

Andrew S. O’Fallon 1

CptS 122 – Data Structures

Programming Assignment 5: Grocery Store Simulation

Assigned: Wednesday, February 28, 2024
Due: Friday, March 8, 2024 by midnight

I. Learner Objectives:

At the conclusion of this programming assignment, participants should be able to:
 Design and implement a dynamic queue
 Allocate and de-allocate memory at runtime
 Manipulate links in a dynamic queue
 Insert items into a dynamic queue
 Delete items from a dynamic queue

 Traverse a dynamic queue
 Design, implement, and apply test cases in C++
 Design test classes in C++

II. Prerequisites:

Before starting this programming assignment, participants should be able to:

 Analyze a basic set of requirements for a problem
 Compose C++ language programs
 Create basic test cases for a program
 Apply arrays, strings, and pointers
 Summarize differences between array notation and pointer notation
 Apply pointer arithmetic

 Apply basic string handling library functions
 Define and implement classes in C++
 Summarize the operations of a linked list
 Describe the operations of a queue including: enqueue (), dequeue (),

printQueue ()

III. Overview & Requirements:

Note: parts of this assignment were inspired by Deitel and Deitel’s Supermarket
Simulation problem. We’ve all had the pleasant experience of standing in line at the
grocery store. As I’m standing in line I’m always trying to figure out if I chose the line
with the fastest service. In most cases, I fail miserably. Let’s write a program to
simulate two lines in a grocery store, which will allow us to better understand how to

select the fastest line. Note: you’ll be required to write some test cases for this
program. I highly recommend that you start with your tests before you implement any
other aspect of the program. Starting with your tests will also allow for you to better
design and implement your main application code.

Andrew S. O’Fallon 2

For this assignment you will need to simulate two lines using queues. This will require
that you develop enqueue () (insert), dequeue () (delete), and printQueue ()
operations for a queue. Although you will instantiate two queues, each one of these
will consist of the same kind of queue nodes. Define a queue node in the following
manner:

class Data

{

public: // Member functions

private:

 int customerNumber; // Unique identifier; starts at 1; after 24 hours

should be reset to 1

 int serviceTime; // Random time; varies between express and normal

lanes; units in minutes

 int totalTime; // totalTime = serviceTime + sum of serviceTimes of

customers in line before this customer; units in minutes

}; // This memory needs to be allocated on the heap!

class QueueNode

{

public: // Member functions

private:

 Data *pData; // The memory for Data will need to be allocated on the

heap as well!
 QueueNode *pNext;

};

You must also define a queue in the following manner:

class Queue

{

public: // Member functions

private:

 QueueNode *pHead;

 QueueNode *pTail;

};

One of your queues will represent the express lane and the other a normal lane. You

will randomly generate arrival times and service times of customers into each lane.
The express lane has customers arrive every one to five minutes, and customers arrive
every three to eight minutes in the normal lane. Service times vary from one to five
minutes, and three to eight minutes, for express and normal lane customers,
respectively. As customers arrive into each line print out a message indicating in
which line each customer arrives, along with the overall corresponding arrival time

and customer number. When customers have finished checking out, print out a

Andrew S. O’Fallon 3

message indicating which line the customer was in, along the corresponding customer

number and totalTime in the line. Allow for the simulation to run for n number of

minutes, where n is inputted by the user.

The general program flow is as follows:

1. Generate a random number between 1 – 5 and 3 – 8 for express and normal

lanes, respectively. This represents the arrival time of the first customer into
each lane. Set the variable for total time elapsed to 0.

2. As customers arrive into each line, randomly generate a service time for each.
Start processing the customers in the lanes based on service time. Randomly
generate the arrival time of the next customer into each line. Elapsed time
should be updated by one unit.

3. As each minute elapses, a new customer may arrive and/or another customer

may be done checking out. Display the appropriate messages as described
above.

4. For every 10 minutes, print out the entire queue for each line

5. Repeat steps 2 through 4 for n minutes of simulation.

Hints: since this is a simulation one minute is really one unit of time. Thus, the
incrementing of an integer variable could represent one minute of time elapsing.

Required test cases:

Declare and define a test class for your application. You must declare your test class
in a separate .h file from your other classes. You must also place your test case
implementations in a separate .cpp file from your other classes. You must implement
a total of 5 test cases. You must write the following test cases:

- One test case that executes your enqueue() operation on an empty queue

- One test case that executes your enqueue() operation with one node in the queue

- One test case that executes your dequeue() operation on a queue with one node

- One test case that executes your dequeue() operation on a queue with two nodes

- One test case that runs your simulation for 24 hours

BONUS:

Modify QueueNode such that it contains a pointer to the start of a dynamic singly

linked list. The linked list will consist of grocery items corresponding to one person.
These items should be strings like “cereal”, “milk”, “steak”, etc. Adjust the

serviceTime of the QueueNode so that it is no longer random, but proportional to

the number of items for the person served.

IV. Submitting Assignments:

1. Using Canvas https://canvas.wsu.edu/, please submit your solution to the
correct “Programming Assignments” (PA) folder. Your solution should be zipped

into a .zip file with the name <your last name>_PA5.zip and uploaded.

To upload your solution, please navigate to your correct Canvas lab course

https://canvas.wsu.edu/

Andrew S. O’Fallon 4

space. Select the “Assignments” link in the main left menu bar. Navigate to the
correct PA submission folder. Click the “Start Assignment” button. Click the
“Upload File” button. Choose the appropriate .zip file with your solution.
Finally, click the “Submit Assignment” button.

2. Your project must contain at least two header files (a .h file) and three C++
source files (which must be .cpp files).

3. Your project must build properly. The most points an assignment can receive if
it does not build properly is 65 out of 100.

V. Grading Guidelines:

This assignment is worth 100 points. Your assignment will be evaluated based on a
successful compilation and adherence to the program requirements. We will grade

according to the following criteria:

 5 pts – Appropriate top-down design, style, and commenting according to class
standards

 15 pts – Correct usages of two queues in simulation

 5 pts – Correct Data class

 5 pts – Correct QueueNode class

 7 pts – Correct Queue class

 10 pts – Correct constructors/destructors for the classes

 5 pts – Correct getters/setters for the classes

 5 pts – Correct printQueue()

 3 pts – Correct isEmpty()

 15 pts – Correct enqueue()

 15 pts – Correct dequeue()

 10 pts (2 pts/test case) – Correct test cases for the application

 BONUS: Up to 20 pts for implementation of grocery item list/customer

