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Abstract

Despite a dramatic growth of power consumption in
households, less attention has been paid to monitoring,
analyzing and predicting energy usage. In this paper,
we propose a framework to mine raw energy data by
transforming time series energy data into a symbol se-
quence, and then extend a suffix tree data structure as
an efficient representation to analyze global structural
patterns. Then, we use a clustering algorithm to detect
energy pattern outliers which are far from their cluster
centroids. To validate our approach, we use real power
data collected from a smart apartment testbed during
two months.

Introduction
In smart environment research, most of the effort has been
directed towards activity recognition with applications in
health monitoring. Energy consumption is an aspect of home
life that is often overlooked. This oversight is detrimental.
Between 1973 and 2004, energy consumption increased at a
higher rate than the population growth (Pérez-Lombard, Or-
tiz, and Pout 2008). This growth is not entirely due to man-
ufacturing plants and automobiles. In fact, households are
responsible for over 40% of energy usage in most countries
(Pérez-Lombard, Ortiz, and Pout 2008). As a result, there is
an urgent need to develop technologies that examine energy
usage in homes and to encourage energy efficient behaviors,
in addition to energy efficient devices in households.

Earlier studies have shown that home residents reduce en-
ergy expenditure by 5-15% on average just as a response to
acquiring and viewing raw usage data (Darby 2006). Tra-
ditional power meters provide only basic consumption data
such as current power usage and killowatt hour. There is a
clear need for improving householders’ working knowledge
of their behaviors and energy consumption. Pervasive com-
puting techniques can improve the quality of information
supplied to users by identifying usage trends and anoma-
lies, and providing users with suggestions about how to save
energy and conserve natural resources.

We hypothesize that providing users with behavior-based
knowledge of energy consumption, suggestions for energy
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reduction, and automation support will result in more sub-
stantial decreases in overall consumption. This view is sup-
ported by an increasing body of work that links awareness
of energy consumption and its impact to behavioral change
(Darby 2010). In our work we propose to use smart homes
and pervasive computing techniques to provide these impor-
tant insights.The long-term vision for this project is to en-
hance understanding of human resource consumption and to
provide resource efficiency in smart homes. We hypothesize
that patterns and anomalies can be automatically detected
from energy consumption data and that these discoveries can
provide insights on behavioral patterns. The proposed sys-
tem preprocesses power data into a symbol sequence, then
discovers energy patterns using a suffix tree (Gusfield 1997).
The results of this work can be used to give residents feed-
back on energy consumption and also be used to remove
some erroneous energy records in the database.

This paper is organized as follows: Section 2 discusses
related work. Section 3 introduces our system architecture.
Sections 4-6 describe different modules in the system. Sec-
tion 7 presents the results of our experiments. A discussion
of the current approach and future work is given in Section
8.

Related Work
In this paper, we mainly focus on domains of energy re-
search. There are two domains of energy researches that are
related to our work: 1) non-intrusive appliance load moni-
toring, and 2) energy conservation services.

A non-intrusive appliance load monitor (Hart 1992) is de-
signed to detect the turning on and off of individual ap-
pliances in a electrical circuit. A few studies have focused
specifically on non-intrusive appliance detection. Kato et
al. (Kato et al. 2009) extracted features from power wave-
form by Linear Discriminant Analysis (LDA) and used sup-
port vector machines (SVM) to classify appliances. Gupta
et al. (Gupta, Reynolds, and Patel 2010) analyze frequency
electromagnetic interference (EMI) on the power line, and
then uses SVM to identify unique occurrences of switching
events.

With respect to energy conservation, some works focus
on providing energy information service and saving tips to
the residents. Google PowerMeter (Google 2010) is a free
energy monitoring tool for saving energy and money by pro-



viding energy information via smart meters and energy mon-
itoring devices. Microsoft Hohm (Microsoft 2010) is a web
service that can predict the energy distribution of the house
and suggest suitable energy saving tips to user. Our previous
work (Chen, Das, and Cook 2010) predicted energy con-
sumption based on sensor data collected and generated by
the residents in a smart home environment.

