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Smart Grid is an umbrella term which refers to the modernization of electricity

delivery systems with enhanced monitoring, analysis, control, and communica-

tion capabilities in order to improve the efficiency, reliability, economics, and

sustainability of electricity services. The modernization happens at both the

High Voltage (HV) transmission and the Medium or Low Voltage (MV/LV) dis-

tribution grids and aims at a diverse set of goals including facilitating greater

competition between providers, encouraging greater use of alternative energy

sources, implementing the automation and monitoring capabilities needed for

bulk transmission, and enabling the use of market forces to drive energy conser-

vation.

Many of the existing technologies already used by electric utilities will be taken

full advantage of in Smart Grid but additional communication and control capa-

bilities will also be established to optimize the operation of the entire electrical

grid. Smart Grid is also positioned to adopt new technologies, such as smart

metering, synchronous phasor measurement units (PMUs), plug-in hybrid elec-

tric vehicles (PHEVs), various forms of distributed generation, solar and wind

energy, lighting management systems, distribution automation, and many more.

In order to design an efficient communication scheme and examine the effi-

ciency of any networked control architecture in smart grid applications, we need

to characterize statistically its information source, namely the power grid itself.

Investigating the statistical properties of power-grids has the immediate benefit

of providing a natural simulation platform, producing a large number of power

grid test cases with realistic topologies, with scalable network size, and with

realistic electrical parameter settings. The second benefit is that one can start

analyzing the performance of decentralized control algorithms over information

networks whose topology matches that of the underlying power network and

use network scientific approaches to determine analytically if these architectures

would scale well.

1.1 Introduction

This chapter provides a comprehensive study on the topological and electrical

characteristics of a power grid transmission network based on a number of syn-
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thetic and real-world power systems. Besides some basic graph theoretic metrics,

it especially considers the following ones:r Small-World Properties: The transmission network of a power grid is sparsely

connected and manifests salient small-world properties which are character-

ized by the larger clustering coefficient and much smaller average shortest

path compared with a random graph network with the same network size [1].

However, it is found that power grid assumes a different kind of small-world

topology rather than that of the Watts-Strogatz small-world model.r Nodal Degree Distribution: This metric reflects how the nodes in a power grid

network connects with neighbors and closely relates with the network topol-

ogy robustness under node removal [2][3]. Although most literature assumes

that power grids have an exponential (or Geometric) nodal degree distribu-

tion [4][5], it is found that the empirical distribution estimated from real-world

power systems clearly deviates from that of a exponential distribution, espe-

cially in the range of small node degrees. The probability generation function

is applied to analyzing the node degree distribution and estimating the param-

eters for it.r Graph Spectrum and Connectivity Scaling Property :The two metrics associate

with the eigenvalues of the adjacency matrix and the Laplacian matrix respec-

tively. And they carry important topology characteristics of a network.r Distribution of Line Impedance: The line impedances dominates the electrical

characteristics of a power grid network hence a study on its distribution is

important and necessary. It is found that the distribution of line impedances

is heavy-tailed and can be captured quite accurately by a clipped Double

Pareto LogNormal (DPLN) distribution.

This chapter introduces an algorithm which is able to generate random topol-

ogy power grids featuring the same topology and electrical characteristics found

from the real data. Finally at the end of the chapter, it also reports recent stud-

ies on the topological and electrical characteristics of a sample medium-voltage

(MV) power distribution network.

1.2 System Model

The power network dynamics are coupled by its network equation

Y U = I, (1.1)

where U and I represent the complex phasor vectors of bus voltages and injected

currents; and Y is the network admittance matrix which is determined not only

by the connecting topology but also its electrical parameters. Given a network

with n nodes and m links (which may also be referred to as buses and branches

or lines in power grid analysis; or vertices and edges in graph theory and network

analysis), each link l = (s, t) between nodes s and t has a line impedance zpr(l) =
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r(l) + jx(l), where r(l) is the resistance and x(l) the reactance. Usually for high-

voltage transmission network the reactance dominates, i.e., x(l)� r(l). The line

admittance is obtained from the inverse of its impedance, i.e., ypr(l) = g(l) +

jb(l) = 1/zpr(l).

Assume that a unit current flows along the link l = (s, t) from node s to t; then

the caused voltage difference between the ends of the link equals ∆u = U(s)−
U(t) = zpr(l) or equivalently ∆u = 1/ypr(l). Therefore zpr(l) can be interpreted

as the electrical distance between node s and t and ypr(l) reflects the coupling

strength between the two end nodes.

Define the line-node incidence matrix A := (Al,k)m×n as: Al,s = 1, Al,t = −1

if the lth link is between nodes s and t with arbitrary directions; and Al,k = 0

otherwise. Then the network admittance matrix Y := (Ys,t)n×n can be obtained

as

Y = AT diag(ypr)A, (1.2)

with entries like below:


Y (s, t) = −ypr(s, t), if link s− t exists, for t 6= s

Y (s, s) =
∑
t6=s ypr(s, t),

Y (s, t) = 0, otherewise.

(1.3)

The network Laplacian L := (Ls,t)n×n can then be obtained as L = ATA, with

entries as:


L(s, t) = −1, if link s− t exists, for t 6= s

L(s, s) = k, with k = deg(s) =
∑
t6=s−L(s, t)

L(s, t) = 0, otherewise.

(1.4)

A close comparison of the matrix structures of L and Y uncovers some interest-

ing analogies. The Laplacian matrix L fully describes the topology of a network;

while the network admittance matrix Y not only contains information about

the system topology but also information about its electrical coupling. The off-

diagonal entries of Y , Ys,t equals the line admittance of the link between node s

and t (with a ‘−’ sign), whose magnitude reflects the coupling strength between

the two nodes. The diagonal entries of the Laplacian L represent the total number

of links connecting each node with the rest of the network. Whereas a diagonal

entry of Y represents the total coupling capability one node has with the rest

of the network. Therefore the network admittance matrix Y can be viewed as a

complex-weighted Laplacian; and the Laplacian L can be equivalent to a “flat”

network admittance matrix, which assumes all the links in the network have the

same line impedance (with a common proportional factor).
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1.3 Topology Measures of Power Grids

First we look at some basic topological metrics for a power grid network, i.e. the

network size n, the total number of links m, the average nodal degree 〈k〉, the

average shortest path length counted in hops 〈l〉, and the Pearson coefficient. All

these metrics can be derived from the Laplacian matrix:r The total number of links: is m = 1
2

∑
i L(i, i);r The average nodal degree: is 〈k〉 = 1

n

∑
i L(i, i);r The network adjacency matrix : can be obtained as Madj = −L+ diag{L};r The the average shortest path 〈l〉 measured in hops: can be calculated with

the the Dijkastra’s algorithm [6] based on Madj .

