

Andrew S. O’Fallon 1

CptS 122 – Data Structures

Programming Assignment 8: Data Analysis using Binary Search Trees

Assigned: Friday, April 5, 2024
Due: Friday, April 12, 2024 by midnight

I. Learner Objectives:

At the conclusion of this assignment, participants should be able to:

 Analyze a basic set of requirements for implementing and testing a solution to
a problem

 Design, implement and test classes in C++
 Design and apply inheritance
 Design with polymorphism
 Design and implement a dynamically linked binary search tree

II. Prerequisites:

Before starting this assignment, participants should be able to:

 Analyze a basic set of requirements for a problem
 Compose basic C++ language programs
 Create basic test cases for a program
 Apply arrays, strings, and pointers
 Declare and define constructors
 Declare and define destructors
 Compare and contrast public and private access specifiers in C++
 Describe what is an attribute or data member of a class
 Describe what is a method of a class
 Apply and implement overloaded functions
 Distinguish between pass-by-value and pass-by-reference
 Discuss classes versus objects

III. Overview & Requirements:

Summary:
For this assignment you are implementing a system for detecting trends in consumer
products over a 48-hour period. We are interested in knowing which products are
purchased and sold, the least and most, by various retail stores throughout the United
States. When a product is tagged as purchased it indicates that a certain retail store
bought units of the product from a supplier. When a product is tagged as sold it
indicates that a certain retail store sold that many units of a product. Your system
must read product data from a .csv file, and store the data in a way that inserts data
in better than linear time (O(n)) in most cases. Since, a binary search tree (BST) is a
reasonably efficient data structure for inserting and searching data (O (log n) for
balanced trees), you must create two BSTs; one tree represents the products that
were sold and the other tree represents the products that were bought. The system

Andrew S. O’Fallon 2

must leverage the organization of the trees to display, which products were least
bought and sold, and which were most bought and sold for that 48-hour period. Your
system is only required to output the following to the screen:
- The contents of the two BSTs, which will be printed in order
- The product that type and number of units that sold the most
- The product that type and number of units that sold the least
- The product that type and number of units that were purchased the most
- The product that type and number of units that were purchased the least

Class Design:
For this assignment you are required to implement a dynamically linked binary search
tree. You will first need to start by defining an abstract base class Node, which

encapsulates the following:
 Data members:
 # mData : std::string // # denotes protected
 # mpLeft : Node *
 # mpRight : Node *

 Member functions:
 + virtual destructor // + denotes public
 + constructor which accepts a string to set the data in the node; each pointer
in the node is set to NULL
 + setters – one for each data member (3 total should be defined)
 + getters – one for each data member (3 total should be defined, the 2 defined
to get the pointers should return a reference to the pointer, i.e. Node *&)
 + pure virtual printData () function, which must be overridden in class
TransactionNode

Next define a class TransactionNode, which publically inherits from abstract base

class Node. Class TransactionNode must encapsulate the following:

New Data members:
- mUnits : int // - denotes private

 New Member functions:
 + destructor // + denotes public
 + constructor which accepts a string to set the data and an integer to set the
number of units in the node; should invoke class Node’s constructor

 + setter
 + getter
 + printData (), which overrides the pure virtual function in class Node

Now define a class BST, which encapsulates the following:

Data members:
- mpRoot : Node * // yes, we want a pointer to a Node, not

TransactionNode here!

