GridStat LeafQOSBroker Fault Tolerance Design
CS562
Washington State University
Spring Semester 2006

Stian Abelsen

Jiayu Gong

Joel Helkey
Jim Kuznir
Wendy Maiden
Rick Riensche
Erlend Viddal

Chuan Zhao

Table of Contents
3Overview

3Project Scope

3Implementation Location

3Simplifying Assumptions

5Leader/Follower Replication

5Overview

6Initialization Process

7Steady State Process

8Leader Failure Detection and Recovery Process

8Follower Failure Detection and Recovery Process

10Primary/Backup Replication

10Overview

11Initialization Process

12Steady State Process

13Primary Failure Detection and Recovery Process

13Backup Replica Failure Detection and Recovery Process

14Extensions to GridStat

14IDL Interface Extensions

15New Configuration Parameters

15The MultiCast Library and the Replica

15ReplicationStrategy – Leader/Primary Side

16ReplicationStrategy – Follower/Backup Side

16CheckpointContainer

17CallContainer

17MethodLeafQoSWrapper

17Appendix A. UML Diagrams

18Figure A.1. Relevant Class Diagrams

19Figure A.2. Leader/Follower Execution

20Figure A.3. Leader Failure Detection and Recovery

21Figure A.4. Primary/Backup Execution

22Figure A.5. Primary Failure Detection and Recovery

24Appendix B: Contributors

Overview
Project Scope
For the project described in this design document, the Spring 2006 CptS 562 class improved the fault tolerance of GridStat’s LeafQoSBrokers by implementing both semi-active and passive replication as a form of spatial redundancy to provide continuity of service by masking crash failures.
Implementation Location
The code that implements this design can be found in the WSUTC-1 branch of GridStat3. to check it out, use cvs co –r wsutc-1 gridstat3. Most of the changes can be found in the edu.wsu.gridstat.qosBroker.leafQoSBroker package and in the edu.wsu.gridstat.qosBroker.command.replication package.
Simplifying Assumptions
The following simplifying assumptions were made in order to constrain the work scope to match the few weeks within which the work was to be done.
· No more than one failure can happen at a time.
· The primary will not fail between receiving a command and sending it to the replicas.

· There will be no failures during the recovery process, i.e., during state transfer.

· Are clients robust enough to re-send if no request received?
· Atomic multicast will be used to communicate between the replicas.

· Rather than a true multicast implementation, the multicast will effectively consist of multiple unicasts by calling each replica’s CORBA service interface.
· To implement fault tolerance in GridStat “for real”, the multicast library implemented for this project needs to be replaced with a true multicast library for scalability and reliable messaging. This is the only module of this fault tolerance implementation that should need to be replaced. Other modules may need to be extended (e.g., to address over-simplified assumptions), but not replaced.

· Crash-failures are the only type of failure that will be considered.
· Crash-failures will be indicated by lack of response to a simple doPing() and/or by receipt of a connection exception.

· The replicas will ping the leader/primary to determine that it is alive.
· The leader/primary will ping the replicas to determine that they are alive.
· The state of a LeafQOSBroker will be serialized into a byte[] array for use as a checkpoint.
· All LeafQoSBroker methods called by clients are assumed to be deterministic.
· Dissemination of replica tables is always successful.
· Java threads will be used instead of CORBA threads. Did this change when we switched from Java objects to CORBA objects for the multicast library?.
· The same message logging mechanism will be used for both leader/follower and primary/backup.
· The leader/primary will have a constant name in the CORBA naming service by which clients and replicas will be able to identify the leader/primary at any time during the application.
· The leader/primary starts, then the replicas start, before application traffic begins.
· What signals the application to know that all backups are there and we can start the application?
· In the more general case you’d have a replication management service, such as AQuA.