Table 1: Transaction Data vs. Energy Data
Transaction ID Items

1 {A,B,C,D,F,G,H}
2 {D,F,G,H}

Timestamp Power Value (Wattage)
2009-06-02 00:00:32 930
2009-06-02 00:00:38 471

Many approaches have been proposed for discovering se-
quential patterns in data. However, most of these methods
only consider source data to be in a transactional format.
In our smart environment, the energy data is numeric and
arrives in a continual stream. As shown in Table 1, each
transaction is identified by a unique transaction ID asso-
ciated with a set of items. In contrast, an energy reading
is composed of two attributes: a timestamp and a numeric
value, which is a continuous stream of sensor events over
time. To mine energy sensor data, we use the equal-width
binning method (Liu et al. 2002) to discretize the energy
readings into the symbol sequence, which can be applied as
a sequence pattern mining method. To the best of our knowl-
edge, this is the first work applying pattern discovering ap-
proach into detecting energy outliers in the home environ-
ments.

System Architecture
In this paper, we developed a prototype system framework
for energy data collection, energy data transformation and
energy pattern outlier detection as shown in Figure 1.

• The smart environment contains sensors, controllable de-
vices, and software.

• Energy data transformation is a preprocessing layer which
analyzes and transforms raw energy data to a symbol
string sequence using a binning approach. A Suffix Tree
Generator is responsible for generating energy patterns af-
ter inputting a given energy symbol sequence.

• Energy pattern outlier detection is an algorithm which im-
plements energy outlier detection. The output from this
module can provide feedback to the users which can in-
form their choices and improve their energy consumption.

Smart Home Environment
The smart home environment testbed that we are using to
analyze energy usage is a three bedroom apartment. Two
volunteer participants regularly live in the testbed. Thus, the
data we collected are from the real life of the participants.

Binning
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Figure 1: System architecture of our energy outlier detection
tool.

To track residents’ mobility, we use motion sensors placed
on the ceilings as shown in Figure 2. A simple power meter
records the amount of instantaneous power usage at a fixed
sampling frequency and the total amount of power which is
used over time. An in-house sensor network captures all sen-
sor data and stores it in a SQL database. The sensor events
annotated with the corresponding activities being performed
while the sensor events were generated.

Energy Data Transformation
The important step in utilizing smart home technologies for
energy efficiency is to analyze normal patterns of usage and
identify abnormal, or anomalous situations. We analyze nor-
mal patterns by clustering sequences of power usage values.
This analysis is useful because the cluster descriptions can
provide users with insights on their daily habits and resource
usage as well as provide software algorithms with a model
of normal usage in a particular environment. At the same
time, the clusters provide a baseline against which anoma-
lies in energy usage can be identified. Anomaly detection is
valuable because the anomaly may indicate an unnecessary
use of resources (e.g., an appliance was accidentally left on),
an unsafe state, or possibly noise in the dataset which needs
to be removed.

To begin, a formal definition of the dataset is required.

Definition 1. Let e = (t, v) be an individual energy senosr
event in our smart environment, where t refers to the times-
tamp when v has been activated, and v refers to an energy
numerical value.

For data mining purpose, we are typically not interested in



Figure 2: Three-bedroom smart apartment used for our data
collection (motion (M), temperature (T), water (W), burner
(B), telephone (P), and item (I)).

any individual energy sensor event; rather, we are interested
in a global energy sensor sequence:
Definition 2. An energy sensor sequence E = e1e2 . . . en
is an ordered set of n energy sensor events.

Smart home power meters record the amount of instanta-
neous power that is currently being consumed in real time.
We first discretize this data into k value ranges using equal-
width binning and then convert the value ranges to symbols.
This representation allows symbolic approaches to be ap-
plied to analyzing the data, at the risk of losing some pre-
cision in the values. Through binning, an energy sensor se-
quence E can be transformed into a new energy symbol se-
quence S, which is defined as:
Definition 3. An energy symbol sequence S = s1s2 . . . sn
is an ordered set of n symbol variables over the alphabet Σ,
where Σ = {a, b, c, . . . } and ‖Σ‖ is equal to the number
of bins k. All energy values in the range for the ith bin are
represented by symbol i in the sequence.