 Member functions:

Andrew S. O’Fallon 3

 + destructor // calls destroyTree ()
 - destroyTree () // yes, it’s private, and it should visit each node in postOrder
to delete them
 + default constructor
 + setter
 + getter
 + insert () // public used to hide pointer information, i.e. won’t pass in the
root of the tree into this function, only the private insert () function

- insert () // yes, it’s private, and it dynamically allocates a
TransactionNode and inserts recursively in the correct subtree based on

mUnits; should pass in a reference to a pointer (i.e. Node *& pT)
+ inOrderTraversal () // yes, once again it’s private to hide pointer information
- inOrderTraversal (), which recursively visits and prints the contents (mData
and mUnits) of each node in the tree in order; each node’s printData () should
be called
 contents should be printed on a separate line; must call the printData ()

function associated with the TransactionNode

 + findSmallest (), which returns a reference to a TransactionNode (i.e

TransactionNode &) with the smallest mUnits

 + findLargest (), which returns a reference to a TransactionNode with the

largest mUnits

Lastly, define a class DataAnalysis, which encapsulates the following:

Data members:
 - mTreeSold : BST
 - mTreePurchased : BST
 - mCsvStream : ifstream

Member functions:
- A function that opens

https://eecs.wsu.edu/~aofallon/cpts122/progassignments/data.csv // yes, it’s
private, and must use mCsvStream to open the file
 - A function that reads one line from the file and splits the line into units, type,
and transaction fields
 - A function that loops until all lines are read from the file; calls the function
below, and then displays the current contents of both BSTs; use inOrderTraversal () to
display the trees
 - A function that compares the transaction field and inserts the units and type
into the appropriate tree (mTreeSold or mTreePurchased) // note with the way the
data.csv file is organized the trees will be fairly balanced
 - A function that writes to the screen the trends we see in our tree; the
function must display the type and number of units that are least purchased and sold,
and the most purchased and sold
 + runAnalysis (), which is the only public function in the class, aside from
possibly a constructor and/or destructor; this function calls the other private
functions

https://eecs.wsu.edu/~aofallon/cpts122/progassignments/data.csv

Andrew S. O’Fallon 4

What should go in main ()?
 DataAnalysis obj;
 obj.runAnalysis ();

Questions to Ponder:
Questions for you to consider (you do not need to submit answers to these questions):

- We understand that a BST is most efficient when it is balanced. If the
data.csv file was not already organized to provide a fairly balanced tree,
how would you balance the tree as you insert?

- Do you think there are other data structures that would be better suited for
this type of problem? Why?

- What would happen to our program if we found duplicate products or # of
units sold/purchased in the file? Would we need a data structure to
efficiently combine the products and # of units? Hash table?

IV. Submitting Assignments:

1. Using Canvas https://canvas.wsu.edu/, please submit your solution to the
correct “Programming Assignments” (PA) folder. Your solution should be zipped
into a .zip file with the name <your last name>_PA8.zip and uploaded.

To upload your solution, please navigate to your correct Canvas lab course
space. Select the “Assignments” link in the main left menu bar. Navigate to the
correct PA submission folder. Click the “Start Assignment” button. Click the
“Upload File” button. Choose the appropriate .zip file with your solution.
Finally, click the “Submit Assignment” button.

2. Your project must build properly. The most points an assignment can receive if
it does not build properly is 65 out of 100.

V. Grading Guidelines:

This assignment is worth 100 points. Your assignment will be evaluated based on
adherence to the requirements. We will grade according to the following criteria:

 5 pts – Appropriate design, style, and commenting according to class standards
 5 pts – Node class and all functions described above
 10 pts – TransactionNode class, which inherits from the Node class, and all

functions described above
 40 pts – BST class

• 5 pts - destroyTree ()

• 10 pts – insert () functions: 8 pts private one, 2 points public one

• 7 pts – inOrderTraversal () functions: 5 pts private one, 2 points public
one

• 7 pts – findSmallest ()

• 7 pts – findLargest ()

• 4 pts – other functions
 35 Pts – DataAnalysis class

• 2 pts - for opening data.csv

https://canvas.wsu.edu/

Andrew S. O’Fallon 5

• 8 pts – for reading a line and splitting it

• 10 pts – for reading all lines in the file and inserting into the appropriate
tree (mTreeSold and mTreePurchased)

• 10 pts – for determining the trends and displaying them to the screen

• 5 pts – other functions
 5 pts – main ()

