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Abstract

Discovering repetitive, and functional substructures in large structural databases
improves the ability to interpret and compress the data. However, scientists
working with a database in their area of expertise often search for predeter-
mined types of structures, or for structures exhibiting characteristics specific
to the domain. This paper presents a method for guiding the discovery process
with domain-specific knowledge. In this paper, the SUBDUE discovery system is
used to evaluate the benefits of using domain knowledge to guide the discovery
process. Results show that domain-specific knowledge improves the search for
substructures which are useful to the domain, and leads to greater compression
of the data. Empirical and theoretical results also indicate the scalability of

the algorithm to increasingly large structural databases.
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1 Introduction

With the increasing amount and complexity of today’s data, there is an urgent need
to accelerate discovery of knowledge in large databases. In response to this need,
numerous approaches have been developed for discovering concepts in databases using
a linear, attribute-value representation. These approaches address issues of data
relevance, missing data, noise, and utilization of domain knowledge. However, much
of the data that is collected is structural in nature, or is composed of parts and
relations between the parts. Hence, there exists a need to develop scalable tools to
analyze and discover concepts in structural databases [5]. Many reported discovery
tools are also computationally expensive and cannot scale easily to large databases,
especially those containing structural information.

Recently, we introduced a method for discovering substructures in structural
databases using the minimum description length (MDL) principle [3]. The system
is called SUBDUE, and it discovers substructures that compress the original data and
represent structural concepts in the data. Once a substructure is discovered, the sub-
structure is used to simplify the data by replacing instances of the substructure with
a pointer to the newly discovered substructure. The discovered substructures allow
abstraction over detailed structures in the original data. Iteration of the substructure
discovery and replacement process constructs a hierarchical description of the struc-
tural data in terms of the discovered substructures. This hierarchy provides varying
levels of interpretation that can be accessed based on the specific goals of the data
analysis [3].

Although the MDL principle is useful for discovering substructures that maximize
compression of the data, scientists often employ knowledge or assumptions of a specific
domain to guide the discovery process. A domain-independent discovery method is
valuable in that the discovery of unexpected substructures is not blocked. However,
the discovered substructures might not be useful to the user. On the other hand, using
domain-specific knowledge can assist the discovery process by focusing search and

can also help make the discovered substructures more meaningful to the user. Hence,



in order to trade off between domain-independent and domain-dependent discovery
methods, we incorporate domain knowledge into the SUBDUE system, and combine
both the domain-independent and domain-dependent methods to guide the search
toward more appropriate substructures.

A variety of approaches to discovery using structural data have been proposed
(e.g., [2, 6, 9, 10]). Many approaches use a knowledge base of concepts to classify
the structural data. The purposes of the knowledge base in these systems are 1) to
improve the performance of graph comparisons and retrieval, where the individual
graphs are maintained in a partial ordering defined by the subgraph-of relation, 2)
to deepen the hierarchical description, and 3) to group objects into more general
concepts. These systems perform concept learning over examples and categorization
of observed data. SUBDUE allows the use of both domain-independent heuristics and
domain-dependent knowledge. While the above methods process individual objects
one at a time, our method is designed to process the entire structural database, which
consists of many objects.

This paper focuses on a method of realizing the benefits of domain-dependent
discovery approaches by adding domain-specific knowledge to a domain-independent
discovery system. Secondly, this paper explicitly evaluates the benefits and costs of
utilizing domain-specific information. In particular, the performance of the SUBDUE
system is measured with and without domain-specific knowledge along the perfor-
mance dimensions of compression, time needed to discover the substructures, and
usefulness of the discovered substructures. Thirdly, this paper addresses the issue of
scalability of structure discovery using SUBDUE. Scalability tests are performed and
features of databases that can affect the performance of SUBDUE are highlighted.

