

CptS 122 – Data Structures

Programming Assignment 4: Basic Fitness Application in C++

Assigned: Monday, February 12, 2024
Due: Wednesday, February 28, 2024 by midnight

I. Learner Objectives:

At the conclusion of this programming assignment, participants should be able to:
1. Design, implement and test classes in C++
1. Declare and define constructors
1. Declare and define destructors
1. Compare and contrast public and private access specifiers in C++
1. Describe what is an attribute or data member of a class
1. Describe what is a method of a class
1. Apply and implement overloaded functions
1. Apply and implement overloaded operators (stream insertion and stream extraction)
1. Distinguish between pass-by-value and pass-by-reference
1. Discuss classes versus objects
1. Apply basic file operations on file streams

II. Prerequisites:

Before starting this programming assignment, participants should be able to:
1. Analyze a basic set of requirements for a problem
1. Compose basic C++ language programs
1. Create basic test cases for a program
1. Apply arrays, strings, and pointers

III. Overview & Requirements:

You are to write a basic fitness application, in C++, that allows the user of the application to manually edit “diet” and “exercise” plans. For this application you will need to create three classes: DietPlan, ExercisePlan, and FitnessAppWrapper.

Diet Plan Attributes:

The class DietPlan is used to represent a daily diet plan. Your class must include three data members to represent your goal calories (an integer), plan name (a std::string), and date for which the plan is intended (a std::string). The maximum intake of calories for a day is stored in the goal calories.

Exercise Plan Attributes:

The class ExercisePlan is used to represent a daily exercise plan. Your class must include three data members to represent your goal steps (an integer), plan name (a std::string), and date for which the plan is intended (a std::string). Your goal steps represent the number of desired steps for a day.

Diet and Exercise Plan Operations:

Both the DietPlan and ExercisePlan should provide several member functions including: a constructor, copy constructor, and destructor. Remember that you will have to think about other appropriate member functions (think about setter and getter functions!). Member function editGoal () should prompt the user for a new goal, and use the value to change the goal in the plan. Each time a plan is changed, the plan must be displayed to the screen, using an overloaded stream insertion operator (see below).

In the same file in which each class declaration exists, three nonmember functions must be declared. Note: an overloaded operator is considered an overloaded function. The overloaded stream insertion (<<) for both displaying a plan to the screen and for writing a plan to a file, and the extraction (>>) operator for reading a plan from a file.

Observation: please notice that the DietPlan and ExercisePlan classes define very similar attributes and operations. In the future, we will be able to design around these similarities (using inheritance and polymorphism).

Fitness Application:

Each of the daily plans will be read from a file. Each file must consist of exactly seven daily plans, representing a full week of plans. The daily diet plans will be read from a file called “dietPlans.txt” and the daily exercise plans will be read from a file called “exercisePlans.txt”. The format of the files must be represented in the following way:

Plan name
Goal
Date in the form mm/dd/yyyy
(blank line)
Plan name
Goal
Date in the form mm/dd/yyyy

You must read in each of the daily plans by applying an overloaded stream extraction operator: fileStream >> DietPlan or fileStream >> ExercisePlan. The overloaded operator must be defined as a nonmember function to the DietPlan and ExercisePlan classes. Each plan is stored into the next available position in your linear data structure whether it be an array, vector, or linked list.

Observation: Inserting at the end of an array and vector requires (amortized) constant time. Inserting at the end of a linked list (with only a head pointer) requires linear time. Consider this idea as you develop your solution!

The class FitnessAppWrapper is used to “wrap” the application. This class should contain two lists (must be an array, vector, or linked list) of weekly (7 days) plans: one diet and one exercise weekly plan. It must define the following member functions (some prototypes are given to you, but not all!):
· Public member function - void runApp (void): starts the main application.

· Private member function - void loadDailyPlan (ifstream or fstream &fileStream, DietPlan &plan): must define two of these functions; one for a DietPlan and one for an ExercisePlan. This function reads one record from the given stream. These will be considered overloaded functions! Precondition: file is already open!

· Private member function - void loadWeeklyPlan (ifstream or fstream &fileStream, DietPlan weeklyPlan[]): must define two of these functions; one for a DietPlan and one for an ExercisePlan. This function must read in all seven daily plans from the given stream. Note: the array parameter would change if using a vector or linked list! This function should call loadDailyPlan () directly. Precondition: file is already open!

· Private member function - displayDailyPlan (): writes a daily plan to the screen. You must apply the overloaded stream insertion operator here! Note: you must determine the appropriate parameters and return type. Once again you must define two of these!

· Private member function - displayWeeklyPlan (): writes a weekly plan to the screen. This function must call displayDailyPlan (). Note: you must determine the appropriate parameters and return type. Once again you must define two of these!

