
Decision-Theoretic Planning in the Graphplan Framework

Gilbert Peterson and Diane J. Cook

University of Texas at Arlington
Computer Science and Engineering
Planning and Learning Laboratory

Box 19015, Arlington, TX 76019-015
{ gpeterso, cook} @cse.uta.edu

Abstract
We have developed a decision-theoretic planner based
upon the Graphplan planning algorithm, DT-Graphplan.
DT-Graphplan reasons about probabiliti es, costs, and
rewards at a propositional level, reconstructing limited
state information. We are applying the planner to our robot
task architecture to function on a miniature golf domain.
By incorporating decision theory into planning, we seek to
reduce the representational gap between behavior-based
robotic controllers and constraint-based symboli c planners.

Introduction

This paper discusses DT-Graphplan, a decision-theoretic
planner that we use as the planning and sequencing layers
for a layered robotic architecture. By using a planner at
both the symbolic planner level and the sequencer level
we hope for a reduction of the work needed to reconfigure
a robot for a new task. We will verify this by creating one
set of behavior controllers for our robots and
demonstrating the effectiveness of the controllers on
multiple diverse plans.

The method of developing task control software for
robots we address is a layering approach. This approach
generall y consists of a symbolic planner, a task sequencer,
and a behavioral robotic controller. The task sequencer is
responsible for breaking a command from an abstract plan
into select robot-level actions and behaviors to execute.
This representation leads to a robust functioning software
control for a robot on a single task [Bonnasso and
Kortenkamp, 1996]. When it is necessary to reconfigure
the robot for a new task, the sequencer receives new
sequences and the behavior controller gets additional
behaviors.

The use of decision theory to guide the behavior of a
robot is a familiar concept. We expand on this idea, using
decision theory at a higher reasoning level to generate a
plan. The use of planning over other methods stems from
the desire to generate a quick workable set of actions,
comprehendible to both the robot and user for domains
with dynamic operating conditions. We hope to show that

 Copyright © 2000, American Association for Artificial Intelli gence
(www.aaai.org). All rights reserved.

this is effective in our miniature golf domain in
comparison to a strictly behavioral approach.

Our planner, DT-Graphplan, adds decision-theoretic
reasoning to the framework of the Graphplan algorithm,
extending the planner to handle probabili stic actions as
well as utilit y driven search [Blum and Furst, 1995]. DT-
Graphplan returns the first acceptable plan found meeting
a user-defined threshold, for a user specified goal set. This
extends recent work conducted on Graphplan to handle
probabiliti es [Blum and Langford, 1999].

The development of DT-Graphplan was undertaken
because decision-theoretic methods represent certain
elements in robotic domains better than symbolic
methods. For instance, in the miniature golf domain, that
is the application for our robot architecture, the robot has
the choice between picking up the ball and dropping it in
the cup, or attempting to push the ball i nto the cup, Figure
1. By picking up and dropping the ball , the robot suffers a
two-stroke penalty but has a large probabilit y of achieving
the task of getting the ball i nto the cup. If the robot
attempts to push the ball i nto the hole, the stroke penalty
is not as high, but the probabilit y of success is not as
great. Based on the cost of pushing with its probabilit y of
success and the cost of depositing the ball with its higher
probabilit y of success, the planner makes a choice of
which plan to pursue.

Alternatively, another general application of decision-
theoretic comparison trades off between risk and reward,
comparing the risk of an action with its chance of success
to another. The agent must choose between an a risky
move with a low probabilit y of success but great potential
rewards compared with the utilit y of a conservative move
with a higher probabilit y of success and moderate
potential rewards.

Our approach differs in that we developed a decision-
theoretic planner to replace the symbolic planner. We use
a decision-theoretic planner to formally reason about the
uncertainty that is inherent in robot tasks, while retaining
the abilit y to reason at a high level about the current
world and goals.

This paper discusses the DT-Graphplan algorithm. The
next section briefly covers the Graphplan algorithm.
Section 3, discusses the method DT-Graphplan uses to
perform graph building and search. Following this a
subset of the miniature golf domain used as an example to

Figure 1: Miniature Golf.
ill ustrate DT-Graphplan is described. The final sections
compare related work to DT-Graphplan and discuss
possible future work.