· Before each LeafQOSBroker call, a client will call the naming service to get the object reference of the current primary/leader. Did this change since the ReplicationStrategy registers now instead of the Leader/Primary?.
· All LeafQoSBrokers that are instantiated for a given GridStat will use the same replication strategy.
Leader/Follower Replication

Overview

Semi-active replication is also known as “leader-follower” because a single leader replica determines the order of command execution for the follower replicas. Upon receipt of a message, the leader sends it to its followers. The followers log all messages received but delay executing them until explicitly instructed by the leader to execute message n.

Figure 1. Semi-Active Replication

[image: image1]
Initialization Process
1. The first QoS broker that starts registers itself with the naming service. It is the leader broker.
2. The next QoS-broker that starts up detects that another server is registered with its desired name.
1. It goes into backup-mode

2. It registers itself with the leader broker as a follower

3. When a follower joins the leader, the following steps occur:

1. The leader broker creates an array of all follower brokers. The order in the array denotes the order among followers

2. The leader distributes the array of followers to all the followers

3. The leader regularly pings each of the followers. It is responsible for detecting errors in the followers and updating the list of followers for each follower if an error should occur

4. The first follower starts pinging the server. It is responsible for detecting leader-failure and assumes the role of the leader if the leader should go down

5. The two preceding points are under the assumption that only one error will occur at a time, and they must be reevaluated if this is not a criteria for the system

[image: image2]
Steady State Process
Upon a method invocation, the following occurs:

1. The leader distributes the call to the followers

2. The followers do not execute the message call at this time, but store the invocation

3. The leader executes the method

4. The leader sends a message to each follower, instructing them to execute the call

5. The followers execute the call

[image: image3]
Leader Failure Detection and Recovery Process
Wendy, do can you add bullets or numbering steps below in this section to help clarify it structure? Thanks, Dave
The first follower detects the failure of the leader as follows:

Pinging the leader fails

The follower tries pinging again after some predetermined timeout value

This repeats a number of times (say four), the server is assumed failed

Upon assumed leader-failure, the following occurs:

The first follower executes any calls it awaits server permission for

The first follower goes into leader-mode. It will now accept incoming calls as a regular QoS-broker

The first follower contacts the naming service to register itself with the QoS-broker name

It might have to do some steps to unregister the previous leader

The leader removes itself from the follower-table, and redistributes the follower-table to all followers

The new first follower starts pinging the leader

The leader starts pinging all followers

If the previous leader was alive, it will try to re-register itself with the naming service. Upon discovering that there is a new leader, it will assume the role of a follower. We here assume that all followers join at system startup, so this point is omitted

Follower Failure Detection and Recovery Process
1. The leader detects assumed failure by the same approach as in detecting failure of a leader

2. The leader will remove the follower from its follower-table and redistributes the follower-table to all followers

[image: image4]
Primary/Backup Replication
Overview

In contrast, in passive replication, if no crash-failure occurs, only the primary replica will execute the messages. To provide the redundancy, the primary replica periodically “checkpoints” its state, makes it available to the backup replicas and notifies them to update their state accordingly. Messages executed by the primary after that point are sent to the backups to store in a log. In case of leader failure, the backup that is elected to take over will execute the messages in its log, in order to bring its state up to par with the primary. If there is no failure, then when the next checkpoint is received, the backups delete the messages in their log since the new checkpoint fully represents the primary’s current state.

Figure 2. Passive Replication

[image: image5]
Initialization Process
1. The first QoS broker that starts registers itself with the naming service. It is the primary broker

2. The next QoS-broker that starts up detects that another server is registered with its desired name

1. It goes into backup-mode

2. It registers itself with the primary broker as a backup

3. When a backup joins the primary, the following steps occur:

1. The primary broker creates an array of all backup brokers. The order in the array denotes the order among backups

2. The primary distributes the array of backups to all the backups

3. The primary regularly pings each of the backups. It is responsible for detecting errors in the backups and updating the list of backups for each backup if an error should occur

4. The first backup starts pinging the server. It is responsible for detecting primary-failure and assumes the role of the primary if the primary should go down

5. The two preceding points are under the assumption that only one error will occur at a time, and they must be reevaluated if this is not a criteria for the system

Steady State Process
1. Upon a method invocation, the following occurs:

1. The primary distributes the call to the backups

2. The backups do not execute the message call at this time, but logs the invocation

3. The primary executes the method

2. After every n-th message call (n is a system parameter), the following occur:

1. The primary summarizes its state in a checkpoint message

2. The checkpoint message is sent to all backups.

1. Each backup stores the checkpoint. It then sheds its previous checkpoint, and trims the log of all messages up to the current checkpoint

[image: image6]
Primary Failure Detection and Recovery Process
Primary failure detection and recovery is similar to Leader failure detection and recovery
· The first backup loads its state from the last checkpoint
· It then replays all messages in its log
· When in primary-role, checkpoints its state to all backups
1. The first backup detects the failure of the primary as follows:

1. Pinging the primary fails

2. The backup tries pinging again after some predetermined timeout value

3. This repeats a number of times (say four), the primary is assumed failed

2. Upon assumed primary-failure, the following occurs:

1. The first backup loads its state from the last checkpoint

2. It then replays all messages in its log

3. The first backup goes into primary-mode. It will now accept incoming calls as a regular QoS-broker

4. The first backup contacts the naming service to register itself with the QoS-broker name

1. It might have to do some steps to unregister the previous primary

5. The primary removes itself from the backup-table, and redistributes the backup-table to all backups

6. The new first backup starts pinging the primary

7. The primary starts pinging all backups

8. If the previous primary was alive, it will try to re-register itself with the naming service. Upon discovering that there is a new primary, it will assume the role of a backup. We here assume that all backups join at system startup, so this point is omitted
Backup Replica Failure Detection and Recovery Process
1. The primary detects assumed failure by the same approach as in detecting failure of a primary

2. The primary will remove the backup from its backup-table and redistributes the backup-table to all backups

Extensions to GridStat
IDL Interface Extensions
Each LeafQoSBroker has a ReplicationStrategy that acts as a primary/leader or a replica. Since the Primary and Leader roles are similar, a single Primary interface represents them both. Similarly, the follower/backup roles are represented by the Replica interface.

“LeafQosBroker instantiates its local ReplicationStrategy. Once that is done, we pass the ReplicationStrategy instance to either BackupServer or PrimaryServer. The Server objects basically intercept messages from the orb between primary/leader and the replicas, and forward the calls to the ReplicationStrategy instance.” ReplicationStrategy contains “implementations of those functions defined in the interfaces and other functions that are needed.”
“The ReplicationStrategy implements all the interfaces (Replica, Primary, Follower, and Backup) instead of LeafQoSBroker. It makes LeafQosBroker more clean. This means that all the calls sent from the leader or primary to the replicas end up in ReplicationStrategy instead of LeafQoSBroker.”

[image: image7.png]Interfaces

New Configuration Parameters

The replication mode is set via the command shell GUI for the LeafQoSBrokers. (See LeafQoSBroker.jar in build/jar.) Valid values are (0) Off, (1) Leader/Follower, and (2) Primary/Backup.

Alternatives that were considered:

(1) We decided not to use a variable in LeafQoSBroker since this would have required re-compilation whenever the replication mode needed to be changed.

(2) The broker configuration file is an alternative that wasn’t fully explored due to concerns that it might have unintended consequences elsewhere. This option should be considered further.

The MultiCast Library and the Replica
The multicast library is in the edu.wsu.gridstat.qosBroker.leafQoSBroker package.

The purpose of the multicast library is to multicast messages between replicas. Every LeafQosBroker has its own MulticastLibrary instance.
Through the MulticastLibrary, each replica spawns a separate thread (the PingThread) with which it pings to detect failure in the primary/leader. A parallel method in the MulticastLibrary is used by the primary/leader to ping the replicas.

