

Andrew S. O’Fallon 1

CptS 122 – Data Structures

Programming Assignment 4: Basic Fitness Application in C++

Assigned: Monday, February 12, 2024
Due: Wednesday, February 28, 2024 by midnight

I. Learner Objectives:

At the conclusion of this programming assignment, participants should be able to:
 Design, implement and test classes in C++
 Declare and define constructors
 Declare and define destructors
 Compare and contrast public and private access specifiers in C++
 Describe what is an attribute or data member of a class

 Describe what is a method of a class
 Apply and implement overloaded functions
 Apply and implement overloaded operators (stream insertion and stream

extraction)
 Distinguish between pass-by-value and pass-by-reference
 Discuss classes versus objects
 Apply basic file operations on file streams

II. Prerequisites:

Before starting this programming assignment, participants should be able to:

 Analyze a basic set of requirements for a problem
 Compose basic C++ language programs

 Create basic test cases for a program
 Apply arrays, strings, and pointers

III. Overview & Requirements:

You are to write a basic fitness application, in C++, that allows the user of the
application to manually edit “diet” and “exercise” plans. For this application you will

need to create three classes: DietPlan, ExercisePlan, and FitnessAppWrapper.

Diet Plan Attributes:

The class DietPlan is used to represent a daily diet plan. Your class must include
three data members to represent your goal calories (an integer), plan name (a

std::string), and date for which the plan is intended (a std::string). The maximum
intake of calories for a day is stored in the goal calories.

Exercise Plan Attributes:

Andrew S. O’Fallon 2

The class ExercisePlan is used to represent a daily exercise plan. Your class must
include three data members to represent your goal steps (an integer), plan name (a
std::string), and date for which the plan is intended (a std::string). Your goal steps
represent the number of desired steps for a day.

Diet and Exercise Plan Operations:

Both the DietPlan and ExercisePlan should provide several member functions
including: a constructor, copy constructor, and destructor. Remember that you will
have to think about other appropriate member functions (think about setter and
getter functions!). Member function editGoal () should prompt the user for a new
goal, and use the value to change the goal in the plan. Each time a plan is changed,
the plan must be displayed to the screen, using an overloaded stream insertion

operator (see below).

In the same file in which each class declaration exists, three nonmember functions
must be declared. Note: an overloaded operator is considered an overloaded
function. The overloaded stream insertion (<<) for both displaying a plan to the
screen and for writing a plan to a file, and the extraction (>>) operator for reading a

plan from a file.

Observation: please notice that the DietPlan and ExercisePlan classes define very
similar attributes and operations. In the future, we will be able to design around
these similarities (using inheritance and polymorphism).

Fitness Application:

Each of the daily plans will be read from a file. Each file must consist of exactly seven
daily plans, representing a full week of plans. The daily diet plans will be read from a
file called “dietPlans.txt” and the daily exercise plans will be read from a file called
“exercisePlans.txt”. The format of the files must be represented in the following
way:

Plan name
Goal
Date in the form mm/dd/yyyy
(blank line)
Plan name

Goal
Date in the form mm/dd/yyyy

You must read in each of the daily plans by applying an overloaded stream extraction
operator: fileStream >> DietPlan or fileStream >> ExercisePlan. The overloaded
operator must be defined as a nonmember function to the DietPlan and ExercisePlan
classes. Each plan is stored into the next available position in your linear data

structure whether it be an array, vector, or linked list.

Andrew S. O’Fallon 3

Observation: Inserting at the end of an array and vector requires (amortized)
constant time. Inserting at the end of a linked list (with only a head pointer)
requires linear time. Consider this idea as you develop your solution!

The class FitnessAppWrapper is used to “wrap” the application. This class should
contain two lists (must be an array, vector, or linked list) of weekly (7 days) plans:

one diet and one exercise weekly plan. It must define the following member functions
(some prototypes are given to you, but not all!):

- Public member function - void runApp (void): starts the main application.

- Private member function - void loadDailyPlan (ifstream or fstream &fileStream,
DietPlan &plan): must define two of these functions; one for a DietPlan and
one for an ExercisePlan. This function reads one record from the given stream.

These will be considered overloaded functions! Precondition: file is already
open!

- Private member function - void loadWeeklyPlan (ifstream or fstream

&fileStream, DietPlan weeklyPlan[]): must define two of these functions; one
for a DietPlan and one for an ExercisePlan. This function must read in all seven

daily plans from the given stream. Note: the array parameter would change if
using a vector or linked list! This function should call loadDailyPlan () directly.
Precondition: file is already open!

- Private member function - displayDailyPlan (): writes a daily plan to the

screen. You must apply the overloaded stream insertion operator here! Note:

you must determine the appropriate parameters and return type. Once again
you must define two of these!

- Private member function - displayWeeklyPlan (): writes a weekly plan to the

screen. This function must call displayDailyPlan (). Note: you must determine
the appropriate parameters and return type. Once again you must define two
of these!

