

Andrew S. O’Fallon 1

CptS 122 – Data Structures

Programming Assignment 3: Digital Music Manager & Doubly Linked

Lists – Part II

Assigned: Wednesday, January 31, 2024
Due: Monday, February 12, 2024 by midnight (extended due date)

I. Learner Objectives:

At the conclusion of this programming assignment, participants should be able to:

 Design and implement a dynamic doubly linked list
 Allocate and de-allocate memory at runtime
 Manipulate links in a dynamic linked list

 Insert items into a dynamic linked list
 Delete items from a dynamic linked list
 Edit items in a dynamic linked list
 Traverse a dynamic linked list
 Design and implement basic test cases

II. Prerequisites:

Before starting this programming assignment, participants should be able to:

 Analyze a basic set of requirements for a problem
 Compose C language programs
 Compile a program using Microsoft Visual Studio 2022
 Create basic test cases for a program

 Apply arrays, strings, and pointers
 Summarize differences between array notation and pointer notation
 Apply pointer arithmetic
 Apply basic string handling library functions
 Define and implement structures in C
 Summarize the operations of a linked list

III. Overview & Requirements:

In this assignment you will complete the Digital Music Manager that you started in PA
2. You must implement the following features:

 (4) insert
 (5) delete

 (7) sort
 (10) shuffle

You will also be required to write 3 test functions.

 What must “insert” do?
The “insert” command must prompt the user for the details of a new record. The

prompt must request the artist name, album title, song title, genre, song length,

Andrew S. O’Fallon 2

number of times played, and rating. The new record must be inserted at the front of
the list.

 What must “delete” do?
The “delete” command must prompt the user for a song title, and remove the
matching record from the list. If the song title does not exist, then the list remains

unchanged.

 What must “sort” do?
The “sort” command must prompt the user for 4 different methods to sort the records
in the list. These include:

1. Sort based on artist (A-Z)
2. Sort based on album title (A-Z)

3. Sort based on rating (1-5)
4. Sort based on times played (largest-smallest)

Once a sort method is selected by the user, the sort must be performed on the
records in the list. Consider using bubble sort, insertion sort, or selection sort.

 What must “shuffle” do?

The “shuffle” command must provide a random order in which the songs are played.
This command must not modify the links in the list. It must just specify the order in
which songs are played, based on the position of the song in the list. For example,
let’s say we have a list with 5 songs at positions 1 – 5 in the list, shuffle must generate
an order 1 – 5 in which the songs are played. An order 2, 5, 3, 1, 4 would require that
the second song in the list is played first, the fifth song in the list is played second,

the third song in the list is played third, the first song in the list is played fourth, and
the fourth song in the list is played fifth. The songs are accessed by traversing the list
both forwards and backwards to satisfy the order. Hence, the need for a doubly linked
list!

Once again, you will can find the file here example musicPlayList.csv.

 What “test” functions are required?
You must design and implement 3 test functions. These test functions must not accept
any arguments or return any values. They should be self-sufficient. You should provide

function declarations for them that are in a separate header file than your
utility/application function declarations. Also, the corresponding implementations for
them should be placed in a separate source file than your utility/applications function
definitions and main (). You must implement one test function for insert, delete, and
shuffle features for a total of 3 functions.

o For the insert test function, you must provide a test case with the following

test point: artist name = “Perry, Katy”, album title = “Witness”, song title =
“Chained to the Rhythm”, genre = “pop”, song length = “4:36”, times
played = -1, rating = 6. List state = initially empty. You must think about
what is your expected result? Should you able to insert a song with -1 times
played? Should you able to add a song with rating 6? Is the head pointer of
the list updated?

https://eecs.wsu.edu/~aofallon/cpts122/progassignments/musicPlayList.csv

Andrew S. O’Fallon 3

o For the delete test function, you must provide a test case with the following
test point: song title to delete = “Chained to the Rhythm”. List state =
artist name = “Perry, Katy”, album title = “Witness”, song title = “Chained
to the Rhythm”, genre = “pop”, song length = “4:36”, times played = 3,
rating = 5 (the only song in the list). You must think about what is your
expected result? Has the head pointer been updated? Is it NULL? Did the

memory get released?

o For the shuffle test function, you must provide a test case with the

following test point: play order = 3, 1, 2. List state = you provide 3 songs.
Does the shuffle play in the correct order?

IV. Logical Block Diagram

Once again, the logical block diagram for your doubly linked list should look like the
following:

As you can see from the illustration a doubly linked list has a pointer to the next node

and the previous node in the list. The first node’s previous node pointer is always
NULL and the last node’s next pointer is always NULL. When you insert and delete
nodes from a doubly linked list, you must always carefully link the previous and next
pointers.

BONUS:

Modify your doubly linked list implementation(s) for your DMM so that last node in the
list points to the first node, and the first node points to the last node. Hence, there is
no longer a first or last node. This list is now called “circular”. Overall, it is called a
circular doubly linked list. Any one of the nodes may by the current node!

V. Submitting Assignments:

1. Using Canvas https://canvas.wsu.edu/, please submit your solution to the

correct “Programming Assignments” (PA) folder. Your solution should be zipped

into a .zip file with the name <your last name>_PA3.zip and uploaded.

To upload your solution, please navigate to your correct Canvas lab course
space. Select the “Assignments” link in the main left menu bar. Navigate to the
correct PA submission folder. Click the “Start Assignment” button. Click the

https://canvas.wsu.edu/

Andrew S. O’Fallon 4

“Upload File” button. Choose the appropriate .zip file with your solution.
Finally, click the “Submit Assignment” button.

2. Your project must contain at least two header files (a .h file), three C source
files (which must be .c files), and a local copy of the .csv file. One of the
header files is required to contain the declarations for your test functions and
one of the .c files must contain the implementations for those test functions.

3. Your project must build properly. The most points an assignment can receive if
it does not build properly is 65 out of 100.

VI. Grading Guidelines:

This assignment is worth 100 points. Your assignment will be evaluated based on a
successful compilation and adherence to the program requirements. We will grade

according to the following criteria:

 5 pts – Appropriate top-down design, style, and commenting according to class
standards

 17 pts – Correct “insert” command implementation
1. (7 pts - 1pt/attribute) For prompting and getting the details of a new

record from the user
2. (10 pts) For correctly inserting the record at the front of the list

 24 pts – For correct “delete” command implementation
1. (3 pts) For prompting and getting the song title from the user
2. (5 pts) For searching for specific record matching the song title
3. (16 pts) For removing the matching record from the list, and

reconnecting the list correctly
 29 pts – Correct “sort” command implementation

1. (3 pts) For prompting and getting the sort method from the user
2. (7 pts) For sorting based on artist (A-Z)
3. (7 pts) For sorting based on album title (A-Z)
4. (6 pts) For sorting based on rating (1-5)
5. (6 pts) For sorting based on times played (largest-smallest)

 15 pts – Correct “shuffle” command implementation
1. (5 pts) For generating the random order based on the number of songs in

the list
2. (10 pts) For moving through the list (forwards and backwards) and

playing the songs in the order generated
 10 pts – Robust test functions – 3 required

1. (4 pts) For a test function that challenges the bounds of your insert
feature.

2. (3 pts) For a test function that challenges the bounds of your delete
feature.

3. (3 pts) For a test function that challenges the bounds of your shuffle
feature.

 BONUS: Up to 10 pts for correct circular implementation

