

Andrew S. O’Fallon 1

CptS 122 – Data Structures

Programming Assignment 7: Attendance Tracker w/ class Templates

Assigned: Monday, March 25, 2024
Due: Friday, April 5, 2024 by midnight

I. Learner Objectives:

At the conclusion of this programming assignment, participants should be able to:
 Design, implement and test classes in C++
 Apply class templates in C++
 Declare and define constructors
 Declare and define destructors
 Compare and contrast public and private access specifiers in C++

 Describe what is an attribute or data member of a class
 Describe what is a method of a class
 Apply and implement overloaded functions
 Distinguish between pass-by-value and pass-by-reference
 Discuss classes versus objects
 Implement container classes
 Implement a list class

 Implement a stack class
 Read and write files in C++
 Programmatically acquire calendar dates

II. Prerequisites:

Before starting this programming assignment, participants should be able to:
 Analyze a basic set of requirements for a problem
 Compose basic C++ language programs
 Create basic test cases for a program
 Apply arrays, strings, and pointers

III. Overview & Requirements:

Let us create an application that manages attendance for a course. This application
has four major requirements:

Requirement 1 (Import records): The application must import records pertaining to
each student registered for the course from a course list.

Requirement 2 (Mark absences): The application must allow the user to mark each
student in the course as present or absent on any given day.
Requirement 3 (Generate reports): The application must generate reports based on
criteria.
Requirement 4 (Menu): The application must support a user interface to the
attendance tracker.

Andrew S. O’Fallon 2

Import records: An import destroys any existing list. Records must be read from a
comma-separated values (.csv) course file. A .csv file stores data as plaintext in
tabular form. Each row in the file is considered a record. Each record consists of
fields separated by commas. Please start with this .csv file. In this assignment the
following fields will be present for each record:

- record number (max 3 digits)
- ID number (max 9 digits)
- name (last, first)
- email
- units (number of credits for class or AU for audit)
- program (major)
- level (freshman, sophomore, junior, senior, graduate)

You are required to use a dynamic singly linked list to store student records. We are
not so concerned about retaining the original order of the list when we import it. As
each record is imported from the file, the record must be inserted at the front of the
list. Inserting at the front of a dynamic linked list is very efficient (constant time –
O(1)). You are required to implement two class templates for the list, plus an
additional two classes (not required to be class templates) for the Data and Stack.

Each of the class templates will only require that one type is used: type T. One class
template is the Node class, which contains a data member of type T (this will be
replaced by the type class Data) when it is instantiated, along with a pointer to the
next Node. The Data class stores the fields acquired from each record. In addition to
the fields in the file, you are required to add two extra fields in to the class Data.
These fields include number of absences and a stack (must be implemented using an

array or std::vector) for storing the dates of absences. Remember, class Data is not a
template!!! The most recent absence date will always be at the top (Last-In First-Out,
LIFO)! The second class template is the List class, which is a container for the Nodes.
The List class will be considered your master list. Lastly, you are required to
implement only one class for the Stack. The Stack class will be implemented using an
array or std::vector. The Stack class must support push (), pop (), peek (), and
isEmpty () operations, but does not have to be a template. All of the stack operations

should execute in constant time (O(1)).

Mark absences: The user of the program should be able to view the master list of
students in the course and mark absences for the current day. This may be
implemented by simply traversing the linked list (linear time (O(n)) and asking is the
student absent? Yes or no? The date for the day must be derived from the computer’s

date. The following fragment of code illustrates how to derive the date from the
computer:

 // retrieved from stackoverflow - http://stackoverflow.com/questions/997946/how-
to-get-current-time-and-date-in-c
 time_t t = time(0); // get time now
 struct tm * now = localtime(& t);
 cout << (now->tm_year + 1900) << '-'
 << (now->tm_mon + 1) << '-'
 << now->tm_mday
 << endl;

https://eecs.wsu.edu/~aofallon/cpts122/progassignments/classList.csv

Andrew S. O’Fallon 3

Generate reports: The user of the program should be able to generate two versions of
reports. One version is a report that shows all of the students in the class and the
number of times they have been absent, along with the date of the most recent
absence (peek ()). A second version is a report that provides only the names of the
students absent for those who are absent greater than some threshold set by the user.

You do NOT need to show the dates absent for the second version. Write each report
to a different .txt file. Do you think that a stack was a good design decision based on
the requirements for the assignment? What are the time complexities or Big-O of the
generate report algorithms?

Menu: At startup of the program a menu must be displayed. The menu must support
six options. These include:

1. Import course list
2. Load master list
3. Store master list
4. Mark absences
5. BONUS: Edit absences
6. Generate report

7. Exit

Option 1: Reads the classlist.csv course file and destroys and overwrites the

master list.

Option 2: Populates the master list with previous nodes from master.csv file.

Option 3: Stores the contents of the master list’s nodes to the master.csv file.

Option 4: Runs through the master list, displays each student’s name, and prompts if
he/she was absent for the current day. The data must be pushed to the stack that is
contained within the node representative of the student.
BONUS: Option 5: Prompts for an ID number or name of student to edit. Prompts for

the date of absence to edit.
Option 6: Leads to submenu -> 1. Generate report for all students; showing only the
most recent absence for each student. This is a peek () operation! 2. Generate report
for students with absences that match or exceed (the number entered by the user).
Option 7: Exit the program.

You are required to define a class for your menu, which is NOT a template.

BONUS: Edit absences - The user of the program should be able to access each
student’s record and edit absences. A search (linear time) through the master list
based on student ID or name must be supported. If a student was initially marked
absent for a date, but later was determined to be present, then the absence should

be removed from the record. This includes updating the number of absences field. Be
sure to add an Edit option to your menu!

IV. Submitting Assignments:

Andrew S. O’Fallon 4

1. Using Canvas https://canvas.wsu.edu/, please submit your solution to the
correct “Programming Assignments” (PA) folder. Your solution should be zipped

into a .zip file with the name <your last name>_PA7.zip and uploaded.

To upload your solution, please navigate to your correct Canvas lab course
space. Select the “Assignments” link in the main left menu bar. Navigate to the
correct PA submission folder. Click the “Start Assignment” button. Click the
“Upload File” button. Choose the appropriate .zip file with your solution.
Finally, click the “Submit Assignment” button.

2. Your project must build properly. The most points an assignment can receive if

it does not build properly is 65 out of 100.

V. Grading Guidelines:

This assignment is worth 100 points. Your assignment will be evaluated based on a
successful compilation and adherence to the program requirements. We will grade
according to the following criteria:

 5 pts – Appropriate top-down design, style, and commenting according to class

standards
 30 pts – Appropriate design and implementation of class templates Node and

List (including member functions and data members)
 12 pts – Appropriate design and implementation of class Stack (including

member functions and data members)
 8 pts – Appropriate design and implementation of class Data (including member

functions and data members)
 15 pts – Working “Import records” feature
 10 pts – Working “Mark absences” feature
 10 pts – Working “Generate reports” feature – each report is 5 pts
 10 pts - Working “Menu” feature encapsulated by a menu object – this is not a

class template
 BONUS 10 pts – Working “Edit absences” feature

https://canvas.wsu.edu/