A replica array is populated with each replica’s CORBA object reference. The first replica in the array is always the leader/primary. Up to four replicas are currently supported.
To multicast CORBA calls, put the obj ref in a generic container. Each object has a leader/follower flag. Leader calls followers with the same command it received using the CORBA service interface of each of the replicas.
ReplicationStrategy – Leader/Primary Side
· When ReplicationStrategy receives a logCall(seqNum, objArray) call from MethodsWrapper:

· If the replication strategy is primary/backup it doesn’t do anything

· Otherwise, it figures out the called method (name) in MethodWrapper by looking at the stack trace, and adds the method name and the object array to a new CallContainer and multicasts it with seqNum to all the replicas through the MulticastLibrary

· When ReplicationStrategy receives an updateReplicas(seqNum, state) call from MethodsWrapper:

· If the replication strategy is leader/follower it sends out an executeMessage(seqNum) to all the replicas through the MulticastLibrary

· Otherwise, it serializes the StateHolder-object (through MessageLog maybe?), adds the byte stream to a new CheckpointContainer and multicasts it with seqNum to all the replicas through the MulticastLibrary
ReplicationStrategy – Follower/Backup Side
· When ReplicationStrategy receives a logCall(seqNum, CallContainer call) call from LeafQosBroker:

· Calls the correct method in MethodsLeafQos by creating a temporary method invocation using Java Reflection from the parameters in CallContainer

· Class c = MethodsLeafQosObj.getClass();
tempMethod = c.getMethod(call.getMethodName(), parameterTypes);
 tempMethod.invoke(MethodsLeafQosObj, call.getArgs());

· parameterTypes is a class-array of the argument types

· Storing method calls can either by done with a hashtable <seqNum, CallContainer> or serializing the CallContainer object to file

· When ReplicationStrategy receives a storeCheckpoint(seqNum, state) call from LeafQosBroker:

· Simply adds the serialized state (byte[]) to the MessageLog, if we assume that MessageLog will work for both checkpoints and logging of method calls
CheckpointContainer
The state of a replicated LeafQOSBroker is marshalled into a serialized checkpoint object, represented as a byte array.

Rejected design:

Decided not to serialize the StateHolderLeafQoS object as a whole, since we don’t want to create a whole new StateHolderLeafQoS object each time we checkpoint; rather we need to modify the one that exists in our replica. Particularly, the StateHolderLeafQoS object holds VertexHolders that have threads associated with them. These should not be serialized.

Methods created:

· MethodsLeafQoS.getSerializedCheckpoint()

constructs a LeafQoSBrokerCheckpoint object based on m_stateHolder, and serializes it to a byte array.

Marshalling:

The SerializedCheckpoint object contains copies of relevant state variables from StateHolderLeafQoS, including:

· HashMaps m_PublisherLookup and m_subscriberLookup (we don't have support for Condensation Functions [yet?])

· vector of VertexHolderCheckpoint objects, that is built based on the m_vertexLookup HashMap. These VertexHolderCheckpoint objects contain copies of relevant state variables for the vertices held in the LeafQoSBroker's m_stateHolder.

Unmarshalling:

To make use of the checkpoint, we need code that takes the variables from it and applies them to an existing replica LeafQoSBroker's state holder, including figuring out which values (and how) to apply to the vertices hashmap. For example, I believe we need to iterate over the Vector of VertexHolderCheckpoints, matching each up to an existing VertexHolder in our replica LeafQoSBroker, and then directly set attributes of the VertexHolder and/or call appropriate methods when simply changing an attribute.

Simplifications:

No support for the condensation functions since, unlike the publishers and subscription holders, the CondensationHolder includes a VertexHolder object, which can't be serialized directly.

CallContainer

MethodLeafQoSWrapper

· We can make an interface for MethodsLeafQos (MethodsLeafQosInterface) and let MethodsWrapper implement it

· MethodsWrapper handles CORBA calls from parent brokers and SRs

· Upon method invocation, the following occurs

· Assume registerPublisher(String,String) is called

· Add the arguments to an object array objArray

· Run logCall(seqNum, objArray) in ReplicationStrategy to send a logCall to all replicas

· Run registerPublisher(String,String) in MethodsLeafQos

· Run updateReplicas(seqNum, m_stateHolder) in ReplicationStrategy

· MethodsWrapper has no knowledge about the replication strategy
Appendix A. UML Diagrams
The following pages show UML diagrams pertaining to the GridStat fault tolerance extensions.

Figure A.1. Relevant Class Diagrams

[image: image8.png]ReplicaTableContainer

[m_replcaTabie : Replca array.

[roetTableq): Replca array.

Main

LeafQosBroker

repStiateqy : Replcationsiratesy
iStrateqy - irt
o muticastLo : MuticastLkrary

methodsitapper : MethodsLeafQosiArapper

[esetSirateay(strategy) void
oL eader(): void
[+startasRepical prinary : CommandSRToLeat) void

Replicationstrategy

MulticastLibrary

[_pingTrveaa Thead
| JeatQosBroker : LeatCoSBroker
[replicaTable : vector=Replica

[priary - Primary

[repStrategy : Repicationstrateqy.

[_LFScheme - bodlean
by : MticastUirary

[methodsWtapper - MethodsLeafQosiAkapper
[m iCheckport - it

[mrepLog RepicationLog

[JeatosBroker - LeataosBroker

[rupciteTabe(: Repica array) voic
[regiterRepica 1 - Repica) void

-cistrbuteReplcaTabieq) : void

[erurfing0): void

[#pingLeacier(): boslean

[epingFolwers(): rt

[eistributeCheckpoit(checkport : CheckpoirtCortainer): void
[rexecuteMtessage(sehum int) void

[+Muticasthessage(seafdum nt, methadNiame : trng, args : Objectartay) : void
createany): Any

oetObectasAny object Seriaizable): Any

esetPrimary(p: Primary) : void

[startPingingO) voic

- (Cortains all public
methods in
Interface: MethodsLeafQos:
@ T
[MethodsL eafaosinterface ()|
MethodsLeaQosWrapper

[_methods : WethodsLeafGoskerface.
[repSrategy : Repicationstrategy.
[iseqhium - nt

[ronL eacerFailre(): vo
[sreisterRepica epica Repica). void
+storeCheckpolri{ checkpoirt: Ary): void
[rexecuteMessage(seohm : nt) : void
[+dPing() boolean
[rupciteReplicaTable tabl - Any) void
[HogCall call: Ay): void

- primaryReference : rinary

[raetasprinary() : Primary.
fesetPrimary(p: Primary) void

[+oetSerisizedCheckpoirt() - byte array

[egethiethods() - MethodsLeatCosirerface

MethodsL eaf@os

[eseibethods(riciAYapper - MethocisLeatQosirapper) void
| HogCall seqhu it args - Object array): void
[#sendExeculoniiessage seqhu: it) void

deserialze(cortert - byte array) Object

|-doCall cal - CalCortainer) void

CallContainer CheckpointContainer

[Segpium - it [iSegpium - it

[Shethachlame Strng I m_seriaizeciState : byte aay

[m_convertTable - Strng array.

[m_oargs : Objct array. [egetSeaim0): int
[raetState() : byte anay

[+gethithodNeme() : Sring
[rgetSealm) : in
[#oetargs(: Object aray

ReplicationLog

[_ncalls - Hashtabie
n_cLastCheckpoint - CheckpointCortainer
| hCheckpoirts : Hashtable

[rstoreCall cal- CallCortainer) void
[+getCall sealum rt) : CallContainer

storeCheckpoirt checkpoint : CheckpairtCortainer): void
+gefLasiCheckpeint(): CheckpcintContainer
[roetCalsfterCheckpoi(cc - CheckpoirtCortainer): Vestor

[roetSeriaizedCheckpairt() - byte array

[LeafaosBrokerCheckpoint

Figure A.2. Leader/Follower Execution

[image: image9.png]TeafQosbroker : LeafQosBroker | [multicastLibrary : MulticastLibrary | [replicationStrategy : Replicationstrategy | [replicationLog : ReplicationLog | | methodsLeafQosWrapper : MethodsLeafQosWrapper | | methodsL eafos : MethodsL eafQos

