
Middleware Support for Voting and Value Checking

(WORKING TITLE)

Zhiyuan Zhan

Microsoft Corporation

One Microsoft Way, Redmond, WA 98052

zhiyuan.zhan@microsoft.com

David E. Bakken

School of EECS

Washington State University, Pullman, WA 99163

bakken@eecs.wsu.edu

July 3, 2007

Keywords: Middleware, Voting, Data Fusion

Abstract

Let’s put down something funny here as a temporary abstract

1

1 Introduction

DAVEDO: Dave will provide this leadup soon...

The research contributions of this paper are:

• An analysis of why byte-by-byte value comparison mechanisms used in voting middle-

ware and elsewhere do not work in the presence of the kinds of heterogeneity that are

inherent in distributed computing systems, the very heterogeneity that middleware is

designed to mask programmers from.

• An analyis of the architectural implications of these limitations on active replication,

byzantine quorum, data fusion, peer-to-peer, and other kinds of distributed architectures

that must detect value falures and otherwise compare values from different sources.

• The design and implementation of the Voting Virtual Machine (VVM), a middleware

component that votes correctly on application-level data and can be embedded into dif-

ferent middleware substrates or application programs.

• The design and implementation of the Voting Definition Language (VDL), which is used

with the VVM and allows voting algorithms to be coded in a portable and reusable man-

ner.

• An experimental evaluation of the performance of the VVM.

• An analysis of the positive and negative lessons learned about how voting and other

data-comparison mechanisms can be provided in a virtual machine with voting-specific

primitives.

The remainder of this paper is organized as follows. Section 2 analyzes why byte-byte-

voting mechanisms do not work in the face of heterogeneity and its architectural implications.

Section 3 describes the VVM design. Section 4 describes VDL, and Section 5 gives exam-

ples of common voting algorithms expressed in VDL. Section 6 describes the implementation

of VVM and other supporting components and tools. Section 7 provides an evaluation of

the performance of the VVM. Section 8 describes the lessons learned about providing voting

and other data comparison mechanisms in a virtual machine providing specialized primitives.

Section 9 describes related work, and Section 10 concludes.

2

2 Limitations of Current Voting Schemes

2.1 Data Sharing in Distributed Systems

Many distributed systems, such as distributed file systems, world wide web (WWW), dis-

tributed objects and P2P systems, allow distributed users to access shared data that is either

cached or replicated at multiple nodes.

2.1.1 Distributed File Systems:

Many operating systems use caching to improve file system performances. Some of the popular

distributed file systems are xFS [1], Spring [2], NFS [3], Coda [4], Farsite [5] [6] [7] and

Ivy [8].

xFS is a serverless file system, which provides strong ordering by ensuring that a single

writer or multiple readers are able to access a file at a given time. It allows client nodes to

cooperatively cache file blocks that are accessed. Any node in the system can cache data and

supply it to other clients. The location independence of such a configuration with fast local-

area networks gives better performance and scalability than the traditional systems.

The Spring file system supports cache coherent file data and attributes. It uses the virtual

memory system to cache data and keep them consistent. It provides two types of file servers

to accomplish the task: one that provide coherent access to files they export, and the other that

runs on each machine to provide read and write operations for cached data.

The NFS system allows multiple clients to access files located at one server. The server

is stateless and does not maintain any information on either the clients or the way the file is

cached. Therefore, all modifications of the file must be written back to the server once the file

cache is closed at the client side. Under “sequential write sharing” (meaning a file cannot be

open simultaneously for both reading and writing at the same time in different clients), each

client reads the most recent copy of the file. However, NFS does not provide mechanisms to

ensure such “sequential write sharing”, which may result in client reading stale data.

Farsite is a scalable, decentralized file system. It uses a set of insecure and loosely

coupled machines to implement a P2P file system which is secure and reliable. Updates in

Farsite are maintained by lazy propagation and content leases. Strong consistency of the file

3

system is maintained by means of leases. For example, a write/read lease has to be obtained

before a client can modify/observe the content of a file. Multiple read leases of the same file is

allowed, but only one write lease can be granted with no other leases (whether read or write)

granted for the same file.

Ivy is distributed P2P file system which supports both read and writes. It provides NFS-

like interfaces to application users. Ivy solely consists of a set of logs, stored in distributed hash

table (DHash). When network partition happens, the application specific conflict resolvers are

used to resolve the update conflicts.

Coda is a distributed file system that provides server and network failure tolerance. It uses

server replication and disconnected operations to achieve those goals. The replication unit in

Coda is called a volume. A client that accesses the accessible volume storage group (AVSG)

takes care of the update dissemination and implements the “read one, write all” logic, in order

to minimize the burden at server side. Network partition is to some extent tolerated by allowing

continued operations on client side cached copy and update resolution is applied when client

goes back online and submits its offline updates.

Note that most distributed file systems introduced above need to provide a guarantee that

the file is accessed in a way that is the same as if the file is stored in a centralized server. This

implies strong consistency requirement. In Ivy and Coda, updates are allowed even when a sys-

tem partition happens. These systems depend on conflicts resolution when different partitions

are connected back together. Our information sharing system is different from the distributed

file system in that it generally can tolerate relaxed consistency requirements based on different

user needs. Therefore, to provide a “single copy as if being stored in a centralized server” is

not part of our goal. Similarly, to provide support for different consistency levels of the same

file in the system at the same time is not the goal of distributed file systems.

2.1.2 World Wide Web:

Consistency protocols for web caching are described in [9], [10], [11]. Weak consistency

protocols based on time to live (TTL) mechanism are presented in [10] and [9]. However,

those weak consistency models focus more on providing better scalability and enhancing sys-

tem performance rather than preventing clients from reading stale data. A stronger notion of

4

consistency based on invalidation and pull is presented in [11]. Generally the consistency

requirements in WWW literature mainly focus on reducing the staleness of the cached copy at

the client side. In our system, however, reading stale data is allowed, as long as the updates

follow certain order that is guaranteed by the system. We focus more on the ordering aspect of

the consistency requirement other than timeliness.

2.1.3 Distributed Objects:

CORBA [12], [13], [14], [15] stands for Common Object Request Broker Architecture, which

is Object Management Group (OMG [12])’s open client-server middleware architecture used

for applications to access services across networks. CORBA’s replication service [16], [17]

supports object replication in order to improve performance and provide a mechanism for fault

tolerance. The replicas of the same object are kept in strongly consistent state as the requests

are totally and causally ordered across all replicas [17].

Object caching has also been studied in systems such as Thor [18], Rover [19], Bayou [20]

and others. The Thor system assumes a transaction notion for the operations on cached objects

and validates them before they are committed. The Rover system was developed to address

the problem of bandwidth constraints and possible disconnection of clients. The client’s copy

will be serialized by the system when the client goes back online (or has enough bandwidth).

The users have to manually resolve any possible conflicts. Bayou is a replicated, weakly

consistent storage system designed for a mobile computing environment where disconnection

is possible. Bayou has focused on supporting application-specific mechanisms to detect and

resolve the update conflicts. It proposed two techniques for such support: dependency checks

and merge procedures. In addition, the updates are propagated in Bayou by pair-wise anti-

entropy in order to guarantee eventual consistency. To our knowledge, the above distributed

objects system all provide the same level of consistency to all replicas in the system. None of

them allow for replicas of the same object to be running at different consistency level at the

same time.

5

2.1.4 Peer-to-peer Information Sharing:

Peer-to-peer (P2P) data sharing systems have become popular in recent years [21] [22] [23].

Generally data items shared by P2P systems are considered to be fairly static and updates sel-

dom happen. For example, in P2P email system described in [24], email components are stored

in distributed nodes, and they support only read and delete operations. No updates by the write

operation will be generated (so strong consistency requirement is not needed). If updates do

happen, the modified data item is usually considered as a newer version of the old one and

both versions co-exist in the system. Typically, the directory service maintains an entry of

each version for centralized P2P systems such as Gnutella [23] [25] and new updates do not

get propagated among replicated data items in such systems. Updates do get propagated in

some P2P systems designed to be “writable”, like FreeNet [26] and OceanStore [27]. How-

ever, they view P2P systems as a homogeneous system and do not consider the resource and

application behavior heterogeneity. Furthermore, consistency guarantees in those systems are

limited. When used as an update dissemination mechanism for in P2P systems, our work on

mixed consistency model and agile dissemination is more flexible and can provide different

consistency guarantees to different peers. Finally, our system supports multiple writers of the

same object, while most of the P2P systems (e.g. FreeNet [26] and PAST [28]) do not.

Figure 1 is copied from Dave’s slides.

3 Voting Virtual Machine Architecture

3.1 Overview

We have designed and developed a prototype version of the Voting Virtual Machine (VVM),

and its companion Voting Definition Language (VDL) policy language [29–31].

The VVM provides a general, adaptable and portable mechanism for voting. It can be

used standalone to develop and test portable voting algorithms. It supports adaptive voting,

which allows different voting policies (pieces of compiled VDL code) be loaded at runtime in

response to changing conditions. The VVM can be integrated with various types of distributed

objects and middleware [32].

A simplified picture of the VVM architecture is shown in Figure 2, as applied to CORBA

6

Baseline:Baseline:

IPIP

TCPTCP

MiddlewareMiddleware

MulticastMulticast
(over UDP)(over UDP)

ReliableReliable

SecureSecure

Reality:Reality:

MiddlewareMiddleware

MulticastMulticast
/UDP/UDP

ReliableReliable

SecureSecure

marshalmarshal

Ideal:Ideal:

MiddlewareMiddleware

(a)(a) (b)(b) (c)(c)

IPIPIPIP

Figure 1: VVM Stack

(though it could equally well apply to any other middleware system).

The VVM operates in three general steps as follows.

• Step 1 Unmarshal: Network messages come in independently from each replica into the

unmarshal module. This converts these linearized messages into a set of parameters,

which are sent to the voter core module.

• Step 2 Vote: The voter core module selects/generates an “answer” (a set of parameters)

based on the current voting policy.

• Step 3 Marshal: The marshal module gets the “answer” from voter core and “flattens”

the voted parameters into one message, which will be sent to the server or client.

In this configuration the voter is external to any CORBA ORB — for example, in a gateway

[33] — but it could also be embedded into an ORB, in which case the marshal and unmarshal

operations of the ORB would be used, and the extra unmarshal/marshal steps for a gateway

would be avoided.

The voter core module has inputs which inform it of the current voting policy (VDL code

fragment) as well as notifying it when a failure occurs.

NOTE: shall we include VSS in our paper?If yes, add a short paragraph to describe the

VSS.

7

conditions &
QOS
requirements

(VSS)

policy params;
weights

iiop_msg[1..N]

param

voted_param

voter core

[1..N]

k

k

statistics
Voting

Manager
Voting

failure notification

voted_iiop_msg

Alerts to
subscribers

unmarshal

marshal

Current

Voting

Service
Status

current voting policy &

Figure 2: VVM Architecture

3.2 Basic Voter Functionality

We now describe the basic voting functionality provided by VVM, after first providing some

definitions. A ballot is a request or reply message sent by a single replica. A vote is the process

of choosing (or constructing) one message from among all the ballots.

The voter core shown in Figure 2 goes through three states in the processing of a single

vote, as depicted in Figure 3.2.

Basicly, the voter core runs at one of the three states, quorum, exclusion and collation. At

each state, the current voting policy dictates the action of the voter by providing operations,

supplying necessary parameters and specifying conditions.

• At quorum state, the voter waits for enough ballots to arrive to begin the actual voting

process. After sufficient ballots have arrived, the exclusion state is entered.

• At exclusion state, the voter excludes a number of parameters from further consideration,

if necessary, to enable the application to tolerate value failures.

• At collation state, one value is chosen from those not excluded.

After the collation state is finished, the voter also may return a confidence value, indicating

the level of confidence in the vote.

In each of the three states exceptions may be thrown as directed by the VDL. In this case,

8

exception

unmarshal

Confidence

confidence value

marshal

exclusion

k

quorum

exclusion

quorum
exceptions

exceptions

voted_param

param [1..N]

collationcollation
exceptions

k

Figure 3: States in the Voter Core

an exception is returned to the client which would normally receive the vote. For example, in

the quorum state it may be desirable to throw an exception if the quorum is not met after a

certain timeout.

NOTE: this paragrph needs to be rewritten if branching is changed, i.e. branch from

collation to exclusion be eliminated In the last two states the voter may branch back to a

previous state, based on the same status conditions on which an exception may be thrown. For

example, in the exclusion state, if too many ballots are excluded, the voter can branch back to

the quorum state to wait for more.

3.3 Advanced Voter Functionality

The voter can be specified to perform random operations at any or all of the three states, to

help thwart an adversary; this is of course specified in VDL. For example, in quorum state,

the voter can be instructed to wait for a random percentage of the maximum ballots (size of

the group sending the ballots) to arrive. Further, this number could change with each vote or

could be the same for all votes the voter managed. In exclusion state the voter can exclude a

random number of the ballots; again, this percentage could potentially be reset at different time

9

intervals. Finally, the collation state can randomly choose a value. This is well reasonable in

some applications where the particularly bad data have already been discarded in the exclusion

state.

Another way in which the VVM has the potential to improve security is by weighted voting,

or giving different replicas varying amounts of trust in the different states of the voting. For

example, in the quorum state, instead of waiting for a given number of ballots, it can wait for

some number of points, where each replica is assigned a different number of points. When a

ballot arrives, that ballot’s arrival counts towards the number of points dictated by its quorum

weighting. In the collation state, the operations can be performed after the remaining ballots

are expanded based on a weighting. For example, suppose there are ballots with values {5,7,9}

from replicas 1–3, respectively, and the weighting is {2,1,3}. After the expansion the ballots

will be {5,5,7,9,9,9}, and this is what the collation operation such as median or random will

operate on.

3.4 Failure Model

DAVEDO: Dave will rewrite this section. The following are copied from DSN paper

The VVM assumes a crash failure model for the hosts it runs on. This is a reasonable

assumption in many situations, because in most configurations the VVM will be running in

the same machine or even process as the client. Thus, for all practical purposes, the client and

its voter will fail together or not at all; the client will not have to deal with the possibility of a

failed voter.

The VVM also assumes a Byzantine failure model for applications running on servers, but

only a crash failure model for the middleware and operating system code running on them. In

many cases this will be acceptable, because in almost all systems it is easier to compromise

user-level priveleges than adminstrator (root) ones. If this were not realistic for a given system,

then a stronger failure model (weaker assumptions) could be provided with techniques such as

the network attachment controller (NAC) in the Delta-4 system [34] or with more expensive

protocols similar to those in [35] or in [36].

10

policy name (parameters) {
quorum (quorum op (parameters))

[throw ex name if (condition)]∗

[exclusion [label] (exclusion op (parameters)) [replace by mean|median|value]
[

[throw exception name if (condition)] |
[goto quorum [(using (quorum op (parameters)) more|total)] if (condition)]

]∗

]+

collation (collation op (parameters))
[

[throw exception name if (condition)] |
[goto quorum [(using (quorum op (parameters)) more|total)] if (condition)] |
[goto exclusion [label] if (condition)]

]∗

[confidence (confidence expression)]
}

Figure 4: VDL Syntax

4 Voting Definition Language (VDL)

In this section1 we describe VDL. we first give its syntax, then describe the primitive operations

supported in the language. Finally we discuss confidence values.

4.1 VDL Syntax

Figure 4 gives an overview of VDL’s syntax. In this, symbols for parentheses and curly braces

(e.g., “}”) are part of VDL’s syntax. Square brackets (“]”), asterisks (“*”), and plusses (“+”)

are used to denote portions of syntax that may occur zero, one, or more times, in the traditional

use of these symbols.

A VDL policy begins with optional subtypes, which can be declared to restrict values of

parameters to a policy, similar to the range statement in Ada. Subtypes can be applied to

CORBA IDL long and double, to restrict their values, as well as to builtin enum types Quoru-

mOps, ExclusionOps, and CollationOps that enumerate the operation names for each state in

the voter. These are shown by example in Section 5.2. The next line declares a policy’s name

and parameters, which can include long, double, the builtin enumerated types for operations

in each state.

Following this is the declaration of the quorum operation and its parameters. It can op-

tionally be followed by a statement indicating that a named exception should be thrown to

1Please note that this research is not a theoretical investigation of how to represent all voting algorithms. Rather, it
is a pragmatic investigation into how to support voting in middleware, though supporting as wide as set of algorithms
as possible is obviously useful.

11

CONDITION VARIABLES MEANING
elapsed time the time since vote initialized (msec)
pct remaining total the percentage of remaining ballots and total ballots
num remaining total the total number of remaining ballots
pct excluded total the percentage of excluded ballots and total ballots
num excluded total the total number of excluded ballots
ballots total total # of ballots received,

equals (num excluded total + num remaining total)
ballots max total # of ballots possible, e.g. number of replicas; if

> ballots total, quorum does not wait for all
ballots to arrive.

Table 1: VDL Condition Variables

the client under certain conditions. These conditions are expressions built with the policy’s

parameters and also condition variables that the voter core provides regarding the status of a

vote. These are listed in Table 1. As an example, elapsed time denotes the milliseconds since

the voter was initialized for a given vote, for example when a client’s request was sent out. It

is useful for example to set a timeout in the quorum state, or for confidence values.

The statement specifying the exclusion operation and its parameters follows the quorum

statement. It can optionally be followed by a clause which indicates that, instead of being

discarded, all values excluded by this operation are to be replaced by either the median value,

the mean value, or a given value. The exclusion statement may contain multiple goto and

exception statements in any order. A goto statement sends the vote back to the quorum state

under certain conditions, which are specified with expressions involving the exact same set of

parameters and variables as the throw statement for exceptions. This goto statement may also

specify with the using clause a new operation and new parameters to use in the quorum state.

This clause must also specify whether this quorum applies to all ballots received (qualifier

total) or only those received after the execution of the goto (qualifier more).

Note that there may be multiple exclusion statements in a row. If there are more than one,

and they may be branched to with a goto statement, then they must have the optional label to

enable this branching without ambiguity.

The VDL policy finally specifies the operation to be used for the collation state (there are

presently no parameters to these — they just choose one), as well as the optional exceptions

and branching to quorum exactly as exclusion allowed. After collation there may be a branch

to exclusion. Finally, a confidence expression may optionally be returned to indicate how

much trust should be put in the vote.

12

STATE PRIMITIVES MEANING
quorum until k[%] wait until k[%] ballots arrive

all but k[%] wait until all but k[%] ballots arrive
random n[%] m[%] wait for random number (ranged from n[%]

to m[%]) of ballots arrive
exclusion lowest n[%] exclude the lowest n[%] values

highest n[%] exclude the highest n[%] values
furthest n[%] exclude the furthest n[%] values from the median
distance e[%] from exclude all values not within e[%] distance from
[mean|median|value] the position or value specified

outside sigma x exclude all values more than x std. dev. from the mean
distance neighbor d exclude all values that are not within a given

distance d of their neighbor
distance cluster d exclude all values that are not within d distance
[mean|median] of their neighbor, starting at position specified
cluster support d p [c] Refer to Table 3 for details
inner k Refer to Table 3 for details
nearest k exclude the nearest k values from median
random n[%] exclude random n[%]
none exclude none

collation median choose the median value
mean choose the mean value
mean neighbor choose the closest value in a ballot from

the mean value
midpoint choose the mean value of the highest one and

the lowest one
midpoint neighbor choose the closest value in a ballot from

the midpoint
mode choose the mode value (the most common one)
random choose a random one

Table 2: VDL Primitives

If an exception is thrown by the VVM, it is done so in whatever runtime exception the

middleware system requires clients to catch, as middleware systems generally do — e.g.,

SYSTEM EXCEPTION for CORBA – so as not to introduce new exceptions into the interface.

4.2 VDL Primitives

Table 2 shows the primitives for each state. Most are intuitive and self-explanatory, so for

brevity’s sake are not explained here. Primitives in the exclusion state are applied after the

values have been sorted.

Table 3 provides more information about the VDL primitives that may not be fully intuitive

to all readers. In this table, a set of example values is given, with those that would be excluded

are shown in a bold font.

Operation distance neighbor d excludes all values that are not within a given distance d

from their neighbor, after the values are sorted. Note that this may result in multiple clusters

of neighbors, where each cluster is formed from neighbors d or less apart but the clusters are

13

PRIMITIVES MEANING EXAMPLES
distance neighbor d exclude all values that are not within a given

distance d of their neighbor
exclusion distance neighbor 2
{8, 11, 12, 14, 14, 15, 17, 18, 22 }

distance cluster d exclude all values that are not in a chain start-
ing at median and where neighbors are within
d

exclusion distance cluster 2
{9, 11, 12, 14, 14, 15, 17, 18, 22 }

cluster support d p [c] Form clusters (which may overlap) including
values that are each supported by (are within
distance d of) at least p other values, as well
as the p values that form the support.
If c is specified, exclude all but at most c clus-
ters, otherwise merely exclude all values not
in a cluster.

exclusion cluster support 1 2
{9, 11, 12, 14, 14, 15, 17, 18, 19 }

exclusion cluster support 1 2
{9, 11, 12, 14, 14, 15, 17, 18, 20 }

exclusion cluster support 1 2 1
{9, 11, 12, 14, 14, 15, 17, 18, 19 }

inner k exclude the median plus k − 1 values
adjacent to the median, spaced as evenly as
possible on each side of the median

exclusion inner 3
{9, 11, 12, 14, 14, 19, 21, 22, 22 }

nearest k exclude the median and k−1 values nearest it exclusion nearest 3
{9, 11, 12, 14, 14, 19, 21, 22, 22 }

Table 3: VDL Exclusion Primitives with Examples

spaced more than d apart. Operation distance cluster forms a single cluster starting at the

median or mean (as specified), and extending as far out as the adjacent value is within the

given distance. All values not in this cluster are excluded. Operation cluster support forms

possibly overlapping clusters, where each member of a cluster is supported by at least p other

values, meaning they are within d of the value. If c is specified, it denotes the maximum

number of clusters that will be allowed; all unallowed clusters, plus all values not in a cluster,

are excluded. If c is not specified, then all clusters are allowed; only values not in a cluster

are excluded. Operation inner forms a cluster starting with the median and including k − 1

other values, being balanced as well as possible on both sides of the median. The values in this

cluster are excluded, and the others are not. Finally, operation nearest forms a cluster with the

median and the k − 1 values nearest it. These are excluded, and the rest are retained.

4.3 Confidence Values

All other voters we are aware of allow only binary output behavior: either the voter outputs

a voted value, or either fails or refuses to (and perhaps throws an exception). However, the

choices of throwing an exception and returning a value represent two extremes. VDL allows

the expression of confidence values, which have multiple uses which we are exploring, to

provide some middle ground between these extremes.

One use is to allow the client to decide how to use a reply based on how good it is per-

14

ceived to be. The confidence value is presently specified in VDL, as described in Section 4.1.

Alternately, we have been investigating allowing its specification via a separate confidence

definition language. This would allow pieces of code (confidence policies) to be written by

a different person from the VDL programmer, and they also could potentially be reused with

different VDL policies. No matter how its specified, the confidence value will allow the client

to adapt with a much better granularity than the current boolean output behavior.

We are also investigating utilizing the confidence value for application-level adaptation

while still providing voting and replication transparency. This is enabled by using delegates,

which are proxies that are interposed between the application client and the middleware proxy

(stub), and provide the same API as that proxy (the API of which the client has programmed

to). In particular, we are investigating the use of delegates from the Quality Objects (QuO)

framework [37]. QuO delegates are generated based on QuO’s Structure Description Lan-

guage (SDL) [38] plus the middleware’s interface definition language (IDL) and the QuO

contract’s contract description language (CDL). SDL allows the specification of adaptation

strategies which are above the middleware layer (CORBA or DCOM, for example) yet below

(and generally transparent to) the client. We are developing and analyzing the effectivness of

SDL adaptation strategies which utilize the confidence value returned2 by the voter.

5 VDL Examples

5.1 Supermajority

Figure 5 gives an example of a supermajority voting policy. The policy returns a vote of 60% of

the ballots are equal, where we set “equal” to median being within 1%. It throws an exception

if this cannot be met. Otherwise a confidence value is returned that is equal to the percent of

ballots that agreed with the value voted upon (chosen in collation).

This policy initially waits for 60% of the ballots to arrive. It then discards all which are

not equal. At this point, if more than 40% have been excluded, then a supermajority of 60%

2When we say a voter “returns” the confidence value, note that it cannot return this value as a return value, be-
cause the method’s IDL definition has fixed the method’s signature. Alternate means of returning the value are being
developed, analogous to a Unix system call “returning” (“on the side”) an error report via the errno variable. One
possibility in implementing the confidence value involves CORBA context variables; others will be explored.

15

policy Supermajority-example {
quorum (until(60%))

throw QUORUM TIMEOUT if (elapsed time > 1000)
exclusion (distance (1%) from median)

throw BAD VALUES if (pct excluded total > 40)
goto quorum (using (until (1)) more) if (pct remaining total < 60)

collation (median)
confidence (pct remaining total/100.0)

}

Figure 5: Supermajority Voting Algorithm in VDL

cannot be achieved, so an exception is thrown. If this does not happen, but less than 60%

remain (which all are equal), then it branches back to the quorum state to wait for more. If

neither the branch nor the exception occur, then the supermajority has been met, and median

is chosen.

5.2 Parameterized Supermajority

The supermajority example given in Section5.1 can be parameterized in that the hardcoded

constants (e.g. 60% and 1% in Figure 5) in voting policy can be defined as parameters to the

policy. Further, the operations that are hardcoded can also be parameterized. For example, to

exclude furthest values may also be feasible in the supermajority example.

In order to support parameterized policy, VDL built-in types need to be introduced. VDL

predefines enumeration types (Figure 6) for QuorumOps, ExclusionOps, and CollationOps,

each contains the legal operations which can be performed in quorum,exclusion, and collation

state. Note that different VDL primitives have different number of arguments. To make this

amenable to clean parameterization, VDL also defines a structure, called VDL params, to pass

in multiple parameters into a policy. The parameters are passed in by the Voter Manager, along

with the policy.

Figure 7 gives the VDL for a supermajority algorithm. It is different from the earlier algo-

rithm in that the percent to define a supermajority is parameterized, as well as the operations

for exclusion and collation.

16

enum QuorumOps {until, all but, random,...};
enum ExclusionOps {lowest, highest, ..., random, none};
enum CollationOps {median, mean, mean neighbor, mode, random};
enum VDL param type {is double, is long, is absent};

//a param is either long or double; and can also have ′%′

struct VDL params {
double p1 double; long p1 long; VDL param type p1 type; boolean p1 pct;
double p2 double; long p2 long; VDL param type p2 type; boolean p2 pct;
double p3 double; long p3 long; VDL param type p3 type; boolean p3 pct;

};
Figure 6: VDL Built In Types for Parameterization

subtype Supermajority exclusion ops: ExclusionOps { lowest, furthest };
subtype Supermajority quorum increment: long [2, 4]; //how many more to wait for
policy Supermajority(double pct same,

Supermajority quorum increment q inc,
Supermajority exclusion ops ex op,
VDL params ex params,
CollationOps c op) {

quorum (until(pct same %))
throw QUORUM TIMEOUT if (elapsed time > 1000) // 1000 msec

exclusion (ex op (ex params))
throw BAD VALUES if (pct excluded total > (100.0 − pct same))
goto quorum using (until (q inc) more) if (pct remaining total < pct same)

collation (c op)
confidence (pct remaining total/100.0)

}

Figure 7: Parameterized Supermajority Voting Algorithm in VDL

17

policy CNVA (d, local value) {
quorum (all)

throw QUORUM TIMEOUT if (elapsed time > 1000)
exclusion (distance (d) from mean) replace by local value

throw NOTHING LEFT if (pct excluded total = 100.0)
collation (mean)
confidence (pct remaining total/100.0)

}

Figure 8: CNVA Clock Synchronization Algorithm in VDL

5.3 Fault-Tolerant Clocks

Fault tolerant clock is a very important topic in distributed computing area. People have pro-

posed several different approaches, which can be categorized (in [39]) as master-slave, conver-

gence function, interval, byzantine agreement, and clock server algorithms.

In this paper, we demonstrate the use of VDL to describe convergence function algorithms.

A typical algorithm in this category contains four basic steps [39]:

• Collect clock values from other nodes,
• Manipulate the collected clock values,
• Calculate a correction term for local clock by applying a convergence function,
• Correct the local clock.

Among those steps, the first three can be mapped onto our three voter states (dis-

cussed in Section 3.2): quorum, exclusion and collation. The last step is to employ a

correction algorithm to adjust the local clock, which would be the application’s func-

tion.

Four major convergence algorithms, Interactive Convergence, Fast Convergence,

Fault-Tolerant Midpoint, and Fault-Tolerant Average Algorithms will be expressed in

this paper. They have been identified as the most important convergence algorithms

by many researchers [39–44].

Figure 8 gives an example of Interactive Convergence Algorithm (CNVA) [45].

The synchronizing node first collects clock values from all other nodes, and then it

replaces the values that are “too far away” from local value, where “too far away”

means not within a given distance d from local value. If all the values are excluded

(replaced), it throws an exception. After that, it calculates the corrected local clock

value by choosing the mean of those manipulated values. Finally, the confidence

18

policy FCA (d, p) {
quorum (all)

throw QUORUM TIMEOUT if (elapsed time > 1000)
exclusion (cluster support (d, p))

throw NOTHING LEFT if (pct excluded total = 100.0)
collation (mean)
confidence (pct remaining total/100.0)

}

Figure 9: FCA Clock Synchronization Algorithm in VDL

policy FTMA (k) {
quorum (all)

throw QUORUM TIMEOUT if (elapsed time > 1000)
exclusion (lowest (k))
exclusion (highest (k))

throw NOTHING LEFT if (pct excluded total = 100.0)
collation (midpoint)

}

Figure 10: FTMA Clock Synchronization Algorithms in VDL

value is computed according to how many values originally collected are excluded

(pct remaining total).

Figure 9 gives an example of the Fast Convergence Algorithm (FCA) [46]. After

collecting values from all other nodes, the synchronizing node excludes those values

which receives support from less than p other values, where valuea “supports” valueb

means |valuea − valueb| <= d. If all the values are excluded, it throws an exception.

After that, it calculates the corrected local clock value by choosing the mean of those

manipulated values. Finally, the confidence value is computed similarly as in CNVA.

Figure 10 gives an example of the Fault-Tolerant Midpoint Algorithm (FTMA)

[47]. After value collection (quorum), the synchronizing node nodes excludes the

lowest k and highest k values, followed by excluding all the remaining values except

the lowest and highest ones, i.e. the inner values are further excluded. If all the values

are excluded, it throws an exception3. After that, it calculates the corrected local clock

value by choosing the mean of those two remaining values. There is no confidence

value computed in this case, there are only two values that are collated, and hence

3Note that, unlike the CNVA and FCA algorithms, the FTMA algorithm will exclude a number of ballots that does
not depend on the values involved, but rather only on the number of ballots and k. Thus, the exception here is to catch
a programmer error.

19

policy FTAA (k) {
quorum (all)

throw QUORUM TIMEOUT if (elapsed time > 1000)
exclusion (lowest (k))
exclusion (highest (k))

throw NOTHING LEFT if (pct excluded total = 100.0)
collation (mean)
confidence (pct remaining total/100.0)

}

Figure 11: FTAA Clock Synchronization Algorithm in VDL

there is no obvious generic confidence function, though many are possible.

Figure 11 gives an example of Fault-Tolerant Average Algorithm (FTAA) [43].

This algorithm is similar to FTMA except that instead of further excluding inner values

and only using two remaining ones to compute the mean, the FTAA computes the

mean using all the remaining values without further exclusion. The confidence value

of FTAA is computed according to how many values originally collected are excluded.

6 Implementation

6.1 VVM System Elements

Figure 12 shows the elements of VVM system. In this figure, single lines denote

runtime interactions between system elements; dashed lines denote the actual voting

process, which is described in Section 3.2. There are two major components in VVM,

Voter Core and Voter Manager. Together with other system specific components, i.e.

WPMessageHelper (which stands for Wire Protocol Message Helper) and IDL Com-

piling Tools, they consist a general, portable, and adpatable voting middleware system.

The Policy object connects the Voter Core and the Voter Manager. It has to be portable,

which will be further discussed in Section 6.2.

The VSS (Voter Status Service) and IR2LUT (Interface Repository to Lookup Ta-

ble) components are implemented in a previous version of VVM. The description can

be found in [30] and will not be discussed further in this paper.

Please note that Figure 12 does not distinguish between local message passing and

remote message tranmission. This is because the VoterCore and Client/ClientProxy

20

(Server/ServerProxy) can be either on the same or different machines.

Figure 12: VVM 2.0 System Architecture and Main Message Flow

6.2 Portable Policy Structure

Adaptive voting requires the behavior of Voter Core be controled by the Voter Manager

at runtime. In the VVM system, the adaptive control information is represented by a

a Policy object, which is generated from a piece of VDL code by the VDL Compiler.

Figure 13 gives the internal structure of such an object. Policy Header contains the

descriptional information, i.e. the table length and version number. The rest of the

Policy object consists of a list of tables.

One important feature of the Policy object is portability. Since the manager and

core can be running on separate machines, it is critical that the core interprets the

voting policy the same way as the manager wants it to. In Figure 13, there are seven

tables , which altogether serve as a portable representation of a voting algorithm. The

21

Figure 13: Policy Structure

first four tables, i.e., Condition Variable Table, Constant Table, Parameter Table and

String Table, are the Data Tables. They contain the data that are used by other tables.

The three remaining tables, i.e., Expression Table, Operation Table and Program Table,

are the Control Tables. They contain the instructions, representing the voting policy.

One simple voting policy example can be found in Figure 15. The according Data

Tables and Control Tables can be found in Figure 16 and Figure 17 respectively. A

detailed description on the format of each table is given in [31].

Figure 14: A Simple Voting Policy in VDL

6.3 Voter Manager, Voter Core and Adaptive Voting

The Voter Manager consists of two main modules: the Policy Adaptor and the VDL

Compiler. The Policy Adaptor adaptively changes the Policy of the Voter Core, while

the VDL Compiler parses and tranform a VDL file into a Policy object. The Voter Core

22

policy simple policy 0 (long a) {
quorum (until(60%))

throw TIMEOUT if (elapsed time > 500)
exclusion lowest (a)

goto quorum (using (until (10%)) more) if (pct excluded total > 10)
collation (mean)
confidence (pct remaining total/100.0)

}

Figure 15: A Simple Voting Policy in VDL

Figure 16: A Simple Voting Policy Structure (1) - Data Tables

Condition Variable Table VALUE
[0] (value of elapsed time)
[1] (value of pct remaining total)
[2] (value of num remaining total)
[3] (value of pct excluded total)
[4] (value of num excluded total)
[5] (value of ballots total)
[6] (value of ballots max)

Constant Table VALUE
[100] 0.50
[101] 600.0
[102] 0.10
[103] 10.0
[104] 100.0

Parameter Table NAME TYPE VALUE
[200] “a” LONG (value filled in at run time)

String Table VALUE
[300] “simple policy 0”
[301] “TIMEOUT”

Table 4: A Simple Voting Policy Structure (1) - Data Tables (w/ default size of each table equals
100)

23

Figure 17: A Simple Voting Policy Structure (2) - Control Tables

Expression Table OPERATION OPRAND1 OPRAND2
[400] > [0] [101]
[401] - - -
[402] > [7] [102]
[403] - - -
[404] / [3] [104]
[405] - - -

Operation Table PRIMITIVE OPRAND1 OPRAND2 OPRAND3
[500] UNTIL [100] - -
[501] EXCEPTION [301] - -
[502] LOWEST [200] - -
[503] UNTIL [102] - -
[504] MORE - - -
[505] MEAN - - -
[506] CONFIDENCE [404] - -

Program Table OPERATION TYPE OPERATION TRUE NEXT FALSE NEXT
[600] PROG BEGIN - [601] -
[601] NON CONDI [500] [602] -
[602] [400] [501] [608] [603]
[603] NON CONDI [502] [604] -
[604] [402] [503] [605] [606]
[605] NON CONDI [504] [608] -
[606] NON CONDI [505] [607] -
[607] NON CONDI [506] [608] -
[608] PROG END - - -

Table 5: A Simple Voting Policy Structure (2) - Control Tables (w/ default size of each table equals
100)

24

also consists of two main modules: the Policy Interpreter and the Vote Information

Table. The Policy Interpreter interprets the Policy and performs the actual voting

process, while the Vote Information Table maintains the storage of all the unmarshaled

ballots, history and voting results.

Adaptive voting in VVM is implemented by the Voter Manager updating the Policy

object of the Voter Core at runtime. The manager has both interactive and automatic

policy updating interfaces. The user of the system can force the manager to update a

new policy by using the interactive updating interface. He/she can also specify a list of

system conditions for the manager to watch. Once those conditions are satisfied, the

manager will update the policy through automatic interface, without the interaction

with user.

In the current VVM system, the manager uses push to update the policy. When the

manager tries to update the policy, the core may have a vote which is currently being

processed. For example, the voter core may wait in the quorum state for some vote

when a new Policy object is received. It will be ambiguous if the policy of the current

vote be updated. Therefore, the new policy can only affect the votes that “happen”

after it is received at the core.

6.4 VVM Development Environment

The VVM Development Environment is the a set of standalone tools used to facilitate

the VVM system. It currently contains the WPMessageHelper and the IDL Compiling

Tools.

The WPMessageHelper is an assistant component to the Voter Core. It contains the

Wire Protocol Message format information and does the Unmarshal/Marshal work.

The VVM system allows application specific wire protocol to be used to transfer bal-

lots. Therefore, to have a separate WPMessageHelper in the VVM instead of inte-

grating it in the core is important. In some application settings, the Voter Core may

reside in the CORBA ORB. In this case, the WPMessageHelper is bypassed and the

Unmarshal/Marshal in the CORBA ORB will be used.

In order to unmarshal/marshal the ballots, the WPMessageHelper has to know the

25

function signature for correctly interpreting parameter/return types. A lookup table

constaining the interface name, function name, direction (REQUEST/REPLY), and

type signatures is generated for this purpose by IDL2LUT (IDL to Look-Up Table)

tool, which is part of the IDL Compiling Tools. A simple IDL to lookup table mapping

example is given in Figure 18.

Figure 18: IDL to Lookup Table Mapping

Please note that in current VVM system, only function definitions and three data

types in IDL (void, long and float) are supported by IDL2LUT. More data types and

IDL features will be supported in the future.

The CORBA Interface Repository provides dynamic, run-time access to interface

metadata, which can be used to generate Lookup table. A separate tool, IR2LUT, will

also be integrated in the VVM environment.

Another tool, IDL2PROXY (IDL to Proxy generator), is used to generate Client-

Proxy/ServerProxy. It is also part of the IDL Compiling Tools.

26

interface grad student {
float doing thesis(inout long pages, in float time);
void doing project(out long lines);

};
interface professor {

void enjoying vacation(inout float time);
long pizza meeting(inout long pizzano, out float calories);

};
Interface Name Method Name Direction Parameter List
grad student doing thesis request {long, float}
grad student doing thesis reply {float, long}
grad student doing project request { }
grad student doing project reply {void, long}
professor enjoying vacation request {float}
professor enjoying vacation reply {void,float}
professor pizza meeting request {long}
professor pizza meeting reply {long,long,float}

Table 6: IDL to Lookup Table Mapping

7 Performance

DAVEDO: Dave will provide this section

Description: The performance measurement was done on a server machine equipped

with 4 Intel Xeon processors (3.2GHz each) and 4GB RAM. It runs Red Hat Enterprise

Linux AS release 4 (2.6.9-55.ELsmp). The voting policy used is quorum until(100%)

exclusion lowest (1) collation mean. The results are the average of 10 runs. All the

parameters are float point values.

“P” in Table 7 stands for the number of parameters to vote on. “S” in Table 7 and

Figure 19 stands for the number of server replicas. The “Unmarshal” time measured

in Table 7 is the total time of unmarshalling all the ballots, while the “Process” time

meaured in the same table is the time of exclusion and collation. The “Total” time

measured in Figure 19 is the total time of unmarshal, process and marshal time in

Table 7. In other words, it is the actual time spent by the VoterCore on computing, not

including the time spent on waiting for enough ballots to come (quorum time).

8 Discussion

DAVEDO: Dave will provide part of this section

27

- - P=1 P=2 P=3 P=4 P=5
S=3 Unmarshal 14.9 14.6 15.3 16.0 15.8

Process 10.9 13.2 15.5 17.8 20.0
Marshal 2.1 2.1 2.7 2.1 1.9

S=5 Unmarshal 22.3 22.8 24.6 24.2 23.8
Process 12.2 15.2 18.7 20.5 29.9
Marshal 1.8 2.1 2.2 2.2 2.3

S=7 Unmarshal 21.6 28.5 30.4 29.1 32.5
Process 12.8 17.1 19.6 22.1 24.6
Marshal 2.1 2.0 2.0 2.5 1.9

S=9 Unmarshal 37.9 36.2 38.0 37.6 38.9
Process 13.2 15.9 20.6 24.2 29.3
Marshal 1.7 1.7 1.8 2.1 2.0

S=11 Unmarshal 46.1 46.1 48.1 43.6 49.0
Process 13.8 17.6 21.7 25.1 28.2
Marshal 1.9 1.9 2.1 2.1 2.1

S=13 Unmarshal 53.9 52.7 51.3 53.8 51.9
Process 14.3 18.9 22.6 26.6 31.1
Marshal 2.1 2.0 2.0 2.2 2.0

S=15 Unmarshal 56.5 53.0 57.8 57.5 55.9
Process 14.8 21.9 26.0 30.8 34.7
Marshal 2.0 2.0 2.5 2.0 2.5

Table 7: VoterCore Categorized Running Time (unit: 10
−6 second)

�
���
���
���
� �
���
�	�

��
�	�
�	�

�
�	�

� � � � �
��������������������� �����"! �#� $%!&�('"�"! �)��*

+ ,- ./
0 ,/
.
- ,- 1
2 /
34
-5 6
.
7 6
5 8/
,
9.8
,
4:
;

<�=��
<�=��
<�=�

<�=	�
<�=#�	�
<�=#�>�
<�=#�>�

Figure 19: VoterCore Total Running Time

28

8.1 VDL and VVM versus Java for Voting Policies

DAVEDO: Dave will provide this section

An obvious and fair question is why bother with a separate voting langauge such

as VDL, instead of just allowing Java code to be uploaded for a given voting policy.

In other words, is VDL just a middleware version of “syntactic sugar?”

Less delicately, while VDL may (or may not) be considered clever, is it just some-

thing that late night talk show host David Letterman might call “stupid middlware

tricks?”

There are two main reasons the answer is “no” and VDL has its place. First, it

is much easier to read and be able to understand what a voting policy is going to

do, which aids reuse. Second, having a separate VDL allows the possibility of doing

offline analysis of the VDL to ascertain what tradeoffs a given policy offers in for ex-

ample precision/correctness versus performance. This manageability allows for both

adaptive voting and transparent voting, and thus beneficially pushes much complexity

away from the client and the middleware. Such manageability is one area of research

we are beginning.

8.2 Branching and “Goto” Primitive

Branching happens when the internal state of voter core chang Exclusion to Quorum,

or Collation to Exclusion, or Collation to Quorum. As described in Section 4 and

Section 3.2, branching is important for voting optimization. Under the assumption

that the system will run under normal condition (nothing “bad” happens) in most of

the time, branching can save a lot of time when performing voting.

In current VVM system and VDL, branching is implemented by “goto” primitive

in both exclusion and collation. However, one of the lesson we learn from the de-

velopment of VVM is that this solution really adds much complexity to the Policy

structure, VDL compiler and policy interpreter. Firstly, in order to support the “goto”

statement, we have to keep a Java Bytecode like format of Policy structure. A much

simpler structure, which just contains a sequential list of the primitives that are used

in each state, cannot be applied. Secondly, the VDL compiler has to spend extra time

29

on deciding the destination of the “goto” statement and filling it in the Policy object.

Finally, the policy interpreter has to retain extra history information in order to support

runtime “goto”.

Moreover, “goto” primitive can cause potential “deadloop” problem if the VDL

programmer is not careful enough, which adds the complexity of voting algorithm

design.

We are now exploring using function calls inside voting policy to replace the “goto”

primitive.

8.3 Voting on Non-Basic Types

NOTE: copied from TR

So far the VDL presented allows voting on basic types such as based on integer

or floating point numbers. In some cases, however, it is useful to use the VVM to

vote on another basic type or on a user-defined abstract data type (ADT). These could

represent, for example, an application structure, an object’s state, or a string. We

also can use the same mechanism to vote on exceptions, which in many middleware

frameworks contain an ADT, though this requires some simple modifications to the

VVM which we have planned.

While it is in some cases desirable to vote on one, it is not inherently obvious

how to vote on an arbitrary ADT, or even one that it is given the declaration of. For

example, even given a description of its fields, there are many design choices that could

reasonably be made multiple ways, and some ADTs would have no obvious ways to

vote on.

However, it is still useful to be able to vote on them. To enable this, the VVM

allows programmers to tell it of ADTs as well as how they should be handled. The

developer must define the ADT in a CORBA IDL struct, then provide helper objects

for one of three ways we allow it to tell how to vote on the ADT; each involves imple-

menting a Java interface (recall the VVM is currently implemented in Java, though

this could be generalized to a CORBA interface).

The first way is fairly simple: the helper object maps between the ADT and a

30

CORBA double. Clearly not all ADTs will have an intuitive mapping between them

and doubles, but for those that do this provides a very simple way to use their ADT

with the VVM. The second way is implementing Java comparable interface for a

child class of the ADT — which alows for testing of lesser, equal, or greater — plus

providing method bodies for the few operations such as mean and mean neighbor

(which are described below) that do not make sense by comparing alone. The third

way is to implement a method for all of the primitives that the VVM supports.

Besides providing the helper object for the voter core by one of these three tech-

niques, the developer must also provide a helper object to marshal and unmarshall the

struct; we later plan on automating this with an IDL compliler. Finally, the developer

must fill in a configuration table noting the ADT’s interface name, which one of the

three porting techniques was chosen, and the classes of the helper objects.

8.4 Multi-parameter Voting

The VVM system and VDL presented in this paper also support multi-parameter

voting. In multi-parameter voting, each ballot contains more than one datum, and all

of them will participate in the voting process. In real life, multi-parameter voting is

extremely useful in building data fusion applications, where there is a high chance that

the server may returns more than one single value at a time. Multi-parameter voting

can also be used to implement voting on non-basic data types. For example, it is well

suitable to use multi-parameter voting technique to implement voting on a complex

structure, if it consists of only a list of basic data types.

There are two basic problems of supporting multi-parameter voting. The first one

is how to exclude “bad”4 values. There are two approaches which can be applied

here. The first one is call the “value” based approach, which means if a “bad” value is

detected, only this value is excluded, other values in the same ballot will still be kept.

Another approach is the “ballot” based approach, which means if a value in a ballots

is detected to be “bad”, the whole ballot will be excluded. This approach may be

more suitable to fault-tolerant system designers in that if something goes wrong, more

4By “bad”, we mean those values that are specified in VDL to be excluded

31

likely the things that are coming together with it are wrong too. Both approaches can

be implemented on the same system structure. Currently the VVM system supports

the “value” based approach.

Another problem of supporting multi-parameter voting is how to use policies to

control the voting process. One simple approach is to use a single policy to control

the voting on all types of data, which is currently supported by VVM. This approach

simplifies making adaptive decision in the Voter Manager but lacks flexibility. An-

other approach is to specify different policy for each data type. For example, use “pol-

icy float” to vote on all the float point values and use “policy integer” to vote on all the

integer values. We define voting pattern to denote such association between policies

and data types. We are currently exploring formalization of this type of association.

More discussions and examples on multi-parameter voting are given in [31].

9 Related Work

NOTE: Copied from TR version of DSN paper. Some of the stuff should be cut in

order to save space

9.1 Synchronization Voting

Voting, in the most common technical use of the term, is a pessimistic strategy for

replica control that ensures that conflicting operations will not be executed concur-

rently. We denote this kind of voting synchronization voting. In this scheme, a suffi-

cient number of votes must be acquired from different replicas to ensure that a candi-

date operation does not conflict with another one in progress. The number of votes a

given operation requires to not conflict is application-dependent, and must be set by

the application programmer.

Synchronization voting was first proposed by Thomas of BBN in [48]. It was

generalized to weighted voting in [49], where different replicas are given a different

number of votes. There have been a number of generalizations of voting such as

dynamic voting [50], multi-dimensional voting [51], and voting with witnesses [52].

32

A recent and scalable example is Phalanx [53].

BBN’s Cronus (CORBA-like) middleware [54–56] has had replication with syn-

chronization voting support since the mid-1980s; Arjuna is a more recent system us-

ing such mechanisms [57–59]. Much experience was gained with voting applications

during this period in which Cronus was deployed widely in various military settings.

However, the experience with Cronus showed that synchronization voting as a general

mechanism was too difficult for the vast majority of programmers to use.

9.2 Collation Voting

For these reasons, much attention in recent years has turned to methods of replica

control such as active replication, which have the potential to be more application-

transparent. Active replication is another pessimistic strategy for replica control. It

uses voting in the sense of “collating,” or choosing one reply from among many. We

call this kind of voting collation voting. Synchronization voting preceded active repli-

cation, however. One early example of collation voting is given in [60]. The earli-

est example of collation voting is the SIFT (Software-Implemented Fault Tolerance)

project at SRI [61]. SIFT was designed for real-time aircraft control, and featured

eight processors running in loose synchrony on the order of 50 µsec. SIFT’s appli-

cation software is structured as a set of iterative tasks that are run at a frequency that

depends on its priority. Each task is executed in parallel on a number of independent

processors (on no more than on five of the eight processors), and the output of each

task is placed in a buffer. The buffers for each task replica are voted on with a ma-

jority vote (i.e., 3 of 5 or 2 of 3) in an “exact match basis,” and the voted buffer is

used for input to the next task to run. SIFT had no knowledge of the application-level

data types, and had fixed voting algorithms and was embedded in a a special-purpose

computer system. This is in contrast with the VVM, which is more generally usable

by different applications and middleware substrates.

Much work on active replication (and on other forms, such as passive replication)

was done by the Delta-4 project in Europe [62, 63]. However, replication support was

not provided in an application-transparent fashion, nor bundled in a package for use

33

with commercial software. The Rampart system extended active replication to tolerate

Byzantine failures [35,64], using Secure Agreement Protocols [65]. As such, it covers

a wider range of malicious faults than does the VVM. While details on the compar-

ison mechanisms are sketchy, it appears that they utilize byte-by-byte comparison of

network-level messages. It thus has the same limitations that current CORBA research

with active replication has, as does Delta-4; these are outlined below.

A number of recent projects have extended active replication to CORBA. These

systems include Orbix+Isis and Electra [66, 67], Eternal [68], AQuA [69]. These

systems all have the virtue of providing a high degree of (but not total) application

transparency and also of being useful with commercial middleware. However, they

all have a very limited form of voting: either only voting on a return value in server

reply, not on other parameters in a reply or on any parameters in a request; or doing a

naive byte-by-byte comparison of the marshaled parameter buffer. The Immune sys-

tem provides survivability to CORBA applications via active replication, voting, and

a secure multicast protocol [70]. Like Rampart [35, 64], it thus covers a wider range

of malicious faults than does the VVM. However, there are no details on the voting

design or implementation other than it votes on both requests and replies, and waits

for a majority “being identical in value;” We thus presume it employs byte-by-byte

voting on the marshalled parameter buffer.

9.3 N-Version Programming

Active replication (which uses synchronization voting) has been developed to mask

hardware failures of nodes and communication links. N-Version programming is a

technique used to mask software design faults [71, 72]. In this approach, N versions

of a module are independently developed from the same specification and executed on

separate (typically heterogeneous) nodes. The return value or “answer” from each is

collated using collation voting.

We note that N-Version programming suffers from the consistent comparison

problem [73], which limits its use in error detection due to the finite precision in

computer arithmetic. Here, two replicas can compute the same variable with slightly

34

different values, then take different branches after a comparison that tested against a

cutoff that was between the two values. This can of course result in the two replicas

diverging. We do not believe that the VVM — even if replicated and used to vote

in N-Version programs — suffers from the consistent comparison problem. It has

only one version of the code (though even with multiple versions it would not have a

problem, because it does not use floating point numbers in its control flow). So long

as the presentation coding layer (“unmarshal” below) preserves the ordering between

different floating point values across different architectures — a property that every

encoding we know of does – then the VVM will work properly, even if its replicas

are N-Version. Indeed, the VVM can be used to detect that an application replica has

suffered from the consistent comparison problem and diverged, as well as detecting

one that has performed a nondeterministic action (that the other replicas did not) and

diverged for this reason.

9.4 Voting Algorithms

Theoretical work on voting dates back more than fifteen years. Section 5 provides

details of some of the major work in this field, including various clock synchronization

and other algorithms which VDL can express.

There are some algorithms which VDL and VVM cannot presently express, though

when we extend VDL to cover voting on multiple parameters we hope to cover many of

these. These include distance agreement protocols and distance decision [74], which

involve voting in multi-dimensional space; the generalization of commonly used vot-

ing techniques such as Formalized Majority Voter, Generalized Median Voter, etc.

in [75]; and the adjudicators and adjudication functions [76], which are generalized

concepts of voters and voting algorithms.

There are also several software systems that are well known for their implemen-

tation works of voting. One of them is the UCLA DEDIX [77] system, which is

a distributed testbed for multiple-version software. Another one is the fault-tolerant

avionics application of algorithm diversity described in [78].

Please note the research work described in this thesis is not a theoretical attempt

35

to provide a generalized voting service or notation that strives to express all possible

voting algorithms. Rather, it is a pragmatic effort to create an embeddable middleware

voting component. Certainly we have tried to make VDL be as general as possible

— and it covers much of the space of voting algorithms in the literature, as discussed

in [30] — but covering the entire space is not one of its goals.

10 Conclusions

DAVEDO: Dave will provide this section

References

[1] T. Anderson, M. Dahlin, J. Neefe, D. Pat-terson, D. Roselli, and R. Wang,

“Serverless network file systems,” in In Proceedings of the 15th Symposium

on Operating System Principles. ACM, (Copper Mountain Resort, Colorado),

pp. 109–126, December 1995.

[2] M. N. Nelson, Y. A. Khalidi, and P. W. Madany, “The Spring file system,” Tech.

Rep. SMLI TR–93–10, 1993.

[3] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon, “Design and

implementation of the Sun Network Filesystem,” in Proc. Summer 1985 USENIX

Conf., (Portland OR (USA)), pp. 119–130, 1985.

[4] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki, E. H. Siegel, and

D. C. Steere, “Coda: A highly available file system for a distributed workstation

environment,” IEEE Transactions on Computers, vol. 39, no. 4, pp. 447–459,

1990.

[5] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R. Douceur,

J. Howell, J. R. Lorch, M. Theimer, and R. P. Wattenhofer, “Farsite: Federated,

available, and reliable storage for an incompletely trusted environment,” in Pro-

ceedings of 5th Symposium on Operating Systems Design and Implementation

(OSDI), 2002.

36

[6] W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer, “Feasibility of a serverless

distributed file system deployed on an existing set of desktop pcs,” in Proceed-

ings of the International Conference on Measurement and Modeling of Computer

Systems (SIGMETRICS), 2000.

[7] J. R. Douceur and R. P. Wattenhofer, “Large-scale simulation of replica place-

ment algorithms for a serverless distributed file system,” in 9th International

Symposium on Modeling, Analysis and Simulation of Computer and Telecommu-

nication Systems (MASCOTS), 2001.

[8] A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen, “Ivy: A read/write peer-

to-peer file system,” in Proceedings of 5th Symposium on Operating Systems

Design and Implementation (OSDI), 2002.

[9] J. Gwertzman and M. I. Seltzer, “World wide web cache consistency,” in USENIX

Annual Technical Conference, pp. 141–152, 1996.

[10] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F. Schwartz, and K. J. Worrell,

“A hierarchical internet object cache,” in USENIX Annual Technical Conference,

pp. 153–164, 1996.

[11] P. Cao and C. Liu, “Maintaining strong cache consistency in the world wide

web,” IEEE Transactions on Computers, vol. 47, no. 4, pp. 445–457, 1998.

[12] OMG, “The omg homepage: http://www.omg.org,” Feb 26 2006.

[13] CORBA, “The corba homepage: http://www.corba.com,” Dec 2 2006.

[14] D. McKinnon, O. Haugan, T. Damania, K. Dorow, W. Lawrence, and D. Bakken,

“A configurable middleware framework with multiple quality of service proper-

ties for small embedded systems,” in Technical Report, WSU, TR-2002-37, 2002.

[15] P. Narasimhan, L. Moser, and P. Melliar-Smith, “State synchronization and re-

covery for strongly consistent replicated corba objects,” in Proceedings of the

IEEE Int. Conf. on Dependable Systems and Networks (DSN), 2001.

[16] A. Arora, G. Leon, and S. Wallace, “The corba replication service,” As in Feb

26, 2006.

37

[17] J. Adamec, M. Grf, J. Kleindienst, F. Plsil, and P. Turingma, “Supporting inter-

operability in corba via object services,” Feb 26 2006.

[18] B. Liskov, M. Castro, L. Shrira, and A. Adya, “Providing persistent objects in

distributed systems,” Lecture Notes in Computer Science, vol. 1628, 1999.

[19] A. D. Joseph, A. F. deLespinasse, J. A. Tauber, D. K. G. ord, and M. F. Kaashoek,

“Rover: A toolkit for mobile information access,” in the 15th ACM Symposium

on Operating Systems Principles, pp. 156–171, 1995.

[20] D. B. Terry, M. M. Theimer, K. Peterson, A. J.Demers, M. J. Spreitzer, and

C. H. Hauser, “Managing update conflicts in bayou, a weakly connected repli-

cated storage system,” in Proceedings of the 15th ACM SOSP, 1995.

[21] Kazza, “The kazza homepage: http://www.kazza.com,” Nov 12 2006.

[22] Napster, “The napster homepage: http://www.napster.com,” Nov 12 2006.

[23] Gnutella, “The gnutella homepage: http://www.gnutella.com,” Nov 12 2006.

[24] J. Kangasharju, K. Ross, and D. Turner, “Secure and resilient peer-to-peer e-mail:

Design and implementation,” in Proceedings of IEEE International Conference

on P2P Computing, 2003., 2003.

[25] Clip2, “The gnutella protocol specification v0.4 document revision 1.2,”

http://www9.limewire.com/developer/gnutella protocol 0.4.pdf.

[26] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, “Freenet: A distributed anony-

mous information storage and retrieval system,” Lecture Notes in Computer Sci-

ence, vol. 2009, pp. 46+, 2001.

[27] S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao, H. Weatherspoon, and J. Kubia-

towicz, “Maintenance-free global data storage,” IEEE Internet Computing 5(5),

40-49., 2001.

[28] A. I. T. Rowstron and P. Druschel, “Storage management and caching in PAST,

a large-scale, persistent peer-to-peer storage utility,” in Symposium on Operating

Systems Principles (SOSP), pp. 188–201, 2001.

38

[29] D. Bakken, D. Karr, C. Jones, and J. Hale, “The voting virtual machine: A flex-

ible mechanism for collating replicated client requests and server replies,” in

FTCS-29 FastAbstract Proceedings, IEEE, (Madison, WI), June 1999.

[30] C. C. Jones, “The voting virtual machine: Voting support for distributed sys-

tems,” Master’s thesis, School of Electrical Engineering and Computer Science,

Washington State University, May 2000.

[31] Z. Zhan, “Adaptive voting and data fusion in middleware,” Master’s thesis,

School of Electrical Engineering and Computer Science, Washington State Uni-

versity, June 2001.

[32] D. E. Bakken, Z. Zhan, and C. C. J. andDavid A. Karr, “Middleware support

for voting and data fusion,” in Proceedings of the International Conference on

Dependable Systems and Networks (DSN2001), IEEE, June 2001.

[33] R. Schantz, J. Zinky, D. Karr, D. Bakken, J. Megquier, and J. Joyall, “An object-

level gateway supporting integrated-property quality of service,” in Proceedings

of the Second IEEE International Symposium on Object-Oriented Real-Time Dis-

tributed Computing, 1999.

[34] M. Chereque, D. Powell, P. Reynier, J. Richier, and J. Voiron, “Active replication

in Delta-4,” in Proceedings of the Twenty-Second International Symposium on

Fault-Tolerant Computing, pp. 28–37, 1992.

[35] M. Reiter, “The Rampart toolkit for building high-integrity services,” Theory and

Practice in Distributed Systems, pp. 99–110, 1995. (Lecture Notes in Computer

Science 938.).

[36] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in Proceedings of

the Third Symposium on Operating Systems Design and Implementation, ACM,

February 1999.

[37] J. Zinky, D. Bakken, and R. Schantz, “Architectural support for quality of service

for CORBA objects,” Theory and Practice of Object Systems (Special Issue on

CORBA and OMG), vol. 3, April 1997.

39

[38] J. Loyall, D. Bakken, R. Schantz, J. Zinky, D. Karr, and R. Vanegas, “QoS aspect

languages and their runtime interactions in languages, compilers, and run-time

systems for scalable computers,” in Letcure Notes in Computer Science 1511

(O. David, ed.), Springer-Verlag, 1998.

[39] M. J. Pfluegl and D. M. Blough, “A new and improved algorithm for fault-tolerant

clock synchronization,” Journal of Parallel and Distributed Computing, vol. 27,

pp. 1–14, 1995.

[40] H. Kopetz and W. Ochsenreiter, “Clock synchronization in distributed real-time

systems,” IEEE Trans. Comput., vol. C-36, pp. 933–940, August 1987.

[41] P. Ramanathan, K. Shin, and R. Butler, “Fault-tolerant clock synchronization in

distributed systems,” Computer, vol. 23, pp. 33–42, October 1990.

[42] P. Ramanathan, D. Kandlur, and K. Shin, “Hardware-assisted software clock

synchronization for homogeneous distributed systems,” IEEE Trans. Comput.,

vol. 39, pp. 514–524, April 1990.

[43] J. Lundelius-Welch and N. Lynch, “A new fault-tolerant algorithm for clock syn-

chronization,” Inform. and Comput., vol. 77, pp. 1–36, April 1988.

[44] P. Thambidurai, A. Finn, R. Kieckhafer, and C. Walter, “Clock synchronization

in MAFT,” Digest of 19th International Fault-Tolerant Computing Symposium,

pp. 142–149, 1989.

[45] L. Lamport and P. M. Melliar-Smith, “Synchronizing clocks in the presence of

faults,” J. Assoc. Comput. Mach., vol. 21, pp. 52–78, January 1985.

[46] S. Mahaney and F. Schneider, “Inexact agreement: Accuracy, precision, and

graceful degradation,” in Proc. 4th ACM SIGACT-SIGOPS Symposium, Princi-

ples in Distributed Computing, pp. 237–249, 1985.

[47] D. Dolev, N. Lynch, S. Pinter, E. Stark, and W. Weihl, “Reaching approximate

agreement in the presence of faults,” J. Assoc. Comput. Mach., vol. 33, pp. 499–

516, June 1986.

40

[48] R. Thomas, “A majority consensus approach to concurrency control for multiple

copy databases,” ACM Transactions on Database Systems, vol. 4, pp. 180–209,

June 1979.

[49] D. Gifford, “Weighted voting for replicated data,” in Proceedings of the Seventh

ACM Symposium on Operating Sysetms Principles, pp. 150–159, 1979.

[50] D. Davcev, “A dynamic voting scheme in distributed systems,” IEEE Transac-

tions on Software Engineering, vol. 15, pp. 93–97, Jan. 1989.

[51] S. Cheung, M. Ahamad, and M. Ammar, “Mulit-dimensional voting: A general

method for implementing synchronization in distributed systems,” in Proceed-

ings of the Tenth International Conference on Distributed Systems, pp. 362–369,

1990.

[52] J. Paris, “Voting with witness: A consistency scheme for replicated files,” in Pro-

ceedings of the Sixth International Conference on Distributed Computing Sys-

tems, IEEE, pp. 606–612, 1986.

[53] D. Malkhi and M. Reiter, “An architecture for survivable coordination in large

distributed systems,” IEEE Transactions on Knowledge and Data Engineering,

1999.

[54] BBN, “Cronus system/subsystem specification,” Tech. Rep. 5884, BBN Systems

and Technologies, 1981.

[55] R. Gurwitz, M. Dean, and R. Schantz, “Programming support in the Cronus dis-

tributed operating system,” in Proceedings of the Sixth International Conference

on Distributed Computing Systems, May 1986.

[56] R. Schantz, R. Thomas, and G. Bono, “The architecture of the Cronus distributed

operating system,” in Proceedings of the Sixth International Conference on Dis-

tributed Computing System, May 1986.

[57] M. Little and S. Shrivastava, “Using appilcation specific knowledge for config-

uring object replicas,” in Proceedings of the Third International Conference on

Configurable Distributed Systems, pp. 136–143, 1996.

41

[58] A. Team, “The Arjuna system programmer’s guide: Public release 3.0,” tech.

rep., Department of Computing Science, University of Newcastle UponTyne,

1994. http://arjuna.ncl.ac.uk.

[59] M. Little and D. McCue, “The replica management sytem: A scheme for flexible

and dynamic repilcation,” in Proceedings of the Second International Workshop

on Configurable Distributed Systems, March 1994.

[60] G. York, D. Siewiorck, and Z. Segall, “Software voting in asynchronous NMR

computer structures,” Tech. Rep. CMU CS 83 128, Carnegie-Mellon University,

Department of Computer Science, 1983.

[61] J. Wensley, L. Lamport, J. Goldberg, M. Green, K. Levitt, P. Melliar-Smith,

R. Shostak, and C. Weinstock, “SIFT: Design and analysis of a fault-tolerant

computer for aircraft control,” Proceedings of the IEEE, vol. 66, pp. 1240–1255,

October 1978.

[62] D. Powell, “Delta-4: A generic architecture for dependable distributed comput-

ing,” in ESPRIT Research Report, vol. 1, Springer-Verlag, 1991.

[63] D. Powell, “Lessons learned from Delta-4,” IEEE Micro, vol. 14, no. 4, pp. 36–

47, 1994.

[64] M. Reiter and K. Birman, “How to securely replicate services,” ACM Trans-

actions on Programming Languages and Systems, vol. 16, pp. 986–1009, May

1994.

[65] M. Reiter, “A secure group membership protocol,” IEEE Transactions on Soft-

ware Engineering, vol. 22, pp. 31–42, January 1996.

[66] S. Maffeis, Run-Time Support for Object-Oriented Distributed Systems with

CORBA. PhD thesis, University of Zurich, 1995.

[67] S. Landis and S. Maffeis, “Building reliable distributed systems with CORBA,”

Theory and Practice of Object Systems, vol. 3, no. 1, pp. 31–43, 1997.

[68] L. Moser, P. Mellior-Smith, and P. Narasimhan, “Consistent object replication in

the Eternal system,” Theory and Practice of Object Systems, vol. 4, no. 2, 1998.

42

[69] M. Cukier, J. Ren, C. Sabnis, D. Henke, J. Pistole, W. Sanders, D. Bakken,

M. Berman, D. Karr, and R. Schantz, “AQuA: An adaptive architecture that pro-

vides dependable distributed objects,” in Proceedings of the Seventeenth Sym-

posium on Reliable Distributed Systems (SRDS-17, IEEE, (West Lafayette, IN),

October 1998.

[70] P. Narasimhan, K. Kihlstrom, L. Moser, and P. Mellior-Smith, “Providing support

for survivable CORBA applications with the Immune system,” in Proceedings

of the Nineteenth International Conference on Distributed Systems, IEEE, May

1999.

[71] L. Chen and A. Avizienis, “N-version programming: A fault-tolerance approach

to reliability of software operations,” in Proceedings of the 8th International Sym-

posium on Fault-Tolerance Computing Systems (FTCS-8), IEEE, pp. 3–9, 1978.

[72] A. Avizienis, “The N-version approach to fault-tolerant software,” IEEE Trans-

actions on Software Engineering, vol. 11, pp. 1491–1501, Dec. 1985.

[73] J. Brilliant, J. Knight, and N. Leveson, “The consistent comparison problem

in N-version software,” IEEE Transactions on Software Engineering, vol. 15,

pp. 1481–1485, Nov. 1989.

[74] K. Echtle, “Distance agreement protocols,” in Proceedings of the Nineteenth An-

nual International Symposium on Fault-Tolerant Computing, pp. 191–198, 1989.

[75] P. R. Lorczak, A. K. Caglayan, and D. E. Eckhardt, “A theoretical investigation

of generalized voters for redundant systems,” in Proc. 19th IEEE Int. Symp. on

Fault-Tolerant Computing, pp. 444–451, 1989.

[76] F. D. Giandomenico and L. Strigini, “Adjudicators for diverse-redundant compo-

nents,” in Proc. IEEE 9th Symposium on Reliable Distributed Systems, pp. 114–

123, 1990.

[77] A. Avizienis, P. Gunningberg, J. Kelly, L. Strigini, P. Traverse, K. Tso, and U. Vo-

ges, “The UCLA DEDIX system: A distributed testbed for multiple-version soft-

ware,” Digest of 15th Annual International Symposium on Fault-Tolerant Com-

puting, pp. 126–134, June 1985.

43

[78] A. K. Caglayan, P. R. Lorczak, and D. E. Eckhardt, “An experimental investiga-

tion of software diversity in a fault-tolerant avionics application,” in Proceedings

of Symposium on Reliable Distributed Systems, pp. 63–70, 1988.

44

Contents

1 Introduction 2

2 Limitations of Current Voting Schemes 3

2.1 Data Sharing in Distributed Systems 3

2.1.1 Distributed File Systems: . 3

2.1.2 World Wide Web: . 4

2.1.3 Distributed Objects: . 5

2.1.4 Peer-to-peer Information Sharing: 6

3 Voting Virtual Machine Architecture 6

3.1 Overview . 6

3.2 Basic Voter Functionality . 8

3.3 Advanced Voter Functionality . 9

3.4 Failure Model . 10

4 Voting Definition Language (VDL) 11

4.1 VDL Syntax . 11

4.2 VDL Primitives . 13

4.3 Confidence Values . 14

5 VDL Examples 15

5.1 Supermajority . 15

5.2 Parameterized Supermajority . 16

5.3 Fault-Tolerant Clocks . 18

6 Implementation 20

6.1 VVM System Elements . 20

6.2 Portable Policy Structure . 21

6.3 Voter Manager, Voter Core and Adaptive Voting 22

6.4 VVM Development Environment . 25

7 Performance 27

45

8 Discussion 27

8.1 VDL and VVM versus Java for Voting Policies 29

8.2 Branching and “Goto” Primitive . 29

8.3 Voting on Non-Basic Types . 30

8.4 Multi-parameter Voting . 31

9 Related Work 32

9.1 Synchronization Voting . 32

9.2 Collation Voting . 33

9.3 N-Version Programming . 34

9.4 Voting Algorithms . 35

10 Conclusions 36

46

List of Figures

1 VVM Stack . 7

2 VVM Architecture . 8

3 States in the Voter Core . 9

4 VDL Syntax . 11

5 Supermajority Voting Algorithm in VDL 16

6 VDL Built In Types for Parameterization 17

7 Parameterized Supermajority Voting Algorithm in VDL 17

8 CNVA Clock Synchronization Algorithm in VDL 18

9 FCA Clock Synchronization Algorithm in VDL 19

10 FTMA Clock Synchronization Algorithms in VDL 19

11 FTAA Clock Synchronization Algorithm in VDL 20

12 VVM 2.0 System Architecture and Main Message Flow 21

13 Policy Structure . 22

14 A Simple Voting Policy in VDL . 22

15 A Simple Voting Policy in VDL . 23

16 A Simple Voting Policy Structure (1) - Data Tables 23

17 A Simple Voting Policy Structure (2) - Control Tables 24

18 IDL to Lookup Table Mapping . 26

19 VoterCore Total Running Time . 28

47

List of Tables

1 VDL Condition Variables . 12

2 VDL Primitives . 13

3 VDL Exclusion Primitives with Examples 14

4 A Simple Voting Policy Structure (1) - Data Tables (w/ default size of

each table equals 100) . 23

5 A Simple Voting Policy Structure (2) - Control Tables (w/ default size

of each table equals 100) . 24

6 IDL to Lookup Table Mapping . 27

7 VoterCore Categorized Running Time (unit: 10
−6 second) 28

48