Graphplan Background

The Graphplan algorithm written by Blum and Furst,
plans by alternately expanding a planning graph and
extracting a plan solution [Blum and Furst, 1995]. The
planning graph is a series of layers alternating between
proposition nodes and action nodes. The initial layer
consists of proposition nodes that represent the initial plan
condition. For each action node, directed edges lead from
the proposition nodes that are the preconditions of the
action to the action node, and then from the action to the
proposition nodes that are the effects of the action.

During graph building, the graph retains binary mutual
exclusion information (a mutex relation). This
information speeds search by tracking the propositions
that interfere with each other and can not exist
simultaneously. The mutex relation also serves to preserve
state information, two propositions which are mutex can
not exist simultaneously. Two action instances at a level
are mutex if they interfere - one action deletes a
precondition or effect of another, or show competing
needs – the actions have preconditions that are mutually
exclusive at the previous level. Two propositions at a
level are mutex if all ways of achieving the propositions
(actions on the previous level) are mutex.

Graph expansion halts on a proposition layer when each
element of the goal condition is present and none are
pairwise mutex. Graphplan then searches the planning
graph for the plan solution using a backward chaining
search. The search results in a path from the goals to the
initial condition consisting of only non-mutex actions. If
search finds no plan, then graph expansion and search
continues in an iterative fashion.

We chose to write our planner on top of the Graphplan
algorithm due to the eff iciency with which it locates a
plan. In generating the new planner, the graph framework
of propositions and actions tailored our calculation of
probabilit y and utilit y over states and actions.

Decision-theoretic Graphplan

(DT-Graphplan)
The concept behind DT-Graphplan is similar to
Graphplan. Create a graph with all of the possible
combinations of actions from an initial condition until
reaching a goal condition and then backward-chain search
the graph for an acceptable plan. The DT-Graphplan
algorithm accommodates decision theory, in allowing for
probabili stic propositions and uncertain action effects.
DT-Graphplan’s objective is the generation of a plan
meeting an atemporal threshold utilit y.

One approach to incorporating decision theory with the
Graphplan algorithm creates state and action layers
instead of centering on propositions and actions. An
investigation of this representation conducted by
Boutilli er uses the Graphplan algorithm to reduce the
solution space for an MDP solver [Boutilli er, et. al.,
1997].

One of the advantages of the Graphplan algorithm is
that it relieves the planner of the burden of processing
entire states at every node and instead reasons about
individual propositions. DT-Graphplan extends this
approach with decision-theoretic planning, and maintains
the proposition and action layers from the original
algorithm. In order to obtain possible future states for
calculations, we rely on the generated mutex relation
information.

Traditionally, rewards are determined based on a set of
features of a state. Instead of assigning rewards to a state,
singled out propositions in the plan graph receive the
reward.

Since DT-Graphplan does not expli citl y reason about a
world state, the utilit y of a state is reconstructed. A state’s
utilit y depends on the rewards of the propositions in the
state multiplied by probabiliti es of the propositions minus
costs of the actions that brings us to the state.

In addition, DT-Graphplan plans under the
assumption that all of the propositions for a state are
independent. The current version of DT-Graphplan does
not incorporate joint probabilit y distributions. We are in
the process of incorporating this into the algorithm.

DT-Graphplan Propositions
In Graphplan, each proposition’s presence in the graph
signifies its validity at that point. To accommodate
negative propositions, the domain adds a negative version
of the proposition and declares it mutex with the positi ve
version.

DT-Graphplan represents each proposition as a
probabilit y value [0..1] and a utilit y value. The probabilit y
value represents the probabilit y the proposition is
currently true. One minus this value represents the
probabilit y the proposition is currently false. The utilit y
value is the sum of the rewards earned to this point in the
plan and the costs of previous actions.

Initial World Conditions
DT-Graphplan’s initial world definition consists of a set
of probabili stic propositions. The propositions in the
initial set represent the probabilit y of the existence of the
propositions in an initial world state. Although not part of
the initial world conditions, the domain also consists of a
utilit y threshold, which represents the minimum
acceptable utilit y for a generated plan. The domain
includes a set of reward statements. The reward
statements stipulate the amount of utilit y earned for the
existence of a proposition in the graph.