1: Before execution n Leaddr un logCall in RepltionSreter
I
2 Creste & CalCantainer cortairing the methqd call

T
|
|
|
|
g3 Letthe b muticast the cortainer |

T
|
|
|
| |
| |
| 4 Serd the cortainer to al replicas |

|

|

5. Each replica recelves the cortainer in LedfGosBroker. Forward i o ReploationStrateas

6: Each repica stores the cal

7: Leader executes the cal

8 Leader runs executeMestahe(seqhun) in ReplcationStratery

& Let the b mulizast the executian cormand
11, Senclthe exeoution commandto al replica

1; Eash repica receives the command in ehtGosBroker. Forwar i to ReplicationStateay |

14 Unpack the CalCortainer

15 Callthe logged fungion callusing Java reflecton

|

Figure A.3. Leader Failure Detection and Recovery

[image: image10.png]leafQosBroker : LeafQosBroker | [mulicastLibrary : MulticastLibrary | [replicationStrategy : Replicationstrategy | [replicationLog : ReplicationLog | | methodsLeafQosWrapper : MethodsLeafQosWrapper | [methodsLeafQos : MethodsLeafQos | [Mamingserver

T
| 1: First follower detects the leader failed | | |
o i i
|
|

Tells ReplicationSirateqy to execute al ogged ofls
f Tele Replostionsiratony to execute o Kaged ool
3 Get allogged calks (f any)

4 CallCortainer arra

T
|
|
|
|
|
|
|

5. Exeouteslal logged cals |

T 6 Execute methods
7. Ertors "eader mode”

9 Remove previous leader fromthe table

|

|
& Let the I fixthe replca table and send ft out |
| et s i thie eplcsitae s sl it |

|

|

|

10 Sencithe repica table out 1ol replics
[10: Senlthe repiica table outto l replcat

[The folowing edges are.
Each replica forwards the replca table o he ltns actions of the rew.
oot renica forwards the rencs tabie o

leacer

12 Stert pig the leader if FF -

~ 13 Register as the new leader
5: Tel muticast bary to stat piry al the folows
Tk muticast orany 1o stak w0 il he folow)

T - L 15 Relnovethe previous leader erry from the naming service
I
|
I
|
I
|
|

Figure A.4. Primary/Backup Execution

[image: image11.png]sibrary ticsstbray |

[Feptestonsirseay - Reptisonsisteo |

[rptioaionto0: RopieationLog | [methadsLesfousWirepper : MethadsLestooswirpper |

[methodstearaos : Methodst earaos

|4 Sendthe cortaine o al eplcas

5: Each repica receives the cortainer in

3 Letthe i mulicast the container

fQasBroker. Farward it o ReplicationSirategy

13 Sendithe cortainer to allreplicas
e

14 Esch repica recsives the cortainer in

12 Letthe I muticast the cortainer
|, eieichniienite o |

afQosEroker. Forward o ReploationStrategy

1: Before execution in Primar} run logCall in ReplicationStrateay

T
2 Creste & CalCantainer cortairing the methqd call

&: Each repica stores the cal
|| Seeimieshe e el

8 (seahium 56

) run BipreCheckpoint in RepicationStrategy
fe

4 Getthe seralized stte
| o tmeeiberale:

-

10 Serslzed stete

41: Create a CheckporCortainer cortainin|

15 Each repica stores the checkpoint
| e e

serisized stote

7. Prinary executes the cal

Figure A.5. Primary Failure Detection and Recovery

[image: image12.png][multicastibrary : MulticastLibrary | [replicationstrategy : Replicationstrategy | [replicationLog : ReplicationLog | | methodsL eafQosWrapper : MethodsLeafGosWrapper | | methodsLeafQos : MethodsLeafdos | [Mamingserver

T
! 1: st backup oetects th tea ! !
st baciup dects the prinary el
m I | | |
|
|

els RepicationStrateqy totake over as the new primary
ol Reploationsreleny to ek ovee as e ok

3 Getthe st stored chectpeint i i
ernized stete ! !

le - _ #seraizodsie _ _ _
i | |
5 Setthe tew steteholer oect I |

6: Get al messages that nesds to be executed

T

|

|

|

|

|

|

|

|

|

| |

alCortainer ara ! |
lo — _ _ 7 cacontsneramay _

| I |

8: Execule all messages I

|

|

|

|

|

|

|

|

|

|

|

9 Exeoute methods

10 Enters "prinary moce"

1: Let the I fx the repioa table and send t ou)

[The folowing edges are.

12 Reove previous prinery from thetable e s ey T |
primery
| |
% I
{3 Sencithereplica tabl out o o replicas| p . I |
e NN | |
14: Each repica forwards the repcatable tahd s 4 RS | I
15: Stort i the leader i s hackup 7 S N | |
- N !
d 16: Remove the previous piimary erry from the naming service I
S |
- N
i 17:Recistr as the new priner |

Tellmticast lorary o stert g all e backurs
Pl il i e bl

18 Getthe serisized stote

L _ _ _ 20 Sersizedstate_ _

21 Put the serielized stete rto a new Check

22 Letthe I muticast the cortainer
[22 Lettne fomltcastthe cortaner |

23 Sendthe cortainer to all repicas
[2 ende corfaner o alvepleee |

2 Forward the cortainr to ReplicationSirategy

25 Stors the checkpoint

Appendix B: Contributors
Stian Abelsen

Jiayu Gong

Joel Helkey

Jim Kuznir

Wendy Maiden

Rick Riensche

Erlend Viddal

Chuan Zhao

2

[image: image13.jpg]3: leader.

registerReplica(self)

|_l:::::::::::::::| _________ _I
5: Leader v o 5: First | |
starts pinging ollower starts
followers J \pinging leader,
Leader Follower,| |[Follower, Follower,
Multicast
library
I I
| |
! |
4:updateRedundant | |
1. Registers, | | Table(redundants[]) : :
becomes]
primar 2: E?etects | |
primary | |
Y I I
| |
| |
|

Naming [«——

£-1=] 7= o

[image: image14.wmf]Leader

Follower

1

Follower

2

Follower

n

. . .

message

message

output

Execute

message

Execute

message

Execute

message

Execute

message

[image: image15.wmf]Primary

Backup

1

. . .

message

message

output

Msg

log

Backup

2

Msg

log

Backup

n

Msg

log

Checkpoint(State)

emptyLog

emptyLog

emptyLog

[image: image16.jpg]Client
(parent for SR)

2: Client.logCall(segNum:String, ‘
A message:MessageWrapper)

1: Client
makes call
3a: Executes
call

Leader Follower,| |Follower.| ... |Follower,

Multicast

3b: Followers
log call

5b: Executes
call

library

5b: Delivers 4: executeCall
output (seqNum:String)

[image: image17.jpg]Client
(parent for SR)

1: Client
makes call

A

2: Client.logCall(segNum:String,
message:MessageWrapper)

3b: Followers

3a: Executes
call

Leader

Multicast
library

log call

Follower,| |Follower,| ... |Follower,

5b: Stores

T

checkpoint

T

6: Deletes old

5a: Delivers
output

[

4: if seqNum%n==

storeCheckpoint(seqNum:String,
checkpoint:CheckpointWrapper)

checkpoint,
trims log

[image: image18.jpg]Naming server

5a: Registers
as new leader

1: First follower detects
error in leader using
doPing()

5b: Takes role
as First Follower

2: FF executes
all logged cay

6b: Starts
pinging leader

Follower,| ... |Follower,

Leader Follower,

3: FF goes into Multicast

* leader mode library

6a: Starts
pinging followers
7: Tries to call
server — detects .

failure Client

(parent for SR)

8: Re-binds QoS
Broker

T |

4:updateRedundantTa
ble(redundantsl[])

_1207762506.bin

_1207763075.bin

_1207763125.bin

_1207763385.bin

_1207762942.bin

_1207674503.bin