Define the nodal degree vector as k = [k1, k2, · · · , kn] = diag(L). And k is the

average degree of a node seen at the end of a randomly selected link (i, j), i.e.,

k = (2m)−1
∑
(i,j)

(ki + kj) = (2m)−1
∑
i

k 2
i =

〈k2〉
〈k〉

. (1.5)

Thus we can compute the Pearson coefficient of node degrees of the network as

ρ =

∑
(i,j)(ki − k)(kj − k)√∑
(i,j) (ki − k)

2
(kj − k)

2
, (1.6)

which is a measure of the correlation of node degrees in the network[7].It has been

observed that the Pearson coefficient for some kinds of networks is consistently

positive while for other kinds it is negative [8]. Therefore, some researchers pro-

posed to use the Pearson coefficient to differentiate technological networks from

social networks [9]. However, it is found that the Pearson coefficient of power

grids does not have restrictive characteristics but ranges over a wide interval from

negative and positive, which can be verified by the metric evaluation results listed

in Table 1.1.

Power grids have been found to have the salient features of small world graphs

(see the work by Watts and Strogatz [1]). That is, while the vast majority of

links are similar to that of a regular lattice, with limited near neighbor connec-

tivity, a few links connect across the network. These bridging links significantly

shorten the path length that connects every two nodes and critically increase

the connectivity of the network. At the same time, their scarcity puts the con-

nectivity at risk in the case of link failure for one of these critical bridges. The

characterizing measure to distinguish a small-world network is called clustering

coefficient, which assesses the degree to which nodes tend to cluster together.

A small world network usually has a clustering coefficient significantly higher

than that of a random graph network, given the comparable network size and

total number of edges. The random graph network mentioned here refers to the

network model defined by Erdös-Rényi, with n labeled nodes connected by m
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Table 1.1. Topological Metrics of the IEEE and Real-World Power Grid Networks

(n,m) 〈l〉 〈k〉 ρ C(G) C(R)

IEEE-30 (30,41) 3.31 2.73 -0.0868 0.2348 0.094253

IEEE-57 (57,78) 4.95 2.74 0.2432 0.1222 0.048872

IEEE-118 (118,179) 6.31 3.03 -0.1526 0.1651 0.025931

IEEE-300 (300, 409) 9.94 2.73 -0.2206 0.0856 0.009119

NYISO (2935,6567) 16.43 4.47 0.4593 0.2134 0.001525

WSCC (4941, 6594) 18.70 2.67 0.0035 0.0801 0.000540

edges which are chosen uniformly randomly from the n(n− 1)/2 possible edges

[12].

The clustering coefficient is defined as the average of the clustering coefficient

for each node [1]:

C(G) =
1

n

n∑
i=1

Ci (1.7)

with Ci being the node clustering coefficient as Ci = λG(i)/τG(i), where λG(i) is

the number of edges between the neighbors of node i and τG(i) the total number

of edges that could possibly exist among the neighbors of node i. For undirected

graphs, obviously τG(i) = ki(ki − 1)/2 given ki is the node degree. As pointed

out in [10], the clustering coefficient for a random graph network theoretically

equals the probability of randomly selecting links from all possible links. That

is,

C(R) =
m

n(n− 1)/2
=
〈k〉
n− 1

. (1.8)

1.3.1 Topological Metrics

The topology metrics evaluated for the IEEE model systems, the NYISO and the

WSCC systems have been shown in Table 1.1. Especially we show the clustering

coefficients of the IEEE power systems, the NYISO, and the WSCC system

compared to the random graph networks with same network size and same total

number of links. The former is denoted as C(G), and the latter as C(R). For the

reader’s reference, the IEEE 30, 57, and 118 bus systems represent different parts

of the American Electric Power System in the Midwestern US; the IEEE 300 bus

system is synthesized from the New England power system. More information can

be obtained from [16]. The Western System Coordinating Council (WSCC) grid

is the interconnected system of transmission lines spanning the western United

States plus parts of Canada and Mexico, and the NYISO system represents New

York state bulk electricity grid.
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From the table shown above one can observe two interesting properties per-

taining to the topology of the grid: (a) the connectivity is very sparse, since the

average nodal degree does not scale up, as the network size increases. Instead

the average nodal degree falls into a very restricted range, which is more related

with the particular geographical area where the network belongs to, rather than

the network size. For example, power grids in western US have an average nodal

degree between 2.5 and 3, while in northeastern US the power grids are a little

denser with 〈k〉 around 4.5. (b) it is not accurate to attribute “small-world” fea-

tures to power grids of any size. It is true that the samples we studied have a

clustering coefficient significantly larger than that of a comparable-size random

graph network. However, as we will discuss next, while being similarly sparse,

power grids have better connectivity scaling laws than the small-world graphs

proposed in [1].

1.3.2 The Small-World Wiring

The Watts-Strogatz Small-world model is generated starting from a regular ring

lattice, then by using a small probability, rewiring some local links to an arbitrary

node chosen uniformly at random in the entire network (to make it a small-world

topology). A tool to visually highlight small-world topologies is the Kirk graph,

which was proposed by J. Kirk (2007) [14]. It is a simple but effective way to

show a network topology: First, node numbers are assigned according to physical

nodal adjacency, that is, physically closely located nodes are given close numbers;

then all the nodes are sequentially and evenly spread around a circle and links

between nodes are drawn as straight lines inside the circle. Fig. 1.1 below shows

three representative network topologies, using Kirk graphs, of an Erdös-Rényi

Rand-graph network, of a Watts-Strogatz Small-world network, and of a realistic

power grid – IEEE-57 network. The three networks have same network size and

almost same total number of links. The topology difference between the Erdös-

Rényi network and IEEE-57 network can be easily noticed in contrast to a good

degree of similarity between the Watts-Strogatz small-world model and the test

power network.

However, the rewiring of the test power grid is not independent, as in that

of the Watts-Strogatz small-world model; instead, long hauls appear over clus-

ters of nodes. This property is is visually noticeable in the IEEE 57 network

and differentiates it from the small-world graph, where these links are chosen

independently. This fact has an intuitive explanation: long hauls require having

a right of way to deploy a long connection and it is highly likely that the long

wires will reuse part of this space. These physical and economical constraints

inevitably affect the structure of the topology. Besides, there is more than what

meets the eyes. Watts-Strogatz Small-world model has scaling property that can-

not be validated by power grid topologies, precisely because the average nodal

degree of a power network is almost invariant to the size of the network. Given a

network size with its specified average nodal degree, the model fails to produce
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(a) Erdös-Rényi Rand-graph Network

1
2
3

4
5

6
7

8
9

10
11121314151617181920

21
22

23
24

25
26

27
28
29

30
31
32
33
34

35
36

37
38

3940414243 4445464748
49

50
51

52
53
54
55
56
57

(b) Watts-Stogatz Small-world
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(c) IEEE 57

Figure 1.1 Topology Comparison Using Kirk Plot

a connected grid topology for reasonably large network sizes with realistic power

grid degree distributions. The main reason for the poor scaling lies in the fact

that in order to produce a sparse but connected topology, the Watts-Strogatz

Small-world model requires [1][10]:

1� ln(n)� 〈k〉 � n (1.9)

or equivalently as 〈k〉 � n� e〈k〉. On the other hand, real-world power grids

have a very low average nodal degree with 〈k〉 = 2 ∼ 5, regardless of the network

size. This will limit the network size much smaller than 150 in order to produce

a connected topology using the model. However, in the real world, large power

grids are connected even if they are much sparser than what is required by the

Watts-Strogatz Small-world model.

1.3.3 The Nodal Degree Distribution

Now we examine the empirical distribution of nodal degrees in the available real-

world power grids. Fig. 1.3(a) shows the histogram probability mass function

(PMF) in log-scale for the nodal degrees of NYISO system. If the PMF curve

approximates a straight line in the semi-logarithm plot (i.e., shown as log (p(k))
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vs. k), it implies an exponential tail which is analogous to that of the Geometric

distribution. However, it is also noticed that for the range of small node degrees,

that is, when k ≤ 3 , the empirical PMF curve clearly deviates from that of a

Geometric distribution.

The probability generation function (PGF) can be utilized to analyze the node

degree distribution in power grids. The PGF of a random variable X is defined

as GX(z) =
∑
k Pr(x=k)z

k. Given a sample data set of X with the size of N , its

PGF can also be estimated from the mean of zX because

E(zX) =
1

n

∑
x

zx

=
1

n

∑
k

n(x=k)z
k (1.10)

=
∑
k

n(x=k)

n
zk

≈
∑
k

Pr(x=k)z
k

where n(x=k) denotes the total number of the data items equaling to k. Due to

limn→∞
n(x=k)

n = Pr(x=k), we can have E(zX) ≈ GX(z) with a large enough data

size.

If a random variable can be expressed as a sum of two independent ran-

dom variables, its probability mass function (PMF) is then the convolution of

the PMFs of the components variables, and its probability generation function

(PGF) is the product of that of the component variables. That is,

X = X1 +X2

Pr(X=k) = Pr(X1=k) ⊗ Pr(X2=k) (1.11)

GX(z) = GX1
(z)GX2

(z)

It is found that the node degree distribution in power grids can be very well

approximated by a sum of two independent random variables, that is,

K = G +D, (1.12)

where G is a truncated Geometric with the threshold of kmax

Pr(G=k) = (1−p)kp∑kmax
i=0 (1−p)ip

= (1−p)kp
1−(1−p)kmax+1 , k = 0, 1, 2, · · · , kmax

(1.13)

with the PGF as

GG(z) =
∑kmax
k=0 (1−p)kpzk

1−(1−p)kmax+1

=
p(1−((1−p)z)kmax+1)

(1−(1−p)kmax+1)(1−(1−p)z)

(1.14)
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Figure 1.2 The Contour Plot of E(zX) of Node Degrees for Different Groups of Buses
in the NYISO system: (a) All buses; (b) Gen buses; (c) Load buses; (d) Connection
buses; the zeros are marked by red ‘+’s.

And D is an irregular Discrete {p1, p2, · · · , pkt}, with Pr(D=k) = pk, k =

1, 2, · · · , kt whose PGF is GD(z) = p1z + p2z
2 + p3z

3 + · · ·+ pktz
kt . Therefore

the PMF of K is Pr(K=k) = Pr(G=k) ⊗ Pr(D=k). And the PGF of K can be writ-

ten as

GK(z) =
p
(

1− ((1− p)z)kmax+1
)∑kt

i=1 piz
i

(1− (1− p)kmax+1) (1− (1− p)z)
(1.15)

The equation (1.15) indicates that the PGF GK(z) has kmax zeros evenly

distributed around a circle of radius of 1/(1− p) which are introduced by the

truncation of the Geometric G (because the zero at 1/(1− p) has been neutralized

by the denominator (1− (1− p)z) and has kt zeros introduced by the irregular

Discrete D with {p1, p2, · · · , pkt}.
Fig. 1.2 show the contour plots of PGF of node degrees for different groups

of buses in the NYISO system. Three interesting discoveries are worth to note:

(a) Clearly each plot contains evenly distributed zeros around a circle, which

indicate a truncated Geometric component; (b) Besides the zeros around the
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Table 1.2. Estimate Coefficients of the Node Degree Probability Density Functions of the
NYISO and WSCC systems

node groups kmax max(k) kt p {p1, p2, · · · , pkt}

All 34 37 3 0.2269 0.4875, 0.2700, 0.2425

Gen 36 37 1 0.1863 1.000

Load 26 29 3 0.2423 0.0455, 0.4675, 0.4870

Conn 18 21 3 0.4006 0.0393, 0.4442, 0.5165

All-WSCC 16 19 3 0.4084 0.3545, 0.4499, 0.1956

circle, most contour plots also have a small number of off-circle zeros, which

come from an embedding irregular Discrete component; (c) The contour plot for

each group of nodes has zeros with similar pattern but different positions. This

implies that each group of node degrees has similar distribution functions but

with different coefficients. Therefore it is necessary and reasonable to characterize

the node degrees distribution according to the node types. Otherwise if the node

degrees aggregate into one single group, just as in Fig. 1.2(a), some important

characteristics of a subgroup of node degrees would be concealed (e.g., comparing

(a) and (b)-(d) in Fig. 1.2).
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Figure 1.3 Comparing the Empirical and Fitting PMF of Node Degrees in the NYISO
system: (a) all buses; (b) Gen buses; (c) Load buses; (d) Connection buses
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Based on the contour plots one can easily locate the zeros in PGF, and further

determine the coefficients of corresponding distribution functions. The estimated

coefficients for each group of nodes in the NYISO and all the nodes in the WSCC

systems are listed in the Table 1.2. Because the WSCC system data we have

only contains un-weighted raw data without distinguishing node types, its node

degree distribution is only analyzed for one aggregate group. Fig. 1.3 compares

the probability mass function (PMF) with estimate coefficients and the empirical

PMF of the NYISO system and shows that the former matches the latter with

quite good approximation. The results from both systems have validated our

assumption of node degree distribution in power grids: it can be expressed as a

sum of a truncated Geometric random variable and an irregular Discrete random

variable. And the results also demonstrated the effectiveness of the proposed

method of analyzing node degree distribution by using the probability generation

function.

1.3.4 The Graph Spectrum and The Scaling of Connectivity

The eigenvalues of the adjacency matrix Madj and the Laplacian matrix L

carry important topological features of a network. The two matrices are in fact

exchangeable, and either of them fully describes a network topology. The set

of eigenvalues of its adjacency matrix Madj is called the spectrum of a graph .

Graph spectral density is defined as:

ρ(λ) =
1

n

n∑
j=1

δ(λ− λj) (1.16)

with {λj , j = 1, 2, · · · , n} forming the graph spectrum of the network. The kth

moments of ρ(λ) represents the average number of k-hop paths returning to the

same node in the graph [10]. However, please note that these paths can contain

nodes which are already visited. The Graph spectral density of network topology

from different categories has distinctively different patterns [10]. A Erdös-Rényi

random graph network G(n; p), given a large network size n and a non-trivial

link selection probability p(n) = cn−z, with z < 1 and c as a constant regardless

of network size, has its normalized spectral density converging to a semicircular

distribution as n→∞. This is known as Wigner’s semicircle law [20] [21]. That

is:

ρ(λ) =

{ √
4−(λ/λ0)

2

2πλ0
if |λ| < 2λ0

0 otherwise
(1.17)

with λ0 =
√
np(1− p) and p = m

n(n−1)/2 = 〈k〉
n−1 , where m is the total number of

links and 〈k〉 is the average node degree. And ρ̃ = 2πλ0ρ(λ) =
√

4− λ̃2 with

λ̃ = λ/λ0 depicts a semi-circle around the origin with a radius of 2.

Next we refer to spectrum as the set of eigenvalues and to spectral density as

its density of values. Fig. 1.4 shows the spectral density of a ring lattice (a),
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Figure 1.4 The Normalized Graph Spectral Density of Different Networks, ρ̃(λ) vs. λ̃:
the dotted line of semi-circle represents the graph spectral density of random graph
networks; (a) A Ring Lattice; (b) RT-nested-Smallworld ; (c) NYISO; (d) WSCC; (e)
a 396-node MV distribution network .

of two real-world power grids (b) and (c), and of a power grid generated from

the proposed RT-nested-Smallworld model (d), compared to the semi-circle law
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Table 1.3. Algebraic Connectivity of the IEEE and Real-World Power Networks

n λ2(L)

IEEE-30 30 0.21213

IEEE-57 57 0.088223

IEEE-118 118 0.027132

IEEE-300 300 0.0093838

NYISO 2935 0.0014215

WSCC 4941 0.00075921
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Figure 1.5 Connectivity Scaling Curve versus Network Size: 2D lattice with k = 4
(blue x-dotted line); 2D lattice with k = 2 (blue 4-dotted line); 1D lattice with k = 4
(blue 2-dotted line); 1D lattice with k = 2 (blue ∇-dotted line); nested-Smallworld
RT with subnetwork-size= 30 (small darkred 2); nested-Smallworld RT with
subnetwork-size= 300 (green ♦); Power Grids (red star).

corresponding to random graphs with the same network size and number of

links. The plots demonstrate that power grid graphs have a very distinctive

spectral density, far from that of regular or completely random networks; it also

shows that the proposed model RT-nested-Smallworld (see section 1.5) is in good

agreement with the real data in terms of graph spectral density.

Another important measure is the second smallest eigenvalue of the Lapla-

cian matrix, λ2(L), called the algebraic connectivity. This measure is sometimes

termed as Fiedler eigenvalue, due to the fact that it was first introduced by

Fiedler (1989) [13]. λ2(L) reflects how well a network is connected and how fast

information data can be shared across the network. As a fact the smallest eigen-

value of the Laplacian is always zero, i.e., λ1(L) ≡ 0 and the number of times
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0 appears as an eigenvalue in the Laplacian is the total number of connected

components in the network. The eigenvalue λ2(L) is greater than 0 if and only

if network is a connected graph. If the algebraic connectivity λ2(L) is close to

zero, the network is close to being disconnected. Otherwise, if 1
nλ2(L) tends to

be 1, with n as the network size, the network tends to be fully connected.

Table 1.3 shows the algebraic connectivity of IEEE model systems and the

NYISO system. Fig. 1.5 plots the connectivity scaling curve of power grid versus

network size and compares it with that of 1-Dimensional and 2-Dimensional

lattices. 1D-lattice is a ring structured topology, with nodes connected with

most adjacent neighbors on both sides. 2D-lattice is a regular two-dimension

meshed grid with each boundary side merging with the other side and each

node connected to the most adjacent neighbors around it. For 1-D lattice, its

connectivity scales as λ2(L) ∝ n−2; for 2-D lattice , its connectivity grows as

λ2(L) ∝ n−1; interestingly, for power grids, its connectivity grows as λ2(L) ∝
n−1.376∼−1.0604, lying between those of 1-D lattice and 2-D lattice.

In trying to fit the random wiring of power network we postulate a new possible

model, RT-nested-Smallworld, in section 1.5. The model is resulted from nesting

several “small world” sub-networks, whose size is likely to produce a connected

topology with a realistic degree distribution, into a regular lattice again.More

details can be found in section 1.5. The intuition guiding this modeling is that

the network would have produced connected topologies with a connectivity that

was intermediate between the 1- and 2-dimensional lattices. And Fig. 1.5 shows

an excellent match between the algebraic connectivity of this type of model and

the real data.

1.4 Line Impedance Distribution

This chapter not only examines the network topology of a power grid but makes

efforts to reproduce accurately its electrical characteristics as well. Because the

key element for a power grid network is its network admittance matrix Y , which

associates both with the connecting topology and with its line impedances. The

transmission line impedance in a power grid is in fact a complex number.

When it comes to the statistical analysis, we study the distribution of the

magnitude of Zpr. The line impedance can be represented as Zpr = R+ jX,

where R is the resistance and X the reactance. Usually X is the dominant com-

ponent, whereas R only takes a trivial value which in many cases can even be

neglected. Therefore, one can easily reconstruct the complex value of Zpr given

its magnitude. The empirical data on line impedances of power grids are taken

from IEEE model systems and the NYISO system. The first clear observation

from the empirical histogram probability density distribution (PDF) is that the

distribution of the line impedances is heavy-tailed. The candidate distribution

functions include Gamma, Generalized Pareto (GP), Lognormal, Double-Pareto-

Lognormal (DPLN), and two new distributions that we call Lognormal-clip, and
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DPLN-clip, which will be explained later. In searching among the heavy tailed

distributions for a fit, the parameters of the candidate distribution can be esti-

mated via the maximum likelihood (ML) criterion from the data and the appro-

priately modified Kolmogorov-Smirnov test (K-S test) be used to check if the

hypothesized distribution is a good fit.

The DPLN distribution was introduced by Reed and Jorgensen (2004) [17],

which proved to be very useful to model the size distributions of various phe-

nomena, like incomes and earnings, human settlement sizes, etc. We choose the

the DPLN distribution as a candidate to fit the line impedance data in a power

grid because the latter implicitly relate to human settlement size in the network.

Generally speaking, large generation is usually located near water or the fuel

source, but remotely away from densely populated area with large scale human

settlements. Therefore long-distance transmission lines have been constructed in

order to provide the interconnection and serve the large scale settlements. And

the long-distance lines usually exhibit large line impedance.

The Lognormal-clip and DPLN-clip are especially suited for fitting the NYISO

data because the line impedances in this system appear to approximate a

Lognormal or DPLN distribution very well except for having an interrupted

tail, which is captured by the clipping. Therefore it can be assumed that the

NYISO data is resulted from some original impedance data being “clipped” by

an exponential cutoff tailing coefficient. That is, given the original impedance

data Y following a specific distribution, Y ∼ fY (y), the clipped impedance

data is X = Zmax

(
1− e−

Y
Zmax

)
, with Zmax being the cutoff threshold, so that

Y = −Zmax log
(

1− X
Zmax

)
. And the resulting clip-distribution turns out to be

X ∼ fX(x) = Y ′(x)fY
(
Y(x)

)
=

Zmax

Zmax − x
fY (−Zmax log(1− x/Zmax)) (1.18)

It is reasonable to introduce the clipping mechanism into the line impedance

distribution because in real-world power grids, transmission lines are limited in

length and, correspondingly, in the line impedance, which is proportional to the

length. As shown next, the line impedances in real-world power grids have heavy-

tailed distributions. Hence, the candidate distribution functions listed below, are

selected in the class of heavy-tailed distributions:

Gamma:

Γ(x|a, b) =
1

baΓ(a)
xa−1ex/b (1.19)

Generalized Pareto (GP):

gp(x|k, σ, θ) =

(
1

σ

)(
1 + k

(x− θ)
σ

)−1− 1
k

(1.20)
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Lognormal:

logn(x|µ, σ) =
1

xσ
√

2π
e
−(logx−u)2

2σ2 (1.21)

Double-Pareto-Lognormal (DPLN):

dP lN(x|α, β, µ, σ)

= αβ
α+β

[
A(α, µ, σ)x−α−1Φ( logx−µ−ασ2

σ ) (1.22)

+A(−β, µ, σ)xβ−1Φc( logx−µ+βσ2

σ )
]

where A(θ, µ, σ) = e(θµ+θ
2σ2/2).

Lognormal-clip:

lognclip(x|µ, σ, Zmax)

= Zmax

Zmax−x logn
(
−Zmax log(1− X

Zmax
)|µ, σ

)
(1.23)

DPLN-clip:

dP lNclip(x|α, β, µ, σ, Zmax)

= Zmax

Zmax−xdP lN
(
−Zmax log(1− X

Zmax
)|α, β, µ, σ

)
(1.24)

For each candidate distribution function one can estimate its parameters using

the Maximum Likelihood (ML) method, and then run the Kolmogorov-Smiroff

(K-S) test in order to pick the distribution which gives the best K-S test result.

