
Adaptive Information Flow Mechanisms and Management for Power Grid
Contingencies

Stian F. Abelsen∗, Erlend S. Viddal†, K. Harald Gjermundrød‡, David E. Bakken§and Carl H. Hauser
Washington State University

School of Electrical Engineering and Computer Science
Pullman, Washington, USA

{stian.abelsen, eviddal, haraldg}@gmail.com, {bakken, chauser}@wsu.edu

Abstract

GridStat is a QoS-managed publish-subscribe frame-
work for data delivery for the electric power grid. Grid-
Stat’s Data Plane delivers data updates through a network
of middleware-level Status Routers. Subscriptions are man-
aged by GridStat’s hierarchical QoS Management Plane.
The path allocation computations are typically done of-
fline and beforehand, but are complex, not only due to the
multiple QoS constraints but the number of status routers
that would be involved an entire power grid. In a cri-
sis, many entities may suddenly wish to add a large num-
ber of subscription requests, which would in practice over-
whelm the subscription allocation mechanisms. In this pa-
per we present a mechanism called modes, which lets Grid-
Stat change routing tables quickly. Modes can be either
global, or only active at a given scope within the hierarchy.
We present the design and experimental evaluation GridStat
modes and of two different mode change algorithms which
different tradeoffs of performance and consistency.

1 Introduction

The electrical power grid is highly dependent on data
monitoring and control capabilities in order to better under-
stand and manage power transmissions over a highly com-
plex network of transmission lines and substations. SCADA
(Supervisory Control and Data Access) has in the last 40
years served as the electrical power grids communication
system and incorporates the requirements and network tech-
nologies back to when it was developed. The requirements
for communication in the electrical power grid are chang-
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ing. Growing concerns about terrorist attacks, changes in
the power flow structure after the deregulation in 1996, new
uses of technologies (IntelliGrid [?]) and an increased over-
all load to capacity ratio of the transportation line system
demand a more flexible and adaptive communication net-
work. The SCADA communication system features a cen-
tralized star-topology, point to point communication, lack
of multicast, severe bandwidth constraints and proprietary
protocols which are not sufficient to meet the requirements
of todays grid. [?] and [?] discuss the limitations of SCADA
in more detail.

GridStat is designed to address the need for a flexible and
robust communication system in the electrical power grid,
and provides a specialization of the publisher-subscriber
paradigm. GridStat middleware manages network re-
sources, enables reliable delivery of data to any point and
provides QoS (Quality of Service) for data streams. Grid-
Stat hides the details of lower-level network capabilities
from application developers in order to enable the com-
munication system to be deployed across different network
technologies, operating systems, programming languages
and device types. GridStat is divided into two planes; the
management plane and the data plane. The management
plane consists of a hierarchy of QoS brokers which col-
lectively manage resources and subscriptions in the data
plane. The data plane is a virtual message bus and lets
publishers provide data to the network and enables sub-
scribers to establish subscriptions to status data through a
status router network. The use of QoS, on a per-subscription
basis, allows subscribers to specify multiple redundant de-
livery paths (spatial redundancy), subscription interval and
delay. Furthermore, GridStat provides status data delivery
to multiple recipients at different rates through the multicast
property and the ability to control and switch routing tables
in the status router network in run-time through the use of
modes.

A mode contains the necessary forwarding rules for a



set of subscriptions and allows the status router network to
quickly switch between bundles of subscriptions; an action
called a mode change. The process of establishing individ-
ual subscriptions is a resource-intensive operation in which
the deallocation and allocation of subscription bundles at
run-time is expensive and may result in unsatisfactory sub-
scription delays. GridStat enables subscription bundles to
be allocated and pre-loaded into the status routers routing
tables where operating modes control which routing tables
the status router network will utilize. Depending on the
GridStat deployment, status routers can utilize several rout-
ing tables corresponding to the operating modes, while in-
active routing tables lie dormant.

We believe the mode change mechanism will help utility
companies (control centers), regional control centers, ISOs
and nation-wide monitoring centers in pre-contingency
planning for communication needs and to switch subscrip-
tion bundles when contingencies do occur in the electrical
power grid. Furthermore, modes enable data load shedding
in the communications infrastructure in a similar manner as
the electrical power grid utilizes power load shedding. For
example, subscribers could specify two QoS sets; desired
QoS and least desirable QoS, and switch between them
when the network is congested.

The research contributions of this paper are:

• Global and hierarchical modes: QoS brokers define
and use modes to adapt communication in their respec-
tive administrative domains.

• Multiple simultaneously active routing tables in the
data plane and the ability to switch between routing
tables at run-time.

• The design and implementation of two mode change
algorithms with different tradeoffs.

• An experimental evaluation which compares the mode
change algorithms in terms of performance, resource
usage and variance (time) in the presence of various
temporal network conditions.

2 Status Dissemination and GridStat

GridStat is a publisher-subscriber framework the targets
application domains where the majority of data is made
available at periodic time intervals, and is mainly designed
to serve as a flexible and robust communication system in
the electrical power grid. Figure 1 shows a small scale Grid-
Stat deployment subdivided in a management plane and a
data plane. The management plane consists of QoS bro-
ker modules that collectively control and manage resources
in the data plane. The data plane is populated by status

routers, publishers and subscribers, where publishers pro-
vide data and subscribers can subscribe to data. The man-
agement hierarchy handles subscription requests and estab-
lishes paths from the publisher to the subscriber through a
sequence of status routers. More detailed information about
GridStat and other baseline mechanisms can be found in [?]
and [?].

Figure 1. Status dissemination architecture.

2.1 Management Plane

The lowest level of the management plane consists of
leaf QoS brokers. A leaf QoS broker manages and pro-
vides services to a set of status routers, publishers and sub-
scribers. The leaf QoS broker manages a flat collection of
status routers, called a cloud, where the leaf QoS broker has
complete control over all available resources and the corre-
sponding resource usage. The resources include event chan-
nels, status routers, publishers and subscribers. Event chan-
nels serve as communication links between status routers, in
which leaf QoS brokers must control and make sure no al-
located subscriptions exceed an event channel’s bandwidth
constraints. Additionally, the leaf QoS brokers must en-
sure that routing tables and computational resources are not
overloaded in the status routers. The main responsibility
of a leaf QoS broker is to control the allocation or deal-
location of subscription paths between publisher and sub-
scribers pairs in its cloud, and to ensure that the allocated
path satisfies the QoS requirements specified by the sub-
scriber.

Interior QoS brokers denote all non-leaf QoS brokers in
the management hierarchy. Interior QoS brokers manage
multiple clouds and offer services to lower-level QoS bro-
kers, and whose main responsibility is to allocate and deal-
locate inter-cloud subscriptions.
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2.2 Data Plane

The data plane is a term used to describe a virtual mes-
sage bus where subscription data flows between publishers
and subscribers. The virtual message bus consists of sta-
tus routers and event channels, whose main purpose is to
forward status events from publishers to the subscriber ap-
plications that requested the data. A status router is in effect
a router with additional functionality to provide forwarding
of status events when subscribed to and at the right rate (rate
filtering). The management plane controls the content of the
routing tables in the status routers, and leaf QoS brokers in-
form status routers to add, remove or modify the content
corresponding to a subscription allocation or deallocation
request.

Since resources are monitored and controlled, the la-
tency from the publisher and the subscriber can be bound.
When registering a subscription, subscribers associate a
set of QoS parameters with the subscription request, and
among these are a subscription interval, a latency request
and redundancy. The management hierarchy attempts to
find one or more disjoint paths (QoS redundancy) between
the publisher and subscriber that are bound by the latency
request parameter. If no such path exists, the subscription
request is rejected. Subscription traffic is therefore bound
by a specified delay and is able to flow on several disjoint
paths towards the subscriber, providing timeliness and reli-
ability QoS to subscriber applications.

3 Mode Change Mechanisms and Manage-
ment

In this section we present the foundation for global and
hierarchical modes and introduce the notion of a mode
change. Further, an overview of the RPC mechanism and
the support for multiple active routing tables in the status
router network (data plane) is presented.

3.1 Overview and Mode Terminology

A mode definition consists of an ID, a name and a set
of data plane subscriptions, and is owned by a single QoS
broker in the management hierarchy. Modes defined and
owned by a QoS broker constitute a mode set, and exactly
one of the modes in a mode set is active at any time; an
operating mode. This means that every QoS broker always
operates in one mode, or in a default mode if no modes
are defined. A QoS broker that operates in a mode implies
that all subscriptions contained in the subscription set of that
mode are active in the data plane.

Status routers use modes to route status events that be-
long to the currently active set of operating modes. More

specifically, a status router forwards a status event if it be-
longs to a subscription that is to be utilized in at least one
of the modes the status routers are currently operating in.
Since every QoS broker in the management hierarchy al-
ways operate in a mode, all status routers operate in as
many modes as there are levels in the management hierar-
chy above them. For instance, with x levels in the man-
agement hierarchy, a status router has x QoS broker an-
cestors (ancestor scope), and will therefore always operate
in x modes simultaneously. This implication on the sta-
tus router network enables coarse resource provisioning be-
tween mode sets, e.g. a top level QoS broker controls 40%
of the available resources in its hierarchical scope while the
QoS brokers beneath it must further provision the remaining
resources between them.

Each status router maintains a separate routing table for
every mode defined in its ancestor scope. For example, in
a GridStat configuration with a management hierarchy con-
sisting of two levels, every status router will always operate
in two modes, and therefore use two separate routing tables
for routing (see Figure 2). However, status routers might
have tens or even hundreds of routing tables pre-loaded, ei-
ther in memory or on disk, but only the routing tables that
correspond to the active set of modes are used.

3.2 Propagation of Modes

All QoS brokers read the mode definitions defined in
their respective configuration files and store the modes in-
ternally. The leaf QoS broker requires additional state infor-
mation on the modes that are defined in its ancestor scope.
The leaf QoS broker requests all the modes that are de-
fined in its ancestor scope by contacting its parent QoS bro-
ker, which recursively repeats the process until the request
reaches the root QoS broker. When the request returns, in-
terior QoS brokers add their respective mode identifiers and
operating mode. The leaf QoS broker stores the informa-
tion returned from the request for each ancestor QoS bro-
ker. The ancestor mode set is used to inform status routers
about all defined modes and operating modes they will oper-
ate in when they connect, or fail and reconnect, to GridStat.
The leaf QoS broker is responsible for updating the ances-
tor mode set during mode change operations to reflect the
operating modes of its parent QoS broker.

The subscriber receives all modes that are defined in its
ancestor scope from and after it has registered with its edge
status router. The set of modes allows the subscriber appli-
cation to select in what modes a subscription will operate in
and are sent with subscription requests to the management
hierarchy.
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3.3 Mode Change Operations

A QoS broker can through modes quickly switch rout-
ing tables in the data plane. This enables the management
plane to decide which status events are allowed to be for-
warded through the data plane and seen by subscriber ap-
plications. Figure 2 shows how operating modes are used
in both the management plane and in the data plane. Each

Figure 2. Status dissemination architecture.

QoS broker has its own mode set and operates in a mode.
All status routers in cloud B operate in Green and Stable
as the QoS brokers in their ancestor scope, QoS broker A
and B, operate in Green and Stable, respectively. The inter-
cloud subscription can operate in all of QoS broker A’s three
modes Green, Yellow and Red since those modes control
and manage routing tables in both clouds. Note that the
inter-cloud subscription is unaffected by whichever modes
leaf QoS broker B and C operate in. If the subscription
is configured to operate in mode Yellow only, status router
B1 does not forward status events to B2 as it is currently
operating in mode Green’s routing table which contains no
forwarding information for the subscription.

A QoS broker can only change between modes that are
defined in its mode set and acts as a coordinator in a mode
change operation. A mode change operation that is initiated
by a coordinator affects all the status routers and QoS bro-
kers in its hierarchical scope. For example, the hierarchical
scope of QoS broker A is QoS broker B and cloud B. The
main purpose of a mode change operation is to inform all
status routers in the hierarchical scope of the coordinator
to switch to the routing table associated with the operation.
The number of status routers involved in a mode change
operation varies with the population of status routers in the
affected clouds and at what level in the management hier-
archy the mode change operation was initiated from. Lo-
cal mode change operations (within a cloud) might involve
tens or hundreds of status routers, while a mode change op-
eration initiated at an interior QoS broker can potentially
involve several thousand status routers. One of the major

challenges is to ensure that all the status routers involved in
a mode change operation receive and switch to the corre-
sponding routing table.

A mode change operation that switches the routing ta-
bles in all of the involved status routers at the expected time
is called a consistent mode change operation. Otherwise the
operation is called an inconsistent mode change operation,
and additional recovery mechanisms (see Section 3.6) must
be utilized in order to restore the operating modes on the
status routers that are considered inconsistent. An inconsis-
tent mode change operation will most likely result in some
subscribers not being able to see subscribed data, as they
otherwise would have after a consistent mode change oper-
ation. However, since subscription traffic is rate-based, the
loss of some status events during a mode change operation
is tolerable as the next status update value for a particular
subscription is due to arrive within a short time period.

Two mode change algorithms have been implemented in
GridStat v4. The hierarchical mode change algorithm uses
the management hierarchy to disseminate mode change op-
erations and gather acknowledgements from status routers
and QoS brokers. The hierarchical mode change algorithm
enables all subscriptions registered to operate in the coor-
dinators current and new mode to flow during the entire
mode change. Thus, subscribers with subscriptions regis-
tered in both the current and new mode continue to receive
status events during hierarchical mode change operations
that switches between those modes. The hierarchical mode
change algorithm is discussed in more detail in Chapter 4.

The flooding mode change algorithm disseminates mode
change operations directly out on the data plane by using
the limited flooding mechanism in GridStat. When a sta-
tus router receives the operation it forwards the operation
on all outgoing event channels, except the event channel
from which it received the operation. As status routers
may receive multiple copies of the same operation, redun-
dant copies are discarded. Status routers are informed to
change from the current mode to the new mode at some
future timestamp. The flooding mode change algorithm is
discussed in more detail in Chapter 5.

The two mode change algorithms provide different trade-
offs. The hierarchical mode change algorithm is a resource
intensive algorithm which is split into five message phases
in order to enable transferred subscriptions present in both
modes in a mode change, e.g., from Green to Yellow, to
flow. A message phase means the coordinator has to initiate
and and propagate a mode change phase (message) down to
all status routers in its hierarchical scope, and the next phase
cannot be initiated until the previous phase has completed;
the coordinator has received aggregated acknowledgements
from all status routers and QoS brokers. The flooding mode
change algorithm, on the other hand, is a best-effort algo-
rithm, and disseminates mode change operations directly
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out on the data plane where status routers are informed to
switch at a predetermined future time. The flooding mode
change algorithm is efficient, in terms of resource usage
and performance, but does not guarantee any subscriptions
to flow during the mode change operation. The flooding
mode change algorithm relies on the status routers ability to
switch modes at the exact same time and therefore requires
all status routers to be time synchronized.

3.4 The RPC Mechanism

The RPC mechanism is a newly added feature to Grid-
Stat v4 that allows connection-oriented communication to
be conducted on top of GridStats publisher-subscriber ar-
chitecture [?]. The RPC mechanism in GridStat facilitates
two-way communication between GridStat entities whereas
the standard publisher-subscriber paradigm does only sup-
port one-way communication between publishers and sub-
scribers.

The RPC mechanism offers several advantages com-
pared to CORBA as it is built on top of the publisher-
subscriber paradigm in GridStat:

• RPC connections can utilize the spatial redundancy
property in GridStat.

• RPC connections can easier utilize temporal redun-
dancy through a flexible timeout-management scheme.

• Pre- and post-conditions on the client and server pro-
vide sufficient control mechanisms to ensure that cer-
tain properties are in place prior to or after the RPC
call has been executed at the receiving end. For in-
stance, a pre-condition on a substation actuator may
employ a security check to verify that a line has been
de-energized prior to switching a circuit breaker.

In order to utilize the RPC mechanism, both the client
and server, must embed a publisher and subscriber instance
and establish bi-directional subscriptions through the ser-
vices that the management hierarchy provides. The man-
agement hierarchy establishes the two subscriptions with
the requested QoS; temporal and spatial redundancy.

3.4.1 Spatial and Temporal Redundancy

Conducting communication over the RPC mechanism pro-
vides more flexible control of message delivery. Since RPC
connections utilize data plane resources one can associate
QoS requirements with any RPC connection as is possi-
ble with standard subscriptions. Temporal and spatial re-
dundancy allow RPCs to span several paths across the data
plane and increases the probability of message delivery.
Subscription latency demands enable the client to take ad-
ditional measures when a delivery confirmation is not re-
ceived when expected. In addition, the RPC mechanism

will benefit from further development of technologies in the
data plane as it completely utilizes the publisher-subscriber
paradigm and mechanisms in GridStat. An ongoing project,
for instance, investigates how to secure data plane commu-
nications through encryption, from which the RPC mecha-
nism will directly benefit through its reuse of GridStat tech-
nologies [?].

Communication related to mode change operations uti-
lize some of the overall properties provided by the RPC
mechanism:

• Mode change communication over RPC within the
management hierarchy or from the management hier-
archy to the data plane can utilize spatial redundancy
if and when needed through the use of modes.

• RPC delivery confirmations provide the means for the
client to resend a mode change message, or schedule
one for a later time, when a delivery confirmation is
not received within the expected time window.

An RPC connection can be configured to resend the call
when a delivery confirmation is not received within the ex-
pected time window. More specifically, the RPC mecha-
nism resends the call after a preconfigured timeout and em-
ploys the temporal redundancy scheme as many times as
the connection setup states. All QoS brokers add an addi-
tional layer on top of the temporal redundancy scheme pro-
vided by the RPC mechanism, and thereby have the abil-
ity to queue outgoing mode change messages and schedule
them for sending by using the RPC mechanism at a later
time.

3.5 Recovery Mechanisms and Acknowl-
edgement Aggregation

In order to tolerate some degree of network failures and
to eventually ensure consistent mode change operations, a
recovery mechanism was implemented to assist the hierar-
chical and flooding mode change algorithms. The recovery
mechanism is triggered by a QoS broker that detects miss-
ing mode change acknowledgements caused by failed QoS
brokers, failed status routers or link failures, and attempts
to resolve these situations when possible.

An important part of a mode change operation is to
gather acknowledgements from the participants in the op-
eration. Status routers which receive a mode change oper-
ation respond with a mode change acknowledgement up to
their leaf QoS broker. When a leaf QoS broker receives the
first acknowledgement for a particular mode change opera-
tion it immediately starts an aggregation round to gather ac-
knowledgements from its status routers. The leaf QoS bro-
ker stores the name of the status router and the mode change
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identifier, and starts a timer which times out to stop the ag-
gregation round. Additional acknowledgements are regis-
tered in a similar manner. The leaf QoS broker stops the ag-
gregation round when all expected acknowledgements have
been received; otherwise, it times out. The leaf QoS broker
finalizes the aggregation round and prepares a response to
the coordinator that initiated the mode change operation af-
ter the aggregation round has completed successfully. If the
leaf QoS broker is the coordinator, it updates the operating
modes table in its state and marks the mode change oper-
ation as complete. Otherwise, if the coordinator is located
at a higher level in the management hierarchy, the leaf QoS
broker updates its ancestor modes table and prepares an ac-
knowledgement and sends it up to its parent QoS broker for
further processing.

Interior QoS brokers go through the exact same sequence
of steps as the leaf QoS brokers and start aggregation rounds
when the first acknowledgement from one of its direct chil-
dren QoS brokers are received. The process continues until
the coordinator of the mode change operation has finalized
the aggregation round.

When the aggregation round times out, the QoS bro-
ker initiates the recovery mechanism by storing the mode
change operation and will in collaboration with its children
QoS brokers continually attempt to restore the state of the
deemed inconsistent status routers, or QoS brokers. More
details on the recovery mechanism can be found in [?].

4 Hierarchical Mode Change Algorithm

The hierarchical mode change algorithm is divided into
five distinct phases which enable transferred subscriptions
present in both modes of a mode change operation, e.g.,
from Green to Yellow, to flow. Furthermore, the five phases
eliminate any status router overload scenarios during a hier-
archical mode change operation. The following list shows
how the hierarchical algorithm affects the status routers in a
mode change from Green to Yellow:

1. The inform phase - Edge status routers inform their
subscribers about the upcoming mode change. This
phase is a standalone phase in order to ensure that all
subscribers have been informed about potential QoS
violations prior to switching routing tables.

2. The prepare phase - Edge status routers switch to the
temporary routing table Green ∩ Yellow. The highest
subscription interval (lowest rate) of transferred sub-
scriptions are used in this phase in order to reduce
the load on downstream status routers. This phase
ensures that subscription traffic that belongs in both
modes (Green and Yellow) is forwarded through the
status router network. Subscription traffic that belongs
to either Green or Yellow is dropped at the edge status

routers. This step in the hierarchical mode change al-
gorithm eliminates any status router overload scenarios
(incoming queues and outgoing queues) as subscrip-
tions are only removed.

3. The internal change phase - Internal status routers
switch to Yellow’s routing table. Since all edge sta-
tus routers operate in a temporary routing table and
only forward a smaller set of subscriptions (in mode
Green and Yellow), the internal status routers can
safely switch to mode Yellow without overloading any
status routers downstream.

4. The edge change phase - Edge status routers switch
from the temporary routing table Green ∩ Yellow to
Yellow’s routing table. Since internal status routers op-
erate in Yellow and expect to receive subscription traf-
fic for mode Yellow, it is safe for edge status routers to
finally switch.

5. The commit phase - Edge status routers inform their
subscribers about the completed mode change. This
phase is a standalone phase in order to ensure that all
modification to routing tables in the status router net-
work is complete and that subscribers will receive sta-
tus events conforming to the desired QoS.

Common for all the phases in the hierarchical mode
change algorithm is the propagation of the operation down
the management hierarchy towards the data plane. The co-
ordinator of the mode change operation sends the operation
to all its children QoS brokers, and they repeat the process
until the operation reaches the leaf QoS brokers. The leaf
QoS brokers forward the mode change operation to each
individual status router and awaits acknowledgements (see
Section 3.5). When the leaf QoS broker has received ac-
knowledgement from all status routers in its cloud, it for-
wards a single acknowledgement to its parent QoS broker,
which then repeats the process until all acknowledgements
have been gathered by the coordinator. The coordinator pro-
ceeds to initiate the next phase of the hierarchical mode
change algorithm. More details on the hierarchical mode
change algorithm can be found in [?].

5 Flooding Mode Change Algorithm

The flooding mode change algorithm is an alternative to
the hierarchical mode change algorithm and offers better
statistical delivery guarantees to the data plane. The flood-
ing mode change algorithm delivers mode change opera-
tions directly to the status routers through the limited flood-
ing mechanism in GridStat. In order to utilize the limited
flooding mechanism, the QoS brokers embed a publisher
instance that connects to some edge status router in the

6



QoS brokers hierarchical scope. The QoS broker can pub-
lish mode change operations through the publisher instance,
where status routers forward the operation to all their status
router neighbors, except the one they received the opera-
tion from. The flooding mechanism will eventually stop
when all status routers have been informed. The limited
flooding mechanism benefits from the amount of redundant
paths in the data plane and is thus more resilient to net-
work failures than the hierarchical mode change algorithm.
Whereas the hierarchical mode change algorithm attempts
to preserve the subscriptions registered in the two involved
modes, the flooding mode change algorithm switches di-
rectly to the new mode. That is, upon receiving a mode
change operation through the flooding mechanism, a status
router immediately responds with an acknowledgement to
its leaf QoS broker and will activate the new mode at the
destined future timestamp. Figure 3 shows a flooding mode
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Figure 3. The flooding mechanism.

change initiated by QoS broker A which floods the mode
change operation directly out on the data plane through its
embedded publisher instance, and is able to deliver the op-
eration to all participants within five message rounds. The
diagram assumes an equal link delay, and the event channel
labels refer to the message round in which the operation is
flooded.

More details on the flooding mode change algorithm can
be found in [?].

6 Experimental Evaluation

The following sections contain only a subset of the ex-
perimental evaluation, and we refer to [?] for a more in-
depth analysis. The experiments were conducted on a 16-
node cluster at the Electrical Engineering and Computer
Science department at Washington State University. The
hardware and software specifications are described in detail
below:

• 14 Intel Dual Xeon 3.06 GHz, 1 GB of RAM and 1
Gb network interface running Redhat 9 (2.4.20-8smp
kernel).

• 1 Intel Pentium III (Coppermine) 1 GHz, 512 MB of
RAM and 100Mb network interface running Ubuntu
6.10 (Edgy) Linux Distribution (2.6.17.10 kernel).

• Java Standard Edition 5.0 (build 1.5.0 11-b03).

The cluster nodes were used to run all the GridStat entities
necessary to conduct the various experiments. The Ubuntu
system ran a link emulator which was used to emulate link
latency and link loss on a per-link basis (data plane links) in
GridStat.

6.1 GridStat Settings

Figure 4 and Figure 5 show the GridStat experimental
setup with 7 QoS brokers and 20 status routers for the hier-
archical and flooding mode change algorithms, respectively.
A cloud consists of five status routers: three edge status
routers and two internal status routers.
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Figure 4. GridStat experimental setup - hier-
archical algorithm.
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QoS brokers are configured to communicate with other
QoS brokers, and leaf QoS brokers with status routers,
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through dedicated RPC connections. RPC connections be-
tween leaf QoS brokers and status routers utilize two redun-
dant paths, while inter-QoS broker RPC connections utilize
one path only due to a current limitation in GridStat. Ad-
ditionally, whenever a GridStat entity does not receive an
RPC acknowledgement after some timeout, it resends the
RPC call. The RPC retry timeout value is subject to an
experiment setup as the traversal time for the call and ac-
knowledgement depend on the link latency and the number
of event channel hops (Table 1).

Link Latency Top Level Second Level Leaf Level
0 ms 10 10 10
1 ms 15 15 15
2 ms 30 25 20
4 ms 60 40 30
8 ms 120 70 55

Table 1. Experiment RPC retry timeouts.

The link emulator associates an event channel with a la-
tency, a probability of packet loss and a burstiness setting.
When a packet loss triggers, the link will consecutively lose
as many packets as the burstiness setting suggests. If the
burstiness setting is variable-sized, e.g. 3-5, the link will at
a minimum lose 3 consecutive packets, but no more than 5
(the actual number is subject to a uniform distribution). Fur-
thermore, the probability of triggering a packet loss is ad-
justed to the desired packet loss probability setting divided
by the mean burstiness setting. More specifically, with a
packet loss probability setting of 8% and a burstiness set-
ting of 3-5, the trigger probability is 8% / 4 = 2%. It is im-
portant to mention that a link will not trigger a new packet
loss when in the middle of an ongoing loss sequence, and
that edge links, publisher to edge status router or subscriber
to status router, will not lose packets.

6.2 Algorithm Comparison

Figure 6 depicts the average completion time per experi-
ment (100 operations) for hierarchical mode change opera-
tions activated from the top level QoS broker in the man-
agement hierarchy. The y-axis denotes the average time
in ms and the x-axis denotes the experiment setup in the
form overall packet loss : minimum consecutive packet loss
- maximum consecutive packet loss.

As expected, the mode change times increase when the
overall probability of packet loss (per link) increases. When
increasing the link latency, the increase in mode change
completion times are more notable, which correlates to
higher RPC connection traversal latencies and RPC retry
timeout values.

Figure 7 depicts the average time per experiment (100
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Figure 6. Hierarchical mode change opera-
tions at the top level in the management hi-
erarchy.

operations) for mode change operations activated from the
leaf level in the management hierarchy. The experiments
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Figure 7. Hierarchical mode change opera-
tions at the leaf level in the management hi-
erarchy.

conducted at the various link latency settings show a rela-
tively flat trend, which suggests that the two redundant paths
utilized by the RPC connections between the leaf QoS bro-
ker and its status routers are able to withstand link loss up to
4% without any significant implication on the mode change
times. An 8% link loss setting increases the average mode
change times which clearly illustrates the impact of having
only two redundant paths between the leaf QoS broker and
its status routers. Figure 7 also shows the benefit of hav-
ing redundant paths down to each individual status router,
whereas the experiments in Figure 6 are more prone to link
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loss as inter-QoS broker communication is conducted over
one communication path.

Figure 8 shows the average time per experiment (300
operations) for flooded mode change operations activated
from the top level in the management hierarchy. As mode
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Figure 8. Flooding mode change operations
at the top level in the management hierarchy.

change operations are disseminated directly on to the data
plane, the five graphs, one per latency setting, illustrate how
resilient the flooded mode change algorithm is against lossy
links with various burstiness settings. With a link latency
setting set to 8 ms, the flooded mode change reaches all
the target status routers after approximately 45 ms, whereas
the hierarchical algorithm requires 1200-3200 ms (Figure
6) depending on the link loss and burstiness setting. The
experiments conducted with 8% link loss passes a threshold
where the redundancy available in the data plane is not able
to propagate the mode change message to the farthest away
status router according to the best path, or close to the best
path, in which the average mode change time increases.

6.3 Scalability Results

The following diagrams compare the same experiments
conducted at the three levels in the management hierarchy
in order to see how the algorithms scale when increasing
the hierarchical scope of the hierarchical algorithm or the
flooding domain of the flooding algorithm.

Figure 9 depicts experiments conducted at the three lev-
els in the management hierarchy with 8 ms link latency by
using the hierarchical algorithm. With no link loss, the di-
agram shows an increase in time between the experiments
conducted at the leaf and second level which is approxi-
mately the double of the mode change times achieved at the
leaf level, and the same results are seen between the experi-
ments conducted at the second and top level. With increas-
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Figure 9. Scalability results using the hierar-
chical algorithm (8 ms link latency).

ing link loss settings, the mode change completion times
for higher-level QoS broker activators increase, which illus-
trates the current limitation of supporting single inter-QoS
broker communication paths. The results are expected to
improve dramatically when inter-QoS broker communica-
tion paths support redundancy.

The hierarchical mode change algorithm depends on the
number of levels in the management hierarchy, the length
of the RPC connections between the QoS brokers and the
corresponding delays. The experimental layout for the hier-
archical mode change algorithm in Figure 4 shows a binary
management tree, where the length of the RPC connections
are: 5 links between A and B1, 4 links between B1 and
C1 and 3 links between C1 and each status router, and sug-
gests that the paths become longer higher up in the man-
agement hierarchy. However, the length of RPC connec-
tions depend on the topology in the data plane and at which
status router the QoS brokers publisher and subscriber are
connected to. Compared to a binary management hierarchy,
a trinary management hierarchy would most likely result in
a wider management hierarchy and slightly less populated
GridStat clouds. It is important, however, to note that the
status router network remains the same; the number of sta-
tus routers and the underlying network topology. This sug-
gests that a trinary tree has fewer levels than a binary tree,
and that the length of RPC connections between QoS bro-
kers are longer. In that case, a binary tree and a trinary tree
should yield approximately the same results.

Figure 10 depicts experiments conducted at the three lev-
els in the management hierarchy with 8 ms link latency by
using the flooding algorithm. The diagram represents the
average time at which all status routers have received the
mode change operation (with 8 ms link latency), and give a
notion of how much time should be allocated for flooding a
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Figure 10. Scalability results using the flood-
ing algorithm (8 ms link latency).

mode change operation to all status router participants. The
GridStat topology in Figure 5 and the results from Figure
10 show that flooding mode change operations initiated by
the top level QoS broker require approximately 50 ms to
deliver the operation to all status router participants, even
under stringent network conditions. This means that, in the
average case, status routers can safely switch modes at any
time after that.

The experiments conducted at the three levels with 8 ms
link latency show an increase in mode change completion
times that is caused by larger flooding domains when the
coordinator resides higher up in the management hierar-
chy, and with a larger flooding domain increases the number
of message rounds for the mode change operation to reach
all status router participants. Another factor is the starting
point of the flooding mechanism, e.g., flooding from the
middle of the flooding domain is more efficient than initi-
ating a flood from an edge in the flooding domain. An ex-
ample of this is shown between the experiments conducted
at the leaf and second level. Flooding mode change op-
erations activated from the second level initiate the flood-
ing mechanism from an edge in the flooding domain, while
the leaf QoS broker initiates the flooding mechanism from
the center status router in its single administrative cloud.
This, in effect, means that the leaf level requires two mes-
sage rounds to disseminate the operation to all status router
participants, while the second level requires four message
rounds.

6.4 Link Traversals

Table 2 shows the number of links (event channels) tra-
versed by both mode change algorithms. The number of
traversals is averaged over all the experiments conducted at

a specific level in the management hierarchy. For exam-
ple, the hierarchical algorithm at the top level traverses a
total of 2124 event channels, averaged over all experiments
conducted at that level. The hierarchical mode change al-
gorithm requires more link traversals since the coordina-
tor disseminates mode change operations through the man-
agement hierarchy and towards the data plane. The flood-
ing mode change algorithm, on the other hand, saves a trip
through the management hierarchy and uses it only for ag-
gregating acknowledgements up towards the coordinator. In
addition, the leaf QoS brokers utilize the spatial redundancy
property in GridStat through its established RPC connec-
tions with the status routers it controls, which increases the
number of link traversals for both algorithms.

Algorithm Top Level Second Level Leaf Level
Hierarchical 2124 833 340
Flooding 367 165 84

Table 2. Link traversals

7 Related Work

Given that both GridStat and the global and hierarchical
mode change mechanism are novel, there is not much re-
lated work that closely resembles the contributions of this
paper. Previous work has been done in network routing
using multiple routing tables, but this work has addressed
multiple simultaneously active routing tables for differenti-
ated QoS routing[?][?]. More specifically, two routing ta-
bles are used; one for QoS traffic and another for best-effort
traffic. This allows for differentiated routing strategies for
the two traffic classes. For example, QoS traffic emphasiz-
ing lower drop rates could be forwarded along less loaded
paths reducing the probability of drops due to congestion
at the expense of longer paths and thus higher delay. The
mechanisms proposed in this paper share the property of
previous work in the area of supporting multiple routing ta-
bles, but is novel in that a status router is collectively man-
aged by a set of QoS brokers where each QoS broker con-
trols a distinct set of routing tables, and has the ability to
switch between them in run-time.

8 Conclusions

This paper has presented an implementation of global
and hierarchical mode change mechanisms and manage-
ment in GridStat, which is a novel way to switch between
bundles of subscriptions in run-time. The power grid indus-
try can benefit from this mechanism in GridStat by identi-
fying and creating distinct mode holders for the information
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that is needed during various critical situations in the electri-
cal power grid. Furthermore, GridStats modes implementa-
tion enables load shedding for data streams and corresponds
to how load shedding enables transmission adjustments in
the electrical power grid.

Two mode change algorithms that offer different trade-
offs with respect to consistency, resource usage and effi-
ciency have been presented. The hierarchical mode change
algorithm enables subscriptions present in both the old
and new modes to flow during a mode change operation
through five execution phases. In addition, the hierarchical
mode change algorithm prevents bandwidth, status router
computational resources and queues to become exhausted.
The flooding mode change algorithm is an efficient best-
effort algorithm that informs status routers to change modes
through the flooding mechanism, and therefore provides a
high statistical delivery guarantee. However, the flooding
mode change algorithm is not able to prevent computational
resources and queues in the status router network to become
overloaded.

The experimental evaluation shows the mode change
completion times for both mode change algorithms under
various network conditions. The experimental results show
that the hierarchical mode change algorithm scales linearly
when increasing the hierarchical scope of a mode change
operation. However, the algorithm adds a significant delay
to the overall mode change completion time in the presence
of link loss. The reason for this behavior is that QoS bro-
kers do not utilize redundant subscription paths in their es-
tablished RPC connections. The hierarchical mode change
algorithm is expected to perform much better during poor
network conditions with redundant communication paths in
the management hierarchy. The results show that the flood-
ing mode change algorithm completes a mode change oper-
ation more than an order of magnitude faster than the corre-
sponding experiment conducted with the hierarchical mode
change operation. Furthermore, the flooding mode change
algorithm is less prone to link loss and shows a minimal im-
pact on the overall mode change completion times. In term
of scalability, the flooding mode change algorithm scales
linearly and clearly shows that the width of the flooding do-
main and the point at which QoS brokers initiate the flood-
ing mechanism from increases the mode change completion
times.
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