

Andrew S. O’Fallon 1

CptS 122 – Data Structures

Programming Assignment 6: Morse Code Lookup BST

Assigned: Friday, March 8, 2024
Due: Friday, March 22, 2024 by midnight

I. Learner Objectives:

At the conclusion of this programming assignment, participants should be able to:
 Design, implement, and test a Binary Search Tree (BST)
 Apply a BST for looking up Morse Codes
 Discuss classes versus objects
 Implement container classes

II. Prerequisites:

Before starting this programming assignment, participants should be able to:

 Analyze a basic set of requirements for a problem
 Compose basic C++ language programs
 Create basic test cases for a program
 Apply arrays, strings, and pointers

 Design, implement, and apply classes
 Design, implement, and apply linked lists

III. Overview & Requirements:

Recall, a Binary Search Tree (BST) data structure is a nonlinear data structure. A BST

is traversed by starting at the root pointer. The root node is the first node inserted
into the tree. Nodes are inserted into the tree such that all items to the left of the
root node are less than, and all items to the right of the root are greater than its
item. Also, this property holds true for any particular node in the tree. We will
visualize a BST in the following way:

Andrew S. O’Fallon 2

In this assignment you will be using a BST to convert English characters to Morse code
strings. Morse code is a famous coding scheme that assigns a series of dots and dashes
to each letter of the alphabet, each digit, and a few special characters. In sound-

oriented systems, the dot represents a short sound and the dash represents a long
sound. Other representations of dots and dashes are used with light-oriented systems
and signal-flag systems (from Deitel and Deitel C How to Program).

1. (15 pts) Defining the BSTNode structure

For the first part of the assignment, you should start by designing the BSTNode class
for the BST. Create a class for the BSTNode data that will have as its members a
character and a string. The character will hold the English text character, and the
string will hold the corresponding Morse code characters for that English text

character. You should also define left and right child pointers that point to BSTNode
objects. You must have a constructor that accepts arguments to set the English text
character and Morse code string.

2. (50 pts) Create the BST code and create a Morse lookup BST

Andrew S. O’Fallon 3

Next, you should be able to read in the Morse table from a file called
“MorseTable.txt”. You should rearrange the Morse table in the file to make sure that
your lookup tree is balanced. I recommend that you diagram a tree that provides a
balanced tree so that you know how to order your “MorseTable.txt” file. Think about
the order of insertions. However, the tree does not have to balance itself.

The tree should be built by the constructor for the BST. This means the constructor
must open and read the file, create nodes for each character in the tree, insert the

nodes into the tree (using an insert () function), and close the file. Note: the tree
object could be declared as const, since all changes to it are being performed in the
constructor. However, if you declare your object as a const, be sure to also declare
your print () and search () functions as const. You should arrange the tree so that it is
alphabetically ordered from left to right. Create a print () function that uses
recursion to traverse the tree in order (left most printed first). Also, build a search ()
function that will return the Morse code string for each English character searched

for. Do you need to return a found indicator from the search function? Should you use
recursion? Finally, implement a destructor, which destroys the entire tree.

Morse Code Alphabet:

A .-

B -...

C -.-.

D -..

E .

F ..-.

G --.

H

I ..

J .---

N -.

O ---

P .--.

Q --.-

R .-.

S ...

T -

U ..-

V ...-

W .--

0 -----

1 .----

2 ..---

3 ...--

4 -

5

6 -....

7 --...

8 ---..

9 ----.

Andrew S. O’Fallon 4

K -.-

L .-..

M --

X -..-

Y -.--

Z --..

FULLSTOP, Period .-.-.-

Comma ‘,’ --..--

Query ‘?’ ..--..

3. (30 pts) Putting the pieces together

First, print the current tree. Next, you must open a file called “Convert.txt”, which
consists of English alphabetic characters, spaces, commas, and periods. You must
“look” for each English character with a search () function on the BST, and print the

Morse code string for that character. For each character in “Convert.txt”, convert the
character to a Morse code string. Each Morse character in the string will be separated
by a space. Each complete Morse string will be separated by three spaces. Each
newline character will be echoed to the screen. Note: you should convert any
lowercase English characters to uppercase before processing the English text.

Below is an example test file (you should add more characters to test all
conversions!):

(Convert.txt)

This is a test of the cpts 122

Morse code conversion tool.

(Echoed to screen)

-- - - --- ..-. - -.-. .--. ----- ..--- ..---

-- --- .-. -.-. --- -.. . -.-. --- -. ...- . .-. --- -. - --- --- .-.. .-.-.-

BONUS (15 pts): Implement a BSTNode and BST class template. Think about: how do
you accommodate two different types in a class template? Or could you use a single
template type that represents a Node?

Andrew S. O’Fallon 5

IV. Submitting Assignments:

1. Using Canvas https://canvas.wsu.edu/, please submit your solution to the
correct “Programming Assignments” (PA) folder. Your solution should be zipped

into a .zip file with the name <your last name>_PA6.zip and uploaded.

To upload your solution, please navigate to your correct Canvas lab course
space. Select the “Assignments” link in the main left menu bar. Navigate to the
correct PA submission folder. Click the “Start Assignment” button. Click the

“Upload File” button. Choose the appropriate .zip file with your solution.
Finally, click the “Submit Assignment” button.

2. Your project must contain at least two header files (.h files) and three C++
source files (which must be .cpp files).

3. Your project must build properly. The most points an assignment can receive if
it does not build properly is 65 out of 100.

V. Grading Guidelines:

This assignment is worth 100 points. Your assignment will be evaluated based on a
successful compilation and adherence to the program requirements. We will grade
according to the following criteria:

 5 pts – Appropriate top-down design, style, file organization (each class should
be in its own .h file), and commenting according to class standards

 15 pts - Defining the BSTNode structure
1. 4 pts correct data members in node (char, string, left and right pointers)
2. 3 pts correct constructor
3. 8 pts other member functions

 50 pts - Creating the BST code and create a Morse lookup BST

1. 2 pts correct data member in BST (root)
2. 10 pts correct insert ()
3. 2 pts for opening “MorseTable.txt”
4. 2 pts for closing “MorseTable.txt”
5. 6 pts for reading contents of “MorseTable.txt”
6. 5 pts for correct print ()

7. 9 pts for correct search ()
8. 6 pts for correct constructor
9. 8 pts for correct destructor

 30 pts - Putting the pieces together
1. 5 pts for printing the tree
2. 2 pts for opening “Convert.txt”

3. 2 pts for closing “Convert.txt”
4. 6 pts for reading contents of “Convert.txt”
5. 10 pts for performing conversion of English to Morse code
6. 5 pts for echoing Morse code to screen

 BONUS 15 pts – Working BSTNode and BST class template

https://canvas.wsu.edu/