Table 1.4 shows the best-fitting distribution functions with the corresponding ML

parameter estimates. Fig. 1.6 compares the empirical PDFs and CDFs (in log-

arithm scales) with those from best-fitting distribution function for the NYSIO

system. The studies show that Gamma distribution is the best fit for the line

impedances in the IEEE 30 and 118 systems and GP distribution for that of the

IEEE 57 and 300 systems; while for NYISO system, Lognormal-clip and DPLN-

clip fit best the data. This is also reasonable because, even if not one to one, the

line impedance usually grows with the geographic distance between the buses it

connects.

In addition, it is well known that the distribution of human settlements tend

to be clustered; thus it is reasonable that long tails appear between these clusters

of smaller size buses, giving rise to these heavy tails. This observation seems to

agree with the topological properties found in the power grid graphs, and it is

reasonable to consider these heavy weight impedances as good candidates for

line impedances of the links that are rewired in the small world islands, as well

as the ones connecting difference islands in our nested- Smallworld model, which

is introduced in the next section.
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Table 1.4. PDF Fitting for the Line Impedances in the IEEE and NYISO Power Grids

System Fitting Distribution
ML Parameter Estimates

(alph=0.05)

IEEE-30 Γ(x|a, b)
a = 2.14687

b = 0.10191

IEEE-118 Γ(x|a, b)
a = 1.88734

b = 0.05856

IEEE-57 gp(x|k, σ, θ)
k = 0.33941

σ = 0.16963

θ = 0.16963,

IEEE-300 gp(x|k, σ, θ)
k = 0.45019

σ = 0.07486

θ = 0.00046,

NYISO-2935

lognclip(x|µ, σ, Zmax)

µ = −2.37419

σ = 2.08285

Zmax = 1.9977

dP lNclip(x|α, β, µ, σ, Zmax)

α = 44.25000

β = 44.30000

µ = −2.37420

σ = 2.082600

Zmax = 1.9977

1.5 A Model to Generate Random Topology Test Networks

There are a number of works in the power network literature that propose models

to generate scalable-size power grid test cases, such as: the use of ring-structured

grids to study the propagation pattern of disturbances [15]; a Tree-structured

power grid model for detecting critical transitions in the transmission network

which cause cascading failure blackouts [11]; the Watts-Strogatz small-world net-

work [1]; or formation of a power grid topology starting from a Uniform and a

Poisson distribution for the nodal location respectively (emulating what is often

done in modeling wireless networks)[19]. While these proposed models provide

some good perspectives to power grid characteristics, the generated topology

fails to correctly or fully reflect that of a realistic power system

This section presents a random topology power grid model, RT-nested-

Smallworld, which constructs a large scale power grid using a hierarchical way:

first form connected sub-networks with size limited by the connectivity require-
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Figure 1.6 Comparison between Empirical PDF/CDF Distributions and Fitting
Distributions: (a) IEEE 300; (b) NYISO 2935

ment; then connect the sub-networks through lattice connections; finally, gen-

erate the line impedances from some specific distribution and assign them to

the links in the topology network. The hierarchy in the model is aroused from

observation of real-world power grids: usually a large scale system consists of a

number of smaller-size subsystem (e.g. control zones), which are interconnected

by sparse and important tie lines. The model mainly contains three components:

(a) clusterSmallWorld sub-network, (b) Lattice-connections, and (c) Generation

and assignment of line impedances; which will be respectively described in details

in following subsections.

1.5.1 clusterSmallWorld sub-Network

Electrical power grid topology has “small-world” characteristics; it is sparsely

connected with a low average nodal degree which does not scale with the net-

work size. On the other side, in order for a small-world model to generate a

connected topology, the network size has to be limited. In this proposed model,

different mechanisms from that of the Watts-Strogatz Small-world model have

been adopted to form a power grid subnetwork in order to improve its resulting

connectivity, as shown in the following paragraphs. Consequently, the connec-

tivity limitation on the network size can be expanded from what is indicated by

equation (1.9). The experiments have shown that: for 〈k〉 = 2 ∼ 3, the network

size should be limited no greater than 30; and for 〈k〉 = 4 ∼ 5, 300.

Therefore the first step of this new model is to select the size of sub-networks

according to the connectivity limitation. Then a topology is built up through a
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modified small-world model, called clusterSmallWorld. This model is different

from the Watts-Strogatz Small-world model in two aspects: the link selection and

the link rewires. That is, instead of selecting links to connect most immediate

〈k〉/2 neighbors to form a regular lattice, it selects a number k of links at random

from a local neighborhood Nd0 with the distance threshold of d0, where k comes

from a Geometric distribution. The local neighborhood is defined as the group

of close-by nodes with mutual node number difference less than the threshold d0,

that is, N
(i)
d0

= {j; |j − i| < d0} for node i. It is worth noting that the clusterS-

mallWorld model adopts a Geometric distribution with the expectation of 〈k〉
for the initial node degree settings (i.e, for the link selection). The experiments

have shown that the process of link selection and link rewiring that follows will

transform the initial node degree distribution and finally result in a distribution

with good matching approximation to the observed ones.

Figure 1.7 Markov Chain for Selecting Cluster of Rewiring Nodes (0: not rewire; 1:
rewire)

For the link rewired, the Watts-Strogatz Small-world model selects a small

portion of the links to rewire to an arbitrary node chosen at random in the

entire network to make it a small-world topology. The clusterSmallWorld model

uses a Markov chain with transition probabilities of (α, β), as shown in Fig. 1.7,

to select clusters of nodes and therefore groups of links to be rewired. This mech-

anism is introduced in order to produce a correlation among the rewired links.

After running above Markov transition for n times (i.e., one for each node in the

network ), we get clusters of nodes with “1”s alternating with clusters of nodes

with “0”s, where “1” means to rewire and “0” means not. Then by a specific

rewiring probability qrw, some links are selected to rewire from all the links origi-

nating from each 1-cluster of nodes; and the corresponding local links get rewired

to outside 1-clusters. The average cluster size for rewiring nodes is Kclst = 1/β;

and the steady-state probabilities are p0 = β/(α+ β), p1 = α/(α+ β). Experi-

ments are performed on the available real-world power grid data to estimate the

parameters. The average rewiring cluster size Kclst, the rewiring probability of

links qrw, and the ratio of nodes having rewire links p1 can be directly obtained

from statistical estimates. Then the transition probability can be computed as

β = 1/Kclst and α = βp1/(1− p1).
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1.5.2 Lattice-connections

The lattice-connections are selected at random from neighboring sub-networks to

form a whole large scale power grid network. The number of lattice-connections

between neighboring sub-networks is randomly chosen to be an integer with the

mean of 〈k〉.