After converting raw power data into a symbol sequence,
the algorithm discovers patterns in energy usage data which
employs suffix trees (Gusfield 1997). Unlike other data min-
ing methods, which are exponential in their complexity, this
algorithm can contribute a suffix tree in O(n) time for a sym-
bol sequence of length n, and spend O(m) time to search for
a subsequence of length m, regardless of n. A formal defi-
nition of this tree follows.
Definition 4. Given a string S

′
over the alphabet Σ and

a unique termination character $ /∈ Σ, the string resulting
from appending $ to S

′
can be defined as S = S

′
$. Let

|S| = n and suff(S, i) = SiSi+1 . . . S|S| be the suffix of
the string S starting at ith position. The suffix tree of S is a
compacted trie-like data structure that stores all suffixes of
a string S over the alphabet Σ.

Traditional suffix tree construction algorithms start from
the root and follow a unique path matching characters in

suff(S, i) one by one until no more matches are possible.
If the traversal does not end at an internal node, it creates a
new internal node at that location. For a tree with n nodes,
the total running time of the algorithm is

∑n
i=1(n− i+1) =

O(n2). In order to achieve O(n) running time, we use Mc-
Creight’s algorithm (McCreight 1976) to construct a suffix
tree by applying suffix links to speed up the insertion of a
new suffix.
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Figure 3: A suffix tree defined on a symbol sequence S with
length m can represent every subsequence in S with at most
2m nodes

A graphical illustration of the transformation of an energy
sequence into its equivalent suffix tree is shown in Figure
3. By definition, no two edges emanating from a node in a
suffix tree begin with the same symbol, which implies that
every unique subsequence in S starting from the root node
can be generated by traversing through the suffix tree. We
consider these subsequences as energy patterns, which are
defined as:

Definition 5. Let an energy pattern pi in S represent the
subsequence generated by traversing a path in the suffix tree,
where p represents the sequence of symbols visited along the
path and the length of this energy pattern is i. The frequency
of an energy pattern pi in S is denoted by f(pi), which is
equal to the number of the leaf nodes found in the subtree
rooted at the end of the subsequence pi.

Table 2 shows two examples of energy patterns and their
corresponding frequencies. In the first case, energy readings
of 752 and 742 fall in the same bin (value range) and are
mapped to symbol C. The sequence of energy readings CC
occurs 26,592 times in the data file and thus is a much more
common pattern than the one found in the second line of
the table. In the context of this brief example sequence CC
might be considered a pattern of interest, while sequence
ZFZ might be considered an outlier or anomaly.

Energy Pattern Outlier Detection
In this section, we assume all energy patterns with the same
length are similar to each other, which will fall into a unique
cluster. To detect abnormal situations, we then cluster all the



Table 2: Examples of Energy Pattern
Energy Pattern Raw Pattern
Pattern Length Energy Frequency

CC 2 752 26952
742

ZFZ 3 5000 13
1021.2
5007

energy patterns with the same length using Euclidean dis-
tance, as described in the next section. Intuitively, for an en-
ergy symbol sequence S, we consider an energy pattern pi
to be an outlier, if this energy pattern is far from the centroid
of the cluster.

Cluster analysis is a data mining technique that is often
used to identify various groupings or taxonomies in datasets.
We apply clustering to power sequence values in order to
gain a better understanding of the data, to identify groupings
of normal energy usage, and to use as a baseline for identify-
ing abnormal energy usage patterns. A clustering algorithm
takes features of the data as input and creates a classifica-
tion scheme which is represented as a set of disjoint clusters
(Fisher 1987), each of which can be described by a middle
point, or cluster centroid.

One important step in our clustering process is to decide
a distance measure, which is used to group sequences to-
gether in a cluster and should reflect the similarity of two
sequences. In this paper, we use a Euclidean distance mea-
sure, which is a geometric distance in the multidimensional
space and is widely used by clustering algorithms. Based on
specific property of energy patterns, we select three related
features, which will be used to measure the distance of en-
ergy patterns.

Pattern Variance between Energy Patterns. As defined
in Definition 5, pi = s1s2 . . . si is an energy pattern, where
s is an energy symbol after binning. The distance between
two symbols |sx − sy| can be be estimated as the alpha-
numeric distance between the symbols. To determine pattern
variance, we measure the distance between each correspond-
ing symbol in the pattern. Thus the pattern variance between
p1and p2 with length i is defined as:

d1(p1, p2) =

i∑
j=1

|s1j − s2j | (1)

Within-Pattern Variance. Because changes in power oc-
cur when appliances are switched on or off, the difference
between two consecutive symbols in an energy pattern may
indicate a change in the status of the appliances. Thus, the
variance within this energy pattern captures the usage status
of the appliances. The within-pattern variance of an energy
pattern p can be calculated as vi =

∑i
j=2|sj − sj−1| . We

define the difference in within-pattern variance between two
energy patterns p1 and p2 as:

d2(p1, p2) = |v1 − v2| (2)

Frequency of Energy Pattern. Another important fea-
ture we cannot ignore is the frequency of an energy pattern,
as defined in Definition 5. The lower the frequency is, the
more likely this pattern is an outlier. If the frequency of a
pattern is relatively high, it may represent a normal pattern
of usage. The frequency difference between energy patterns
p1 and p2 is calculated as:

d3(p1, p2) = |f(p1)− f(p2)| (3)

It should be noted that the frequency of energy pattern
outliers mainly divided into two parts: 1) low frequency, 2)
high frequency. In this paper, we are more interested in the
low-frequency energy outliers since they have a high proba-
bility of being outliers.

All these three distance values are normalized to the scale
[0, 1] and the final distance between two energy patterns p1
and p2 is estimated as:

d(p1, p2) =
√

d1(p1, p2)2 + d2(p1, p2)2 + d3(p1, p2)2

(4)
In the second step of our analysis, we use the defined clus-

ters to identify outliers in the energy usage data. The outliers
are defined as energy usage sequences that fall as far as pos-
sible from the centroid of any cluster. Detecting these out-
liers consists of two stages. In the first stage, we cluster the
energy sequences and calculate the cluster centroids cp. In
the second stage, we set an outlying factor opk for each en-
ergy pattern pk in the cluster. This factor depends on its dis-
tance from the centroid of the cluster. We define the outlying
factor of an energy pattern pk in the cluster as follows:

opk = d(pk, cp) (5)

The greater the outlying factor is, the more likely it is the
pattern is an outlier. As shown in Figure 4, the energy pat-
terns for which opk > threshold, are defined as the outliers.
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Figure 4: Example of outlier detection in the cluster.

From this discussion it is apparent that the choice of a
threshold value greatly influences the selection of outliers.
To determine the value for this application domain we plot
a histogram of all pattern distance values to the centorid
(also referred to as outlying factors, see Figure 5). It was



Figure 5: Histogram of outlying factors of all p2 energy pat-
terns (k = 50).

noted that these outlying factors follow a normal distribu-
tion, which means that 99.7% of the patterns will then fall
within three standard deviations of the mean. To detect the
outliers, we only consider the patterns that fall outside of this
area.

To provide a basis of comparison, an outlier detection was
performed on the energy usage data using a standard box
plot analysis (Tukey 1977). The box plot is a quick graphic
approach for examining sets of data. A box plot usually dis-
plays five important parameters describing a set of numeric
data: 1) lower fence, 2) lower quartile, 3) median, 4) upper
quartile, and 5) upper fence. As shown in Figure 5, the box
plot is constructed by drawing a rectangle between the upper
and lower quartiles with a solid line indicating the median.
The lower and upper fences exist at the boundary of the solid
line.

Figure 6: Configuration of a box plot.

In our study, we use the box plot as an alternative method
to identify outliers in the collected energy data, which rep-
resent those periods of time where the energy consumption
lies unusually far from the main body of the data. If Q1 and
Q3 are the lower quartile and the upper quartile, a measure
of spread that is resistant to the outliers is the inter-quartile
range or IQ, calculated as IQ = Q3 − Q1. As shown in
Figure 6, the fences lie at Q1k ∗ IQ and Q3 + k ∗ IQ. The
change of the value of k can affect the number of the obser-
vations outside the fence. For this work, a value of k = 1.5
was used, which has been indicated as acceptable for most
situations (Frigge, Hoaglin, and Iglewicz 1989). Any sam-
ple data farther than 1.5 ∗ IQ from the closest quartile is an
outlier. An outlier is extreme if it is more than 3 ∗ IQ from
the nearest quartile and it is mild otherwise.