- Private member function - storeDailyPlan (): writes a daily plan to a file. You

must apply the overloaded stream insertion operator here! Note: you must
determine the appropriate parameters and return type. Once again you must
define two of these!

- Private member function - storeWeeklyPlan (): writes a weekly plan to a file.
This function must call storeDailyPlan (). You must apply the overloaded
stream insertion operator here! Note: you must determine the appropriate
parameters and return type. Once again you must define two of these!

- Public member function - displayMenu (): displays nine menu options. These

include:

1. Load weekly diet plan from file.
2. Load weekly exercise plan from file.
3. Store weekly diet plan to file.

Andrew S. O’Fallon 4

4. Store weekly exercise plan to file.
5. Display weekly diet plan to screen.
6. Display weekly exercise plan to screen.
7. Edit daily diet plan.
8. Edit daily exercise plan.
9. Exit. // Note: this must write the most recent weekly plans to the

corresponding files.

- Other functions? There should be!

Observation: Many of the functions in the FitnessAppWrapper class are
overloaded. There’s one version for use on a DietPlan and one version for use on
an ExercisePlan. We know these functions are considered overloaded because

they have the same name, but different parameter types. In the future, we could
use templates, and let the compiler generate code for us, instead of implementing
several versions of the same function ourselves.

BONUS:

Implement classes for ListNode and List to store the diet and exercise plans. You may
need to implement a different linked list for each of the plans. In the future, this
could be resolved by using templates.

IV. Submitting Assignments:

1. Using Canvas https://canvas.wsu.edu/, please submit your solution to the
correct “Programming Assignments” (PA) folder. Your solution should be zipped

into a .zip file with the name <your last name>_PA4.zip and uploaded.

To upload your solution, please navigate to your correct Canvas lab course

space. Select the “Assignments” link in the main left menu bar. Navigate to the
correct PA submission folder. Click the “Start Assignment” button. Click the
“Upload File” button. Choose the appropriate .zip file with your solution.
Finally, click the “Submit Assignment” button.

2. Your project must contain at least three header files (.h files) and four C++
source files (which must be .cpp files). It should also contain the necessary

data files. Ideally, there should be one .h file per class declaration. There
should be one .cpp for each set of operations belonging to a single class and
one for the main () function.

3. Your project must build properly. The most points an assignment can receive if
it does not build properly is 65 out of 100.

V. Grading Guidelines:

This assignment is worth 100 points. Your assignment will be evaluated based on a
successful compilation and adherence to the program requirements. We will grade
according to the following criteria:

https://canvas.wsu.edu/

Andrew S. O’Fallon 5

 5 pts – Appropriate top-down design, style, and commenting according to class
standards

 18 pts – Appropriate design and implementation of Class DietPlan (including
member functions and data members)

1. 3 pts – 1 pt/each for declaring goal calories, plan name, and date
2. 2 pts – declaring and defining a constructor

3. 2 pts – declaring and defining a copy constructor
4. 1 pt – declaring and defining a destructor
5. 4 pts – declaring and defining setters/getters
6. 4 pts – declaring and defining an editGoal function
7. 2 pts – others?

 18 pts – Appropriate design and implementation of Class ExercisePlan (including
member functions and data members)

1. 3 pts – 1 pt/each for declaring goal steps, plan name, and date
2. 2 pts – declaring and defining a constructor
3. 2 pts – declaring and defining a copy constructor
4. 1 pt – declaring and defining a destructor
5. 4 pts – declaring and defining setters/getters
6. 4 pts – declaring and defining an editGoal function

7. 2 pts – others?
 47 pts – Appropriate implementation of Class FitnessAppWrapper (including

menu options, etc.)
1. 8 pts – 2 pts/each for declaring a list of diet plans, a list of exercise

plans, a file stream associated with “dietPlans.txt”, and a file stream
associated with “exercisePlans.txt”

2. 4 pts – declaring and defining runApp function
3. 4 pts – 2 pts/each for declaring and defining loadDailyPlan functions
4. 4 pts – 2 pts/each for declaring and defining loadWeeklyPlan functions
5. 4 pts – 2 pts/each for declaring and defining displayDailyPlan functions
6. 4 pts – 2 pts/each for declaring and defining displayWeeklyPlan functions
7. 4 pts – 2 pts/each for declaring and defining storeDailyPlan functions
8. 4 pts – 2 pts/each for declaring and defining storeWeeklyPlan functions

9. 2 pts – declaring and defining displayMenu function
10. 4 pts – opening and closing the files
11. 5 pts – others?

 12 pts – 2 pts/each for the nonmember overloaded stream extraction and
stream insertion operators (4 total stream insertion operators, 2 total stream
extraction operators)

 BONUS: Up to 10 pts – Linked list implementation using ListNode and List
classes