1.5.3 Assignment of Line Impedances

At this step m line impedances are generated from a specified heavy-tailed dis-

tribution, and then sorted by magnitude and grouped into local links, rewire

links and lattice-connection links according to corresponding portions, as shown

in Fig. 1.8. Finally line impedances in each group are assigned at random to the

corresponding group of links in the topology.

1.6 Topological Analysis for the Distribution Networks

Usually the transmission network of a power grid is referred as High Voltage (HV)

network with voltage levels above 50 kV. The studies and analysis in this chapter

have been so far focused the HV transmission network of a power grid. Now

we extend the topological analysis to the distribution side of the power grid. A

distribution network carries electricity from the transmission system and delivers

it to end users. Typically, the network would include MV (less than 50 kV)

lines, electrical substations and pole-mounted transformers, LV (less than 1 kV)

distribution wiring and sometimes electricity meters. The results are presented

based on a sample 396-node Medium Voltage (MV) distribution network which

comes from a real-world US distribution utility mainly located in a rural area.
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Figure 1.9 A 396-node MV distribution network in a rural area of the US.
Components: bus (circle), line branches (line ending with dots), switches (line ending
with ‘+’s), transformers (lines ending with ‘x’s), open or out of service component
(green dotted line); the node color representing its voltage levels: 115 kV (red), 34.5
kV(magenta), 12.47 kV(black), 4.80 kV(blue).

1.6.1 Structure of the Distribution Network

In the low and medium voltage sections of the grid the physical layout is often

restricted by what land is available and its geology. The logical topology can

vary depending on the constraints of budget, requirements for system reliability,

and the load and generation characteristics. Generally speaking, there are a few

typical kinds of topology in the distribution network: ring, radial or intercon-

nected.
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A radial network is the cheapest and simplest topology for a distribution grid,

and the one more often encountered. This network has a tree shape, in which

power from a large supply radiates out into progressively lower voltage lines until

the destination homes and businesses are reached. It is typical of long rural lines

with isolated load areas. Today’s grid is radially operated with respect to the

current transmission system, but this topology will not hold anymore when Dis-

tributed Energy Resources (DER) will be integrated into the grid. Unfortunately

this topology is the worst in terms of maximum communication delay because

the number of hops between its nodes tend to grow in the order of the size of

the network.

An interconnected or ring network is generally found in more urban areas

and will have multiple connections to other points of supply. These points of

connection are normally open but allow various configurations by the operating

utility by closing and opening switches. Operation of these switches may be

by remote control from a control center or by a lineman. The benefit of the

interconnected model is that, in the event of a fault or a required maintenance,

a small area of the network can be isolated and the remainder kept on supply.

Most areas provide three phase industrial service. A ground is normally pro-

vided, connected to conductive cases and other safety equipment, to keep current

away from equipment and people. Distribution voltages vary depending on cus-

tomer need, equipment and availability. Within these networks there may be

a mix of overhead line construction utilizing traditional utility poles and wires

and, increasingly, underground construction with cables and indoor or cabinet

substations. However, an underground distribution network is significantly more

expensive than lines deployed through an overhead construction. Distribution

feeders emanating from a substation are generally controlled by a circuit breaker

which will open when a fault is detected. Automatic circuit reclosers may be

installed to further segregate the feeder thus minimizing the impact of faults.

It is important to remark that long feeders experience voltage drop, and thus

require the installation of capacitors or voltage regulators.

1.6.2 Graph Theoretic Analysis of a Sample MV Distribution Network

The logical topology of the sample 396-node MV distribution network analyzed

here is shown in Figure 1.9. The power supply comes from the 115 kV-34.5 kV

step-down substation. Most nodes or buses in the network are 12.47 kV, and only

a small number of them are 34.5 kV or 4.8 kV. As shown in Figure 1.9, an MV

network usually comprises different voltage levels, separated by transformers.

In the following topology analysis of the sample MV network, it is assumed that

wireless or wired couplers have been implemented at the locations of transformers

and switches, so that the network connectivity will not be affected by transformer

types or switch status. On the other hand, if couplers are missing, the network

will be segmented into several sections either by the transformers or by the open

switches. For the sample MV network analyzed here, most buses (> 95%) in
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Table 1.5. Topological Characteristics of the Transmission Networks and the MV Distri-
bution Network.

n 〈k〉 〈l〉 ρ λ2(L) C(G) C(R)

IEEE-300 300 2.73 9.94 -0.2206 0.0094 0.0856 0.009119

WSCC 4941 2.67 18.70 0.0035 0.00076 0.0801 0.000540

MV-Distr 396 2.12 21.10 -0.2257 0.00030 0.0000 0.005367

the network are at the same voltage level of 12.47 kV. Therefore the topology

analysis result of the separated 12.47 kV subnetwork is in fact very close to that

of the whole connected graph.

The topology metrics we evaluated include the following:r (n,m): the total number of nodes and branches, which well represents the

network size.r 〈k〉: the average node degree, which represents the average number of branches

a node connects to.r 〈l〉: the average shortest path length in hops between any pair of nodes.r ρ: the Pearson correlation coefficient, which evaluates the correlation of node

degrees in the network. This measure reflects if a node adjacent to a highly

connected node has also a large node degree.r λ2(L): the algebraic connectivity, which is the second smallest eigenvalue of

the Laplacian matrix and is an index of how well a network is connected and

how fast information data can be shared across the network.r C(G): the clustering coefficient, which assesses the ratio of nodes tending to

cluster together.

The result of the analysis is listed in Table 1.5 with comparison to other two

transmission networks: the IEEE-300 system represents a synthesized network

from the New England power system and has a comparable network size as the

396-node MV distribution network we analyzed; the Western System Coordi-

nating Council (WSCC) grid is the interconnected system of transmission lines

spanning the Western United States plus parts of Canada and Mexico and con-

tains 4941 nodes and 6594 transmission lines. It is well known that transmission

and distribution topologies differ, nevertheless to comment on these differences in

a quantitative manner as this exercise is useful for several reasons. For example, it

allows us to better understand the characteristics of the transmission and distri-

bution networks as information sources; it allows us to optimize the design of the

distribution PMU based WAMS rather than attempting to duplicate the existing

transmission one which is tailored to a network with very different topological

characteristics; it can tells us how the distribution topology can be “modified”

to achieve some advantageous characteristics of the transmission network, i.e.

shorter path lengths between nodes, better algebraic connectivity, etc.
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From Table 1.5 we can see that the 396-node MV distribution network has an

average node degree of 〈k〉 = 2.12, which is comparable to, although a little bit

lower than, that of the other two transmission networks, the IEEE-300 system

and the WSCC system. That means its average connecting sparsity is about at

the same level as the compared transmission networks. However, the sample MV

distribution network has a much longer average path length of 〈l〉 = 21.10 in

hops than the IEEE-300 system and, interestingly, it is even longer than that

of the much larger 4941-node WSCC system. More specifically, any node in this

MV distribution network is about 16.50 hops away from node-1 or node-2 which

are 115-KV buses at the HV side of the two step-down supply transformers and

may likely serve as the traffic sinks in the PLC-based network.

Looking at the algebraic connectivity λ2(L), the 396-node MV distribution

network has a much weaker overall connectivity compared to the transmission

networks, i.e. λ2(L) = 0.00030 versus 0.0094 (IEEE-300) and 0.00076 (WSCC).

This result shows that this topology is highly prone to become a disconnected

graph under node failure (islanding). Finally, the most distinctive difference we

found lies in the fact that the 396-node MV distribution network has a clustering

coefficient equal to zero, compared to the clustering coefficient of 0.0856 for the

IEEE-300 system and 0.0801 for the WSCC system. This means that no node

in the sample MV distribution network is the vertex of a complete subgraph

(triangle). MV distribution networks not located in rural areas are generally less

prone to becoming a disconnected graph as in urban areas it is not unusual that

utilities provide link redundancy, e.g. adding rings. If the distribution network

becomes a disconnected graph, data connectivity obviously suffers if PLC is

used. This vulnerability of the distribution network can be alleviated by adding

judiciously wireless links to complement the PLC based network with the goal of

improving network connectivity as well as shortest path lengths characteristics.

The average node degree of a power grid transmission network tends to be

quite low and does not scale as the network size increases. The topology of a

transmission network has salient small-world properties, since it features a much

shorter average path length (in hops) and a much higher clustering coefficient

than that of Erdös-Rényi random graphs with the same network size and sparsity.

While small-world features have been recently confirmed for the HV transmission

network , the sample MV network used here implies that a power grid distribution

network has a very different kind of topology than that of a HV network and

obviously it is not a small-world topology.

The node degree distribution of the 396-node MV distribution networkshows

that: the maximum node degree in the network equals to 4 - which is much

smaller than what is found in the transmission side of the grid where maximum

nodal degrees of 20 or 30 can be found; about 16% of the nodes connect to only

one branch, 60% connect with 2 branches, 22% with 3 branches, and only 2%

with 4 branches.

Figure 1.4(e) depicts the network’s spectral density, which is a normalized spec-

tral distribution of the eigenvalues of its adjacency matrix. The spectrum of an
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Figure 1.10 The probability mass function of the line length in the sample 396-node
MV distribution network: (left) probability versus length; (right) log-probability
versus length, where the existence of an exponential trend in the tail is clearly visible.

Erdös-Rényi random graph network, which has uncorrelated node degrees, con-

verges to a semicircular distribution (see the semi-circle dotted line on the back-

ground in Figure 1.4(e)). The spectra of real-world networks have specific features

depending on the details of the corresponding models.In particular, scale-free

graphs develop a triangle-like spectral density with a power-law tail; whereas a

small-world network has a complex spectral density consisting of several sharp

peaks. The plot in Figure 1.4(e) indicates that the sample MV distribution net-

work is neither a scale-free network nor a small-world network.

The branch lengths in the MV distribution network is also analyzed. The

corresponding probability mass function is shown in Figure 1.10. It indicates

that most of the branches are shorter than 1,067 m (3,500 ft) and the branch

length distribution has an exponential tail with only a very small number of

branches of extremely long length.

1.6.3 The LV Distribution Network

It is difficult to obtain example data about LV distribution network topologies.

Generally speaking, an LV distribution network is radial, and has a similar net-

work topology as an MV distribution network except that it may have more

nodes with shorter branch length.

1.7 Summary

This chapter presents a comprehensive study on both the topological and elec-

trical characteristics of electric power grids. It is found that the HV transmission

network of power grid is sparsely connected with a low average node degree which
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does not scale with the network size; the power grid topology manifests obvious

small-world properties but its small-world rewires are not independent, as in

that of the Watts-Strogatz small-world model; instead, the long hauls appear

among clusters of nodes. This chapter provides evidence that the nodal degrees

follow a mixture distribution which comes from the sum of a truncated Geomet-

ric random variable and an irregular Discrete random variable. It also proposes a

method to estimate the distribution parameters by analyzing the poles and zeros

of the average probability generation function. This chapter studies the graph

spectral density and shows that power grid network takes on a distinctive pattern

for its graph spectral density. The study on the algebraic connectivity of power

networks has shown that power networks are exceptionally well connected given

their sparsity, featuring a better scaling law than the Watts-Strogatz small-world

graphs. It is shown that the distribution of line impedances is heavy-tailed and

can be captured quite accurately by a clipped Double Pareto LogNormal (DPLN)

distribution. This chapter introduces a novel random topology power grid model,

RT-nested-Smallworld, intending to capture above observed characteristics.

At the end this chapter extends the same topological analysis to the distribu-

tion side of the power grid and reports the results based on a sample 396-node

MV distribution network which comes from a real-world US distribution utility

mainly located in a rural area.
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