· Private member function - storeDailyPlan (): writes a daily plan to a file. You must apply the overloaded stream insertion operator here! Note: you must determine the appropriate parameters and return type. Once again you must define two of these!

· Private member function - storeWeeklyPlan (): writes a weekly plan to a file. This function must call storeDailyPlan (). You must apply the overloaded stream insertion operator here! Note: you must determine the appropriate parameters and return type. Once again you must define two of these!

· Public member function - displayMenu (): displays nine menu options. These include:
1. Load weekly diet plan from file.
1. Load weekly exercise plan from file.
1. Store weekly diet plan to file.
1. Store weekly exercise plan to file.
1. Display weekly diet plan to screen.
1. Display weekly exercise plan to screen.
1. Edit daily diet plan.
1. Edit daily exercise plan.
1. Exit. // Note: this must write the most recent weekly plans to the corresponding files.

· Other functions? There should be!

Observation: Many of the functions in the FitnessAppWrapper class are overloaded. There’s one version for use on a DietPlan and one version for use on an ExercisePlan. We know these functions are considered overloaded because they have the same name, but different parameter types. In the future, we could use templates, and let the compiler generate code for us, instead of implementing several versions of the same function ourselves.

BONUS:

Implement classes for ListNode and List to store the diet and exercise plans. You may need to implement a different linked list for each of the plans. In the future, this could be resolved by using templates.

IV. Submitting Assignments:

1. [bookmark: _Hlk81908182]Using Canvas https://canvas.wsu.edu/, please submit your solution to the correct “Programming Assignments” (PA) folder. Your solution should be zipped into a .zip file with the name <your last name>_PA4.zip and uploaded. To upload your solution, please navigate to your correct Canvas lab course space. Select the “Assignments” link in the main left menu bar. Navigate to the correct PA submission folder. Click the “Start Assignment” button. Click the “Upload File” button. Choose the appropriate .zip file with your solution. Finally, click the “Submit Assignment” button.
1. Your project must contain at least three header files (.h files) and four C++ source files (which must be .cpp files). It should also contain the necessary data files. Ideally, there should be one .h file per class declaration. There should be one .cpp for each set of operations belonging to a single class and one for the main () function.
1. Your project must build properly. The most points an assignment can receive if it does not build properly is 65 out of 100.

V. Grading Guidelines:

This assignment is worth 100 points. Your assignment will be evaluated based on a successful compilation and adherence to the program requirements. We will grade according to the following criteria:

1. 5 pts – Appropriate top-down design, style, and commenting according to class standards
1. 18 pts – Appropriate design and implementation of Class DietPlan (including member functions and data members)
1. 3 pts – 1 pt/each for declaring goal calories, plan name, and date
1. 2 pts – declaring and defining a constructor
1. 2 pts – declaring and defining a copy constructor
1. 1 pt – declaring and defining a destructor
1. 4 pts – declaring and defining setters/getters
1. 4 pts – declaring and defining an editGoal function
1. 2 pts – others?
1. 18 pts – Appropriate design and implementation of Class ExercisePlan (including member functions and data members)
2. 3 pts – 1 pt/each for declaring goal steps, plan name, and date
2. 2 pts – declaring and defining a constructor
2. 2 pts – declaring and defining a copy constructor
2. 1 pt – declaring and defining a destructor
2. 4 pts – declaring and defining setters/getters
2. 4 pts – declaring and defining an editGoal function
2. 2 pts – others?
1. 47 pts – Appropriate implementation of Class FitnessAppWrapper (including menu options, etc.)
3. [bookmark: _GoBack]8 pts – 2 pts/each for declaring a list of diet plans, a list of exercise plans, a file stream associated with “dietPlans.txt”, and a file stream associated with “exercisePlans.txt”
3. 4 pts – declaring and defining runApp function
3. 4 pts – 2 pts/each for declaring and defining loadDailyPlan functions
3. 4 pts – 2 pts/each for declaring and defining loadWeeklyPlan functions
3. 4 pts – 2 pts/each for declaring and defining displayDailyPlan functions
3. 4 pts – 2 pts/each for declaring and defining displayWeeklyPlan functions
3. 4 pts – 2 pts/each for declaring and defining storeDailyPlan functions
3. 4 pts – 2 pts/each for declaring and defining storeWeeklyPlan functions
3. 2 pts – declaring and defining displayMenu function
3. 4 pts – opening and closing the files
3. 5 pts – others?
1. 12 pts – 2 pts/each for the nonmember overloaded stream extraction and stream insertion operators (4 total stream insertion operators, 2 total stream extraction operators)
1. BONUS: Up to 10 pts – Linked list implementation using ListNode and List classes

4
Andrew S. O’Fallon
image2.gif
dtle

