 100 1000

lg n 0.0003 sec 0.0006 sec 0.0007 sec 0.001 sec

n 0.001 sec 0.005 sec 0.01 sec 0.1 sec

n2 0.01 sec 0.25 sec 1 sec 1.67 min

2n 0.1024 sec 3570 yrs 4 * 1016

centuries

Too big to

compute

C. Hundhausen, A. O’Fallon13

Summary of Orders of Magnitude

 O(lg n) = flying

 O(n) = driving

 O(n2) = walking

 O(n3) = crawling

 O(n4) = barely moving

 O(n5) = no visible progress

 O(2n) = forget it, it will never happen

C. Hundhausen, A. O’Fallon14

References

 P.J. Deitel & H.M. Deitel, C++ How to

Program (9th Ed.), Pearson Education , Inc.,

2014.

 J.R. Hanly & E.B. Koffman, Problem Solving

and Program Design in C (7th Ed.), Addison-

Wesley, 2013

C. Hundhausen, A. O’Fallon15

Collaborators

 Chris Hundhausen

http://eecs.wsu.edu/~hundhaus/