Because of the assumption of proposition
independence, DT-Graphplan does not distinguish
between possible worlds. An example of this is the “bomb
in the toilet” domain with two packages [McDermott,
1987]. In this domain, there is a fifty percent chance that
package 1 is unsafe and package 2 is safe, and a fifty
percent chance of the opposite. The condition of each
package depends upon the other. To execute this domain
in DT-Graphplan, the probabilit y that each of the
packages is safe is set at fifty percent. This represents the
overall i nitial state of the world. However, after dunking
one of the packages in the toilet, the probabilit y
independence assumption leads to the inabilit y of DT-
Graphplan to generate the 50% probabilit y that the bomb
is defused

Planning Graph Expansion
DT-Graphplan generates only one plan graph comprising
all of the possible propositions with their various
probabiliti es and utiliti es. Plan graph expansion occurs as
in Graphplan, adding all of the actions possible given the
propositions available at the current time step.

DT-Graphplan makes use of the addition of partiall y-
factored expansion to handle conditional action effects
[Koehler, et al., 1997]. This allows for context dependent
action effects. Partiall y-factored expansion expands the
conditional outcomes as the action is applied to the graph,
expanding only the branches valid at the time.

Execution of an action in a state occurs when all of its
preconditions are met. Since DT-Graphplan does not
maintain strict state information, the insertion of an action
depends on the presence of the precondition propositions.
The propositions of the precondition must all be non-
mutex; it must be possible for them to all exist at the same
time, and therefore in the same state. The exact state
information remains unknown at the time but is
determinable. The important point is that all actions are
applied to every possible state.

During graph expansion, action effects lead to
additional, possibly new propositions. Each action
inserted into the graph generates new propositions added
to the graph at the next time step. In addition, a noop
action caries each existing proposition at a given time step
are to the next time step.

At any given time step, multiple occurrences of a given
proposition may exist, with different probabiliti es and/or

utiliti es. Each of these different propositions represents
one possible condition of the world after executing a
series of actions. All possible probabilit y and utilit y
proposition combinations exist because the graph
represents all of the possible action applications from the
initial state.

For each proposition in existence, if an action updates
the probabilit y or utilit y, the graph will generate a
duplicate proposition with new probabilit y and utilit y
values. If a proposition exists with the same probabilit y
and utilit y, the action adding the proposition just
references the existing proposition. Each action that
affects the proposition at the next time step may also
affect the additional propositions.

Because of the possible multiple similar propositions,
an additional mutex rule exists to maintain state
information and speed searching. The additional mutex
rule specifies that each of the propositions with the same
name and different probabiliti es and utiliti es are mutex
with each other. This mutex rule behaves similarly to the
one added to the Graphplan algorithm to accommodate
negative propositions. Two propositions with the same
name should not exist concurrently. DT-Graphplan retains
the action mutex relations of interference of effects, and
competing needs from the original Graphplan algorithm.
DT-Graphplan also maintains the proposition mutex
relation whereby two propositions are mutex if all ways of
reaching the propositions are mutex.

Figure 2: Example graph expansion.

This algorithm results in a graph with a greater
branching factor and many more nodes per layer than a
graph for a classical symbolic domain. Figure 2 shows an
example of how proposition fanning occurs, at each
successive proposition level there are more versions of the
proposition A. In the example, there is an action ‘useless-
op’ which given the precondition of proposition A has an
outcome effect of 0.90 proposition A. From the figure,
the outcome of ‘ useless-op’ at time step 0 is the
precondition probabilit y of A (0.80) combined with the
effect probabilit y (0.90) resulting in proposition A at time
step 1 having a probabilit y of 0.90(0.80) = 0.72. At time
step 1 there are two possible versions of proposition A,
each possessing different probabiliti es and are mutex with
each other. The light gray lines are the noop actions and
the arcs between the propositions are mutex conditions.
The figure shows no action mutexes.

Calculating Utilities
The probabili stic calculation of each action depends on

the probabilit y of each precondition and the action effects.
The evidence of an action is a conjunction of the
probabilit y of each of its preconditions. Because of the
independence assumption, this is just the product. Each
action effect has a probabili stic adjustment multiplied with
the evidence generates the outcome probabilit y for the
effect proposition.

The utilit y calculation of an action begins with
determining the pre-existing utilit y value. The pre-existing
utilit y is the sum of the precondition utiliti es. If more than
one precondition received reward for the same condition,
then the pre-existing utilit y only includes the largest of
these rewards.

The pre-existing utilit y decreases by the execution cost
of the action. The execution cost of an action is the
estimated expense of executing the action. The utilit y of
each of the action effects is set to the pre-existing utilit y.

Reward assignment follows the calculation of the pre-
existing utilit y. As discussed earlier, the propositions
instead of specific states propagated rewards. Reward
assignment first verifies that there is a reward condition
with the same proposition name as the new proposition.
Reward calculation increases the utilit y of a proposition by
the reward amount scaled by the proposition’s probabilit y.