The following sections describe the approach in detail. Section 2 introduces needed
definitions. Section 3 describes the minimum description length principle used by this
approach, encoding scheme, and the discovery process, and Section 4 presents the in-
exact graph match algorithm employed by SUBDUE. Section 5 describes methods of
incorporating domain knowledge into the substructure discovery process. The evalu-

ations detailed in Section 6 demonstrate SUBDUE’s ability to find substructures that
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Figure 1: Example substructure in graph form.

Instance 1 Instance 2 [nstance 3 Instance 4
/i /A /i 2\

Figure 2: Instances of the substructure.

compress the data and to re-discover known concepts in a variety of domains. Sec-
tion 7 provides an analysis of the run-time complexity of SUBDUE and an evaluation

of SUBDUE’s scalability.

2 Structural data representation

The substructure discovery system represents structural data as a labeled graph. Ob-
jects in the data map to vertices or small subgraphs in the graph, and relationships
between objects map to directed or undirected edges in the graph. A substructure
is a connected subgraph within the graphical representation. This graphical rep-
resentation serves as input to the substructure discovery system. Figure 1 shows
a geometric example of such an input graph. The objects in the figure (e.g., T1,
S1, R1) become labeled vertices in the graph, and the relationships (e.g., on(T1,S1),
shape (C1,circle)) become labeled edges in the graph. The graphical representation
of the substructure discovered by SUBDUE from this data is also shown in Figure 1.

An instance of a substructure in an input graph is a set of vertices and edges

from the input graph that match, graph theoretically, to the graphical representation



of the substructure. For example, the instances of the substructure in Figure 1 are

shown in Figure 2.

3 Substructure discovery using the MDL principle

The minimum description length (MDL) principle introduced by Rissanen [8] states
that the best theory to describe a set of data is a theory which minimizes the de-
scription length of the entire data set. The MDL principle has been used for decision
tree induction, image processing, concept learning from relational data, and learning
models of non-homogeneous engineering domains.

We demonstrate how the minimum description length principle can be used to dis-
cover substructures in complex data. In particular, a substructure is evaluated based
on how well it can compress the entire data set. We define the minimum description
length of a graph to be the minimum number of bits necessary to completely describe
the graph. SUBDUE searches for a substructure that minimizes I(S) 4+ I(G|S), where
S is the discovered substructure, G is the input graph, I(S) is the number of bits
(description length) required to encode the discovered substructure, and I(G|S) is

the number of bits required to encode the input graph G with respect to S.

3.1 Graph encoding scheme

The graph connectivity can be represented by an adjacency matrix. Consider a graph
that has n vertices, which are numbered 0,1,...,7—1. An n x n adjacency matrix A
can be formed with entry A[, j] set to 0 or 1. If A7, j] = 0, then there is no connection
from vertex i to vertex j. If A[i,j] = 1, then there is at least one connection from
vertex ¢ to vertex j. Undirected edges are recorded in only one entry of the matrix.

The encoding of the graph consists of the following steps. We assume that the
decoder has a table of the [, unique labels in the original graph G.

1. Determine the number of bits vbits needed to encode the vertex labels of the

graph. First, we need (lgv) bits to encode the number of vertices v in the graph.



Then, encoding the labels of all v vertices requires (vlgl,) bits. We assume the
vertices are specified in the same order they appear in the adjacency matrix.

The total number of bits to encode the vertex labels is

vbits = lgv+vlgl,

. Determine the number of bits rbits needed to encode the rows of the adjacency
matrix A. Typically, in large graphs, a single vertex has edges to only a small
percentage of the vertices in the entire graph. Therefore, a typical row in the
adjacency matrix will have much fewer than v 1s, where v is the total number
of vertices in the graph. We apply a variant of the coding scheme used by [7]
to encode bit strings with length n consisting of k¥ 1s and (n — k) 0Os, where
k < (n—k). In our case, row i (1 <4 < v) can be represented as a bit string of
length v containing k; 1s. If we let b = max; k;, then the i** row of the adjacency

matrix can be encoded as follows.

(a) Encoding the value of k; requires lg(b + 1) bits.