Experiment Result
The outlier detection experiment we performed uses the sen-
sor data generated by two residents during two summer
months at the smart apartment testbed.

Figure 7: Energy outlier detection using the boxplot.

For the first experiment, a total of 95,968 power events
were collected. Figure 7 shows the result of the boxplot ap-
proach on this dataset. The black points located on the top
represent the outliers. The boxplot considered 12,718 sensor
events as potential outliers, since it is merely able to detect
energy consumption that lies unusually far from the main
body of the data. However, it is difficult for most users to
determine which outliers are true outliers and identify po-
tential reasons for these outliers, because there are too many
false positives.
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Figure 8: Distribution of number of pattern outliers using
our clustering approach.

Next, we use our proposed clustering algorithm to analyze
the same power dataset. Figure 8 depicts the distribution of
energy patterns that were detected as potential outliers un-
der different numbers of bins and clusters. Comparing our
method with the boxplot, it shows that the number of the out-
liers reported by the clustering approach has been decreased
notably. This increases the chance to accurately determine
real outliers in the dataset.

Table 3 displays the result of our clustering method with
several different pattern lengths when k is assigned to 50.



Table 3: Experimental Results of Outlier Detection (k = 50)
Pattern Number of
Length Outliers

2 24
3 54
4 25
5 23
6 34

To explore potential reasons for the anomalous usage pat-
terns, those outliers were examined in detail. It was discov-
ered that these abnormal events occur in two main ways.
The first set of outliers was mainly due to large changes in
energy usage, or when the residents had sustained high-level
energy consumption over a long time. Some of the big ap-
pliances, including the water heater, consume more energy
than the others and can create anomalies when there are long
showers. In addition, during the middle of the day is the res-
idents cooking time and large appliances are being used for
cooking such as the microwave, the stove and the oven, all
of which would give rise to a dramatical increase in energy
consumption. To response to these outliers, the residents can
analyze their energy needs during these activities to identify
energy-saving behaviors.

Table 4: Example of an Outlier.
2009-06-01 23:31:02 P001 1001.5
2009-06-01 23:31:02 P001 356

The outliers in the second set were found to be two suc-
cessive energy events, whose values are different but occur
at the same time, as shown in Table 4. This situation actually
represents noise in the data that occurs as part of the data
collection hardware. These kinds of outliers are also valu-
able to detect because the noise can be removed and subse-
quently improve the accuracy of additional analysis meth-
ods. Therefore, we checked the entire dataset for these types
of outliers. The result was that 6,398 entries from Kyoto that
represented noisy data collection conditions were removed.

In the second group of experiments, all of the outliers de-
tected by the clustering approach fit into one of these two
categories. However, since we only consider the patterns
which are extremely far from the centroid of the clustering,
the rate of false negative may be relatively higher, which
means that lots of real outliers are likely to be ignored by
this approach. One possible solution is to decrease the pre-
defined threshold, which makes our approach to detect more
outliers at the risk of increasing the rate of false positive.

Conclusions
In this paper, we introduce a data mining and clustering tech-
nique for detecting the outliers and anomalies in energy us-
age. We first use an equal-width binning approach to trans-
late raw energy data into a symbol sequence, and then extend
a suffix tree to generate energy patterns. Through clustering
these energy patterns, we detect the energy outliers which

are far from their cluster centroid. The purpose of outlier de-
tection is to find some extreme energy change power, which
may lead to potential security problems in the smart envi-
ronment.

In our ongoing work, we plan to investigate methods to
detect a greater range of anomalies. Additionally, we also
plan to install more sensitive power meters in order to cap-
ture more changes and patterns in energy consumption. Our
future plans also include collecting data in a greater variety
of households, which will allow us to determine whether en-
ergy predictions, energy usage trends, and energy anomalies
exist and generalize across multiple settings.
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