After calculating the utilit y and probabilit y values for an
action effect, the proposition is added to the graph. If a
version of the proposition does not exist with the same
probabilit y and utilit y values, graph expansion inserts a
proposition with the new values. If an identicall y valued
proposition exists, the graph updates the action effect to
point to this preexisting proposition.

An action not only generates new propositions but also
updates the decision-theoretic values of existing
propositions. By repeating an action, the probabilit y of a
proposition may increase. For example, in the “moat and
castle” domain, each successive execution of the ‘build-
castle’ action increases the chance of the castles
successful construction (Majercik and Littman, 1987).
DT-Graphplan conducts probabilit y propagation for each
of the executable actions to achieve this affect.

When the effect of an action is not a precondition of the
same action, and an instantiation of this proposition exists
before action execution, the proposition’s probabilit y
propagates. Propagation consists of inserting an additional
action node, identical to the previous. This new action
node includes an additional precondition leading from the
previous instantiation of the effect proposition.
Additionally, propagation replaces the effect proposition
with an updated one. The new effect‘s probabilit y is
scaled by the probabilit y of the proposition before the
action executes. The example in the Example Domain
section ill ustrates this process in detail .

After constructing each graph layer, there is the
opportunity for graph expansion to halt. Graph expansion
halts when the number of layers reaches a cutoff point.
The conditions for cutoff occur when the last two layers

are identical, or the goal conditions exist with a decision
value greater than the given threshold.

Once the graph contains propositions meeting the goal
conditions a number of goal sets are generated, each with
a number of elements equal to the goal condition. DT-
Graphplan sometimes generates multiple goal sets with a
utilit y greater than the threshold at the stopping depth.
These goal sets ordered largest to smallest are searched
individually. The user can set a desired percentage of
these goal li sts to search before resuming the iterative
deepening phase of the algorithm.

During iterative deepening, the algorithm alternates
between adding an additional layer to the graph and
searching the extended graph for a plan. This continues
until the discovery of a plan or the graph reaches the
maximum depth allowed. At the maximum graph depth,
all of the generated goal li sts meeting the threshold are
searched. If there is still no plan discovered, then planning
stops and the algorithm notifies the user that no plan
exists.

The search phase of DT-Graphplan differs from
Graphplan only in the action selection phase. In
Graphplan, the last action adding a proposition is the first
selected. In DT-Graphplan, the algorithm instead selects
the action with the highest utilit y.

Example Domain
The example uses a small variation of the miniature golf
domain we are applied to the robot architecture. In this
domain, the initial condition is that the golf ball i s on the
tee. There is one reward of 2.0 for getting the ball i n the
cup. The actions are push to green, push-to-hole-in-one,
and putt-to-cup. The push-to-green action’s precondition
is ball -on-tee, with the effects being to remove ball -on-tee,
and add ball -on-green. The push-to-hole-in-one action’s
precondition is ball -on-tee with the effects of removing
ball -on-tee, adding ball -on-green, and adding a possibilit y
for ball -in-cup. The putt-to-cup action’s precondition is
ball -on-green and results in a chance to get the ball -in-the
cup. The three action definitions in full are in Figure 3.

push-to-hole-in-one 0.70 ; op-name op-cost
:p 0.70 > ball -on(tee) ; preconditions prob. of ball -on-tee > 0.70
:e + 1.00 ball -on(green), ; effects incr. prob. of ball -on-green by 1.0
 - 0.00 ball -on(tee), ; decr. prob. of ball -on-tee by 0.00
 + 0.30 ball -in-cup(). ; incr. prob. of ball -in-cup by 0.30

push-to-green 0.65 ; op-name op-cost
:p 0.70 > ball -on(tee) ; preconditions prob. of ball -on-tee > 0.70
:e + 1.00 ball -on(green), ; effects incr. prob. of ball -on-green by 1.0
 - 0.00 ball -on(tee). ; decr. prob. of ball -on-tee by 0.00

putt-to-cup 0.40 ; op-name op-cost
:p 0.70 > ball -on(green) ; preconditions prob. ball -on-green > 0.70
:e + 0.85 ball -in-cup(). ; effects incr. prob. of ball -in-cup by 0.85

Figure 3: Miniature Golf Actions.
Figure 4 shows the planning graph generated for this

small miniature golf domain for a utilit y threshold of 0.69.
The arcs on the first layer show the existing mutex
constraints. The dark outlined facts and actions represent

the final plan elements. The final plan consists of push-to-
hole-in-one and then putt-to-cup. Increasing the utilit y
threshold beyond 0.69 causes the planning graph to extend
an additional layer and results in a three-step plan of push-
to-green, putt-to-cup, and putt-to-cup with a utilit y of
0.90.

To analyze how DT-Graphplan propagates probabiliti es
and utiliti es, let’s look at the putt-to-cup action in the final
plan. The precondition for putt-to-cup is ball -on-green,
the one used in this action has a probabilit y of 1.00 and a
utilit y of –0.70. Since this is the only precondition for the
action, the evidence for the action is 1.00. Note that the
existing utilit y of –0.70 is the cost of the putt-to-hole-in-
one action that generated the ball -on-green proposition.

The putt-to-cup action has a single effect, that of
establi shing the ball -in-cup proposition with an outcome
probabilit y of 0.85. This leads to the generation of the
proposition ball -in-cup with a probabilit y of 0.85. Since
there is a reward of 2.0 for getting the ball i n the cup the
utilit y is 0.85*2.0 – the accrued action costs of 1.10. This
results in a utilit y of 0.85*2.00–1.10= 0.60.

However, 0.60 is not the utilit y of the proposition in the
final plan, it is pointed at by the arrow. The proposition
included in the plan makes use of the existing probabilit y
of the ball -in-cup from the previous time, 0.30. The gray
dashed line in the figure shows this probabilit y
propagation operation. The probabilit y of the ball -in-cup
proposition is the existing probabilit y 0.30+ the remaining
probabilit y scaled by the action’s chance of success, (1.0–

0.30)*0.85, yielding 0.30+0.595 = 0.895. The reward is
calculated based on this probabilit y resulting in the utilit y
of 0.895*2.00-1.10= 0.69.

Related Work

One method of incorporating decision theory in planning
is to represent an action based upon a transition matrix,
representing possible changes between all of the world
states. This is the method used in traditional Markov
Decision Processes (MDP). An MDP models a dynamic
system, where the state of the system is represented in
terms of a joint probabilit y distribution over the state of
the system given the system state at the previous time
slice. Additionally, an MDP system may observe a noisy
function of the state variables, and have incomplete or
imprecise state information. This condition generates a
Partiall y-Observable MDP (POMDP). Partial
observabilit y is a similar objective as in DT-Graphplan;
however, POMDP uses a different language by
representing probabilit y over the state. DT-Graphplan
reasons with a proposition representation, representing
probabili stic steps as a conditional probabilit y distribution
over a set of outcomes based upon the preconditions.

Buridan, one of the first probabili stic planners plans
under conditions of partial observabilit y [Draper, et al.,
1994]. C-Buridan extends Buridan to generate contingent
plans. DT-Graphplan differs from Buridan by not

incorporating initial world state probabiliti es. A world
state is a collection of propositions in the initial state. In
Buridan, it is possible to have multiple possible initial
states where the chance that the initial state is one of these
possible worlds is included in the domain description.

MAXPLAN, an additional probabili stic planner,
compiles the planning problem into an E-MAJSAT
problem and solves for a contingent plan [Majercik and
Littman, 1998]. MAXPLAN converts the planning
problem into a single step plan where variables represent
each probabilit y. Solving the generated satisfiabilit y
matrix also solves for the unknown probabiliti es. The
developers of MAXPLAN in comparing it to Graphplan
show that although not as fast compares favorably. The
MAXPLAN planner is not as fast as Graphplan due to the
use of mutex rules in Graphplan prunes a great deal of the
search space that the satisfiabilit y solution does not.

 Conformant Graphplan (CGP) extends Graphplan, with
the addition of multiple planning graphs, one for each
possible world [Anderson, et al., 1998]. CGP builds a
separate graph for each of the possible worlds and applies
each action to all the worlds [Anderson, et al., 1998].
Sensory Graphplan (SGP) extends CGP by adding sensory
actions [Weld, et al., 1998]. SGP tries to find a solution
that works in all of the possible worlds. If a solution does
not work then it uses the sensory actions to try to
distinguish between the worlds. Once the worlds are
distinguishable then each world gets a separate subgoal.
The separate subgoals serve to select an alternative course
of action for each world.

The PGraphplan planner, similarly to C-Buridan,
produces a contingent probabili stic plan [Blum and
Langford, 1999]. Both PGraphplan and DT-Graphplan
originate with the Graphplan algorithm. PGraphplan’s
methodology differs from Graphplan in that instead of
performing a backward-chaining search, search is a
forward-chaining process to find an optimal contingent
plan. PGraphplan uses the forward-chaining search phase
to both propagate probabiliti es and find a plan.

All of these planners use a probabili stic model similar
to MDP’s. Each state has a probabilit y associated with it.
Actions result in new states with a set probabilit y. Each
proposition in the state represents the existence of an
element in the state. DT-Graphplan differs from these
approaches in that it reasons using propositions. Each
proposition has its own probabilit y signifying the
probabilit y it may exist at that point in time.

If two propositions are not mutex with each other and
search shows that a series of actions leads to both then
they may exist in the same future state. Each proposition
has a maximum probabilit y that it exist. The product of
the proposition’s probabiliti es represents the maximum
probabilit y they both exist at the same time. We are in the
process of completing the addition of joint probabilit y
distributions to include other methods of calculating these
state probabiliti es for a set of propositions.

Empirical Results

In this section, we compare DT-Graphplan with two
existing probabili stic planners. The comparison with
Buridan gives a general measure of the performance of
DT-Graphplan to compare with other planners. Since DT-
Graphplan and PGraphplan both use the Graphplan
algorithm, testing of the two algorithms outlines the
differences in the alternative approaches. We then
demonstrate how DT-Graphplan goes beyond both
planners’ capabiliti es by planning with utiliti es.

One popular probabilit y domain is the “moats and
castles” domain [Majercik and Littman, 1998]. In this
domain, the objective is to build a castle on the beach.
During construction, a wave may come and destroy the
castle. In order for a wave not to wash the castle away, it
is best if the agent digs a moat first. There are two actions
in this domain. One action is ‘dig-moat’ which has a 0.5
probabilit y of actuall y creating a moat. Additionally, there
is the ‘build-castle’ action. If a moat exists, the ‘build-
castle’ action succeeds with a probabilit y of 0.67. If no
moat exists, the build action only succeeds 0.25 percent of
the time. If the ‘build-castle’ action fail s then the moat is
destroyed.

We alter the domain definition to increase the number
of possible solutions. Instead of having a single moat
depth, there are four. Each ‘dig-moat’ action increases the
depth of the moat by one, from no-moat to moat-depth-of-
four. Once the depth of the moat reaches four, the ‘dig-
moat’ action does not alter the moat’s depth. As the
moat’s depth increases the probabilit y of the ‘build-castle’
action succeeding increases. The probabilit y distribution
for ‘build-castle’ becomes 0.25 for no-moat, 0.46 for
moat-depth-of-one, 0.60 for moat-depth-of-two, 0.70 for
moat-depth-of-three, and 0.75 for moat-depth-of-four.

To run the “moat and castle” domain and other
probabili stic domains on DT-Graphplan, the domain
description must set all action costs to 0.00, and no reward
conditions represented. We compared the performance of
the “moat and castle” domain on PGraphplan, Buridan,
and DT-Graphplan. We varied the number of castles in
the domain from 1 to 5; Table 1 represents the run time
results comparing Buridan and DT-Graphplan. Figures 5
and 6 graph the results of DT-Graphplan and PGraphplan
in the execution time and number of nodes produced.

Table1: ‘moat and castles’ Results.
1 castle2 castles3 castlesbomb and toilet

DT-Graphplan 0.000 s0.005 s 0.005 s 0.000 s
Buridan 1.050 s79.712 s* *
* : for 3 castles and more and the “bomb and toilet /w clogging” domain,
Buridan took over 5 minutes to find a solution.

As Table 1 shows, the Buridan planner took over five
minutes to solve the castle problems with three or more
castles. Buridan also took longer than 5 minutes to solve
the “bomb and the toilet” domain with clogging and two
packages. As discussed earlier, the “bomb and toilet”
domain representation in DT-Graphplan does not include
world state information, instead representing each

package as having a fifty percent probabilit y of containing
a bomb. The comparison does show that DT-Graphplan
quickly finds solutions to all of these small problems.

 Figure 5 and 6 compare the execution time and node
generation of DT-Graphplan with PGraphplan. Figure 5
shows the execution times of the two planners. The figure
demonstrates that of the two planners DT-Graphplan
locates a plan in the least amount of time and does not
suffer as badly as the domain size increases. For each
larger domain, the graph generated grows larger;
generating more states to search.

One reason for the speed difference is the method used
to search the generated graph. DT-Graphplan performs
backward-chaining search and ignores a greater
percentage of states than the forward-chaining search of
PGraphplan.

Figure 5: Execution Time Comparison for 1-5 Castles.

In order to perform backward-chaining search, DT-
Graphplan generates significantly more nodes. The
additional nodes serve to propagate probabilit y
information from the initial conditions to the goals, as
explained with the example domain. PGraphplan instead
of generating additional nodes waits until the forward
search phase to conduct this propagation. Figure 6 shows
the comparison of the number of nodes generated between
DT-Graphplan and PGraphplan.

One reason PGraphplan performs forward-chaining
search is to generate a contingent plan. This differs from
DT-Graphplan, which generates a blind plan.

Figure 6: Node Generation for each Castle Domain.

Both C-Buridan and PGraphplan produce contingent
plans while DT-Graphplan does not. The probabili stic
planners create a contingent plan that for all action
success/fail branches has a probabilit y that meets or
exceeds a desired threshold for a specific goal condition.

Whereas the plan generated by DT-Graphplan is a single
series of actions that leads to the greatest reward. We
chose to tradeoff at the cost of possible contingent
planning for the eff iciency of Graphplan’s backward-
chaining search. Removing contingent planning does not
interfere with the purpose of DT-Graphplan, which
incorporates uncertainty in the form of probabilit y and
utilit y. We performed comparative testing with the
probabili stic planners to include a comparison to existing
planning systems.

One reason for developing DT-Graphplan was to
incorporate utilit y into the description of the domain. One
of the capabiliti es in this respect that we developed into
DT-Graphplan is the abilit y to locate a plan that meets a
given threshold for a goal set. This means that the user
can define a domain with a set of rewards and a desired
utilit y threshold and the planner will find the first plan
meeting the threshold. In these domains, rewards
represent a general set of desirable events, some of which
may not be concurrently possible.

We have a larger version of the miniature golf domain
from Figure 3 that has two levels. The golf course consists
of a starting layer, and the ending layer that has the cup. A
gutter and a chute connect the starting layer to the ending
layer. The difference between using the chute versus the
gutter is the chute is harder to get the ball i nto but gets the
ball closer to and possibly into the cup. The initial domain
consists of the ball on the starting layer and the goal is
‘ball -in-cup’ . One reward condition exists for getting the
ball i nto the cup. Figure 7 describes most of the actions,
the actions to pickup and drop the ball , and move between
levels are omitted because of their lack of uncertainty.

push-to-gutter 0.30
:p 0.70 > ball -on(l1) 0.70 > robot-on(l1) 0.10 < robot-holds-ball ()
:e + 1.00 ball -on(l2),
 - 0.00 ball -on(l1),
 + 0.20 ball -in-cup().

push-to-chute 1.15
:p 0.70 > ball -on(l1) 0.70 > robot-on(l1) 0.10 < robot-holds-ball ()
:e + 1.00 ball -on(l2),
 - 0.00 ball -on(l1),
 + 0.90 ball -in-cup().

putt-to-cup 0.30
:v ?l level
:p 0.70 > ball -on(?l) 0.70 > robot-on(?l) 0.90 > cup-on(?l) 0.10 <

robot-holds-ball ()
:e + 0.90 ball -in-cup(?l).

Figure 7: Larger Miniature Golf Domain.

Setting the threshold for this larger miniature golf
domain at 0.65, the resulting one step plan is to push the
ball to the chute, which results in the ball being in the
cup. By increasing the utilit y threshold to 0.70, the
resulting plan extends to three steps with an overall utilit y
of 1.23. This plan pushes the ball to the gutter, getting the
ball to the second layer. The robot then moves to the
second layer and putts the ball i nto the cup. By increasing
the threshold even more, the plan generated has a utilit y
of 1.36 and is the previous plan with an additional putt-to-

0

1000

2000

3000

4000

5000

1 2 3 4 5

Castle Count

N
od

e
C

ou
nt DT-

Graphplan
PGraphplan

0

2

4

6

8

10

1 2 3 4 5

Castle Count

E
xe

cu
tio

n
 T

im
e

DT-Graphplan

PGraphplan

cup action, this is the highest utilit y plan possible.

Future Work

The additions we plan to make to DT-Graphplan consist
of joint probabilit y distributions and graph pruning. We
initiall y postponed the handling of joint probabiliti es
because of the increase in complexity they incur. In order
to calculate joint probabiliti es, each proposition’s
probabilit y calculation depends on all of the other
propositions. One method of handling this is to add
propositions for all possible joined propositions. This
method increases the number of propositions at each level
exponentiall y. Because there are more nodes, the time
required to build and search the graph will also increase.

A second method to incorporate joint probabiliti es is to
have the user predeclare any of the joins required by the
domain. During graph building, the addition of joined
propositions occurs only for those declared in the domain
description. This reduces the number of propositions to
add and search but relies on the user’s insight into the
domain. We are in the process of incorporating this
method into DT-Graphplan. The user decides how densely
interconnected the propositions are by including a network
in the domain description which dictates how the
propositions are interconnected and the manner the
probabiliti es affect each other.

During graph construction, many nodes added to the
planning graph play no role in the final plan. As shown in
the largest ‘moat and castle’ domain, where at the solution
depth there are 4095 nodes. The planner also makes
limited use of the utilit y information available. This
occurs in the plans for the larger miniature golf domain,
which makes no use of the pickup/drop actions due to
their high costs. All of the propositions produced by these
actions only serve to waste space. We propose to add a
system to reduce the number of propositions generated.
This system would expand a set best percentage of
propositions based on their utilit y, marking the remaining
for later expansion. If search finds no plan, then the
planner revisits and expands the marked nodes.

Conclusion

We have developed a time eff icient decision-theoretic
planner. Our planner based on the fast Graphplan
algorithm finds the first plan meeting a user-defined
threshold. The plan domains are searchable based on a
user-defined goal or utilit y only. The actions used by the
planner handle uncertain initial conditions and incorporate
conditional outcome effects. Sets of rewards and action
costs dictate the assessment of utilit y.

We have compared DT-Graphplan to existing
probabili stic planners, showing the difference in the
approaches and generated plans. Our results show an
additional expressiveness of incorporating utilit y over
these probabili stic planners. In the interest of increasing

this expressiveness, we are in the process of extending the
DT-Graphplan algorithm to incorporate joint probabilit y
distributions. This inclusion would remove the strong
assumption of proposition independence.

We plan to apply our system in a layered robot control
architecture to act as both the planner and sequencer. The
result will be a system that can switch tasks with less
programming, and can generate plans as dictated by
resources.

References

Blum, A. L., and Furst, M. L., 1995, Fast Planning
Through Planning Graph Analysis. In Proceedings of the
International Joint Conference on Artificial Intelligence,
1636-1642.

Blum, A. L., and Langford, J. C., 1999, Probabili stic
Planning in the Graphplan Framework. In the 5th
European Conference on Planning (ECP'99).

Bonasso, R. P., and Kortenkamp, D., 1996, Using a
layered control architecture to alleviate planning with
incomplete information. In Proceedings of the AAAI
Spring Symposium, “Planning with Incomplete
Information for Robot Problems” . 1-4.

Boutilli er, C., Brafman, R. I., and Geib, C., 1997,
Prioriti zed Goal Decomposition of Markov Decision
Processes: Toward a Synthesis of Classical and Decision
Theoretic Planning. In Proceeding of the Fifteenth
International Joint Conference on Artificial Intelligence.

Draper, D., Hanks, S., and Weld, D., 1994, Probabili stic
Planning with Information Gathering and Contingent
Execution, Proceedings of the Second International
Conference on Artificial Intelligence Planning Systems.

Koehler, J., Nebel, B., Hoffmann, J., and Dimopoulos, Y.,
1997, Extending Planning Graphs to an ADL Subset,
Technical Report No. 99, Institute for Computer Science
Albert Ludwigs University.

Majercik, S. M., and Littman, M. L., 1998, MAXPLAN:
A New Approach to Probabili stic Planning. In
Proceedings of the Fourth International Conference on
Artificial Intelligence and Planning Systems, 86-93.

Smith, D. E., and Weld, D. S., 1998, Conformant
Graphplan, Proceedings of the Fifteenth National
Conference on Artificial Intelligence, 889-896.

Weld, D. S., Anderson, C. R., and Smith, D. E., 1998,
Extending Graphplan to Handle Uncertainty and Sensing
Actions, Proceedings of the Fifteenth National
Conference on Artificial Intelligence, 896-904.