(b) Given that only k; 1s occur in the row bit string of length v, only (ki)
strings of Os and 1s are possible. Since all of these strings have equal
probability of occurrence, lg ( ) bits are needed to encode the positions of

1s in row 7. The value of v is known from the vertex encoding.

Finally, we need an additional 1g(b+ 1) bits to encode the number of bits needed
to specify the value of k; for each row. The total encoding length in bits for the
adjacency matrix is
rbits = 1g(b+1)+ > lgb+1) +1g (:)
i=1 i

= (v+1)Igb+1 +Zlg<)

. Determine the number of bits ebits needed to encode the edges represented by
the entries A[i,j] = 1 of the adjacency matrix A. The number of bits needed
to encode entry A[i, j] is (Igm) + e(i, 7)[1 + lgly], where e(3, j) is the actual



number of edges between vertex i and j in the graph and m = max; ;e(s, j).
The (lgm) bits are needed to encode the number of edges between vertex i and
J, and [1+1gl,] bits are needed per edge to encode the edge label and whether
the edge is directed or undirected. In addition to encoding the edges, we need
to encode the number of bits (Igm) needed to specify the number of edges per
entry. The total encoding of the edges is

ebits = lgm+Y_> lgm+e(i, 7)1 +1gl,]

i=1j=1

= lgm+e(l+1gl,)+> > Ali,jllgm

i=1j=1

= e(l+1gl,)+(K+1)lgm

where e is the number of edges in the graph, and K is the number of 1s in the

adjacency matrix.

3.2 Substructure discovery without domain knowledge

The substructure discovery algorithm used by SUBDUE is a computationally-constrained
beam search. The algorithm begins with an initial set of substructures matching every
distinctly-labeled vertex in the graph. Each iteration through the algorithm selects
the best substructure according to its ability to minimize the description length of the
entire graph, and expands the instances of the best substructure by one neighboring
edge in all possible ways. The new unique generated substructures become candi-
dates for further expansion. The algorithm searches for the best substructure until
all possible substructures have been considered or the total amount of computation
exceeds a given limit. The evaluation of each substructure is guided by the MDL
principle.

Once the description length (DL) of an expanding substructure begins to increase,
further expansion of the substructure may not yield a smaller description length.
As a result, SUBDUE makes use of an optional pruning mechanism that eliminates
substructure expansions from consideration when the description lengths for these

expansions increases.



To represent an input graph using a discovered substructure involves additional
overhead to replace the substructure’s instances with a pointer to the newly-discovered
substructure. Therefore, the number of bits needed to represent GG, given the discov-
ered substructure S, is

n n
I(G|S) = I(G)—>_I(S)+>_ I(pointer)
= I(G) - :”L_II(S) + n.;zgointer),
where n is the number of instances found for the discovered substructures. The second
term is the sum of bits saved over the discovered substructure, and the last term is
the sum of bits needed for the overhead.
We define a compression measure to evaluate a substructure’s ability to compress

an input graph as the following

DL of compressed graph

)’

C on = 11—
ompression ( DL of original graph

where DL of compressed graph is I(G|S)+1(S), and DL of original graph is I(G).
If Compression is greater than zero, the representation of G' using S is used instead
of the original representation, since it required fewer bits.

Both the input graph and the discovered substructure can be encoded using the
above encoding scheme. After a substructure is discovered, each instance of the
substructure in the input graph is replaced by a single vertex representing the entire

substructure.

4 Inexact graph match

The use of a graph as a representation for data and concepts requires methods for
matching data to concepts. Methods of graph matching can be categorized into
exact graph matching, and inexact matching based on graph distance or probability,
transformation cost, graph identity, and minimal representation criterion.

Although exact structure match can be used to find many interesting substruc-

tures, many of the substructures show up in a slightly different form throughout the



data. These differences may be due to noise, distortion, or may just illustrate slight
differences between instances of the same general class of structures.

Given an input graph and a set of defined substructures, we want to find those
subgraphs of the input graph that most closely resemble the given substructures. To
associate a measure between a pair of graphs consisting of a given substructure and a
subgraph of the input graph, we begin with the inexact graph match given by Bunke
and Allermann [1].

In this inexact match approach, each distortion of a graph is assigned a cost. A
distortion is described in terms of basic transformations such as deletion, insertion,
and substitution of vertices and edges. The distortion costs can be determined by the
user to bias the match for or against particular types of distortions.

Given graphs g; with n vertices and g, with m vertices, m > n, the complexity
of the full inexact graph match is O(n™"'). Because this routine is used heavily
throughout the discovery process, the complexity of the algorithm can significantly
degrade the performance of the system.

To improve the performance of the inexact graph match algorithm, we extend
Bunke’s approach by adding a branch-and-bound search. The set of possible partial
mappings can be viewed as a search tree. The cost from the root of the tree to a given
node is calculated as the cost of all of the distortions corresponding to the partial
mapping for that node. Vertices from the matched graphs are considered in order
from the most heavily connected vertex to the least connected, as this constrains the
remaining match. Because branch-and-bound search guarantees an optimal solution,
the search ends as soon as the first complete mapping is found.

In addition, the user can limit the number of search nodes considered by the
branch-and-bound procedure (defined as a function of the input graph sizes). Once
the number of nodes expanded in the search tree reaches the defined limit, the search
resorts to hill climbing using the cost of the mapping so far as the measure for choosing
the best node at a given level. By defining such a limit, significant speedup can
be realized at the expense of accuracy for the computed match cost. A complete

description of the inexact graph match procedure used by SUBDUE is provided by



Cook and Holder [3].

5 Adding domain knowledge to the SUBDUE sys-
tem

The SUBDUE discovery system was initially developed using only domain independent
heuristics to evaluate potential substructures. As a result, some of the discovered
substructures may not be useful and relevant to specific domains of interest. For
instance, in a programming domain, the BEGIN and END statements may appear
repetitively within a program; however, they do not perform any meaningful function
on their own; hence they exhibit limited usefulness. Similarly, in the CAD circuit
domain, some sub-circuits or substructures may appear repetitively within the data;
however, they may not perform meaningful functions within the domain of usage.
To make SUBDUE’s discovered substructures more interesting and useful across a
wide variety of domains, domain knowledge is added to guide the discovery process.
Furthermore, compressing the graph using the domain knowledge can increase the
chance of realizing greater compression than without using the domain knowledge.
In this section we present several types of domain knowledge that are used in
the discovery process and explain how they bias discovery toward certain types of

substructures.

5.1 Model/Structure knowledge

Model /Structure knowledge provides to the discovery system specific types of struc-
tures that are likely to exist in a database and that are of particular interest to a
scientist using the system. The model knowledge is organized in a hierarchy that
specifies the connection between individual structures. Nodes of the hierarchy can
be classified as either primitive (non-decomposable) or non-primitive. The primitive
nodes reside in the lowest level, i.e., the leaves, and all non-primitive nodes reside in

the higher levels of the hierarchy. The primitive nodes represent basic elements of the
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Figure 3: A simple model / structure hierarchy.

domain, whereas the non-primitive nodes represent models or structures which con-
sist of a conglomeration of primitive nodes and/or lower-level non-primitive nodes.
The higher the node’s level, the more complex is the structure it represents. The
hierarchy for a particular domain is supplied by a domain expert. The structures in
the hierarchy and their functionalities are well known in the context of that domain.
This knowledge is formed in a bottom-up fashion. Users can extend the hierarchy by
adding new models.

To illustrate the structure knowledge, a simple example is shown in Figure 3, rep-
resenting a hierarchy based on the shape structure. The primitive nodes are triangle,
square, circle and rectangle. The non-primitive nodes are built upon the primitive
nodes and/or non-primitive nodes. While Figure 3 represents a hierarchy built using
commonalities between individuals’ shape, in the programming and computer aided
design (CAD) circuit domain, the hierarchies are built based on commonalities be-
tween individuals’ functional structure. For example, in the CAD circuit domain,
basic components of a circuit (e.g., resistor, transistor) are represented by primitive
nodes, and functional sub-circuits such as operational amplifier, filter, etc. are rep-
resented by non-primitive nodes. This hierarchical representation allows examining

of the structure knowledge at various levels of abstraction, focusing the search and



reducing the search space.

Although the minimum description length principle still drives the discovery pro-
cess, domain knowledge is used to input a bias toward certain types of substructures.
First, the modified version of SUBDUE can be biased to look specifically for struc-
tures of the type specified in the model hierarchy. The discovery process begins with
matching a single vertex in the input graph to primitive nodes of the model knowl-
edge hierarchy. If the primitive nodes do not match the input vertices, the higher
level nodes of the hierarchy are pursued. The models in the hierarchy pointed to by
the matched model nodes in the input graph are selected as candidate models to be
matched with the input substructure. Each iteration through the process, SUBDUE
selects a substructure from the input graph which has the best match to one of the
selected models and can be used to compress the input graph. The match can either
be a subgraph match or a whole graph match. If the match is a subgraph match,
SUBDUE expands the instances of the best substructure by one neighboring edge in all
possible ways. The newly generated substructure becomes a candidate for the next
iteration. However, if the match is a whole graph match, the process has found the
desired substructure, and the chosen substructure is used to compress the entire input
graph. The process continues to expand the substructure until either a substructure
has been found or all possible substructures have been considered.

To represent an input graph using a discovered substructure from the model hi-
erarchy, the representation involves additional overhead to replace the substructure’s
instances with a pointer to the model hierarchy. In some cases, a model definition
includes parameters which must also be represented. Consider an example in the
programming domain where a substructure of the model hierarchy (e.g., Sort(a, b)),
where a and b are dummy variables) is discovered in a program. SUBDUE replaces each
of the discovered substructure’s instances with Sort(a;, b;), where Sort is a pointer to
the model hierarchy, and a; and b; are parameters of the ith instance.

Therefore, the number of bits needed to represent G, given the substructure S



which matches the model M is

I(GIM) = I(G) - i I(S) + i I (pointer) + i I(parameters;)

i=1 =1 =1

= I(G) — nI(S) + nl(pointer) + > _ I(parameters;),

i=1
where 7 is the number of instances found for the discovered substructure. The second

term is the sum of the bits saved over the discovered substructure, and the last two
terms are the sum of bits needed for the overhead.

When the substructure only matches part of a model (subgraph match), then
representing the model includes an overhead associated with specifying the path to
the model in the hierarchy and the mapping of all the substructure’s vertices and
edges to part of the model’s vertices and edges. The mapping describes how many
vertices of the model, how many edges of the model, and which vertices and edges of
the model are matched to the substructure.

If the part of the model matching the substructure is too small, the savings may
not cover the overhead cost. Consequently, when the match is a subgraph match, the

number of bits needed to represent M is
I(M) = I(path)+ I(mapping,) + I(mapping.),

where I(mapping,) is the number of bits needed to describe the mapping for the
vertices, and I(mapping.) is the number of bits needed to describe the mapping for
the edges.

However, when the substructure matches all parts of a model graph (whole graph
match), there is no need to indicate the mapping, because we assume the mapping
order of the substructure is the same as the order of model. Thus the overhead
incurred includes only the path to the model in the hierarchy. When a whole graph

match is found, the number of bits needed to represent M is
I(M) = I(path).

I(path) is encoded as a path in the hierarchy of model knowledge, where a path

begins at the matched primitive node and terminates at the found model.

I(path) = Level x lgl,



where Level is the depth of the model in the hierarchy and /;, is the number of unique
models in the hierarchy.
In the computation for subgraph match, I(mapping,) is encoded as the following:

I(mapping,) = lgnv, +1g (va>,

S

where nv, is the number of vertices in the substructure and nv,, is the number of
vertices in the model. The first term describes the number of mapped vertices, and
the second term describes which vertices are mapped.

Similarly, I(mapping.) is encoded as the following

I(mapping.) = lgnes+1g (ZZT),
where ne; is the number of substructure’s edges and ne,, is the number of model’s
edges. The first term describes how many edges are mapped, and the second term
describes which edges are mapped.

If Compression is greater than zero, the representation of G using S which
matches the model M is used instead of the original representation. After a sub-
structure is discovered, each instance of the discovered substructure in the input

graph is replaced by a pointer to a predefined model in the model hierarchy which

representing the substructure.

5.2 Graph match rules

At the heart of the SUBDUE system lies an inexact graph match algorithm that finds
instances of a substructure definition. Since many of substructure instances can show
up in a slightly different form throughout the data, and each of these differences is
described in terms of basic transformations performed by the graph match, we can
use graph match rules to assign each transformation a cost based on the domain of
usage. This type of domain-specific information is represented using if-then rules such

as the following:

IF (domain = z) and (perform graph match transformation y)



THEN (graph match cost = z)

To illustrate this rule, consider an example in the CAD circuit domain. In many
representations of CAD circuits, unique instances of a resistor are given unique vertex
labels in the graph. However, we allow a vertex representing one resistor (label begins
with “R”) to match to any other instance of a resistor. Similarly, in a programming
domain we may allow a variable vertex to be substituted by another variable, but do
not allow a vertex representing an special symbol or function call to be substituted

by another vertex. A specific rule can then be represented as the following:

IF (domain = CAD) and (Chary(Vertexl) = Char,(Vertex2) = “R”)
THEN graph match cost = 0.0;

ELSE IF (Vertexl <> Vertex2)
THEN graph match cost = 2.0;

The graph match rules allow a specification of the amount of acceptable generality
between a substructure definition and its instances, or between a model definition and
its instances in the input graph. Given g1, g2, and a set of distortion costs, the actual
calculation of similarity can be performed using the search procedure described earlier.
As long as the similarity is within the user-defined threshold, the two graphs g1 and

g2 are considered to be isomorphic.

6 Evaluation

In this section, we evaluate the benefits and costs of utilizing the domain-specific
knowledge in performing substructure discovery. We measure the performance of
SUBDUE with and without domain-specific knowledge when applied to databases in
the CAD circuit and artificial domains. The goals of our substructure discovery
system are to efficiently find substructures that can reduce the description length
needed to describe the data, and to find substructures that are considered useful for

the given domain.



To evaluate SUBDUE in the CAD circuit domains presented in Section 6.1, we com-
pare SUBDUE’s discovered substructures to human ratings. If the approach has some
validity, SUBDUE should prefer substructures which were rated highly by humans.
Three types of discovered substructures are evaluated: 1) substructures discovered
without using the domain knowledge, 2) substructures discovered using the graph
match rules, and 3) substructures discovered using a combination of model knowl-
edge and graph match rules. The performance of the system is measured along three
dimensions: 1) compression, which shows a substructure’s ability to compress an in-
put graph, 2) number of search nodes expanded by SUBDUE, which indicates the time
to discover a substructure, and 3) average evaluation value and standard deviation
of human rating, which give the interestingness of a substructure as measured by
human experts. The interestingness of SUBDUE’s discovered substructures are rated
by a group of 8 domain experts on a scale of 1 to 5, where 1 means not useful in
the domain and 5 means very useful. The number of instances of the discovered

substructure that exist in the input database is also listed.

6.1 Evaluation of substructures in a CAD circuit domain

As a result of increased complexity of design and changes in the technologies of
implementation of integrated electronic circuitry, the discovery of familiar structures
in circuitry can help a designer to understand the design, and to identify common
reusable parts in circuitry.

We evaluate SUBDUE by using CAD circuit data representing a sixth-order band-
pass “leapfrog” ladder. The circuit is made up of a chain of somewhat similar struc-
tures (see Figure 4). We transform the circuit into a graph representation in which
the component units and interconnection between several component units appear as
vertices and the current flows appear as edges.

Three types of discovered substructures are evaluated: 1) substructures discov-
ered without using the domain knowledge, 2) substructures discovered using the graph
match rules, and 3) substructures discovered using a combination of model knowledge

and graph match rules. In this domain, the model hierarchy is built based on com-



Figure 4: Bandpass “leapfrog” : sixth-order.

monalities between circuits’ functional structure. For example, basic components of
a circuit (e.g., resistor, transistor) are represented by primitive nodes, and functional
sub-circuits such as operational amplifier, filter, etc. are represented by non-primitive
nodes. Furthermore, graph match rules are used to allow two similar components with
different labels to be matched.

The performance of the system in this domain is measured in terms of the com-
pression, the computational complexity, and the average human rating. The number
of instances of the discovered substructure that exist in the input database is also
listed.

The description length of the circuit shown in Figure 4 is 3139.05 bits. Fig-
ure 5 shows the substructures discovered in the circuit. The compression value is
accumulated from previous iterations. Substructures are labeled with the iteration in
which they were discovered. Substructures inside boxes were discovered in previous
iterations, and thus form a hierarchy of substructure concepts.

When the model knowledge and graph match rules are used, nine instances of
operational amplifier circuits are quickly selected. We also tested SUBDUE’s ability
to find a hierarchy of substructures. The substructures discovered by SUBDUE for
the second iteration represent four instances of inverting integrator circuits which are
made up of operational amplifier circuits. For the third iteration, SUBDUE discovered
two instances of inverting amplifier circuits which are also made up of operational

amplifiers. All of these substructures receive very high human ratings, and represent



Figure 5: CAD circuit—Discovered substructures.



a tremendous reduction in description length. On the other hand, the substructures
discovered using the graph match rules offers less compression than the substructures
found using no domain knowledge, and both of them receive lower human ratings.
Note that the substructure discovered on SUBDUE’s first iteration using no domain
knowledge receives a high human rating, because the substructure represents an in-

verter and appears many times in the input graph.

6.2 FEvaluation of substructures in an artificial domain

While we have shown the result of evaluations in a real-world domain, we now examine
whether such domain knowledge is useful in general. We would like to evaluate
whether the domain knowledge can improve SUBDUE’s average case performance in
an artificially-controlled graph. To test this performance, an artificial substructure
is created and is embedded in larger graphs of varying sizes. The graphs vary in
terms of graph size and the amount of deviation in the substructure’s instances,
but are constant with respect to the percentage of the graph that is covered by the
substructure’s instances. For each deviation value, we run SUBDUE on the graphs until
no more compression can be achieved with the following four cases: a) no domain
knowledge, b) graph match rules, ¢) combined model knowledge and graph match
rules, and d) combination of a & c. We then measure the compression, the number of
nodes expanded, and the number of embedded instances found for all iterations. The
effects of the varying deviation values are measured against the average compression
value of the four cases mentioned above (Figure 6), the average number of embedded
instances found (Figure 7), and the average number of nodes expanded (Figure 8).
As the amount of deviation increases, the compression in all four cases decreases
as expected. Although case a demonstrates slightly better compression than case
¢, it is not capable of finding specific relevant substructures. On the other hand,
case ¢ demonstrates the least compression, and is capable of finding the embedded
substructure. Case b yields the highest compression, but it does not always find
the embedded substructure. Case d performs well in both compression and finding

the embedded substructures. Hence, the combination of discovery with and without
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domain knowledge performs best as the amount of deviation is increased.

Figure 8 shows that as deviation increases, the run time for case ¢ remains about
the same, because the same substructures (of the same size) are found consistently.
However, since case d combines both case a and c, and finds varied sizes of substruc-
tures, it expands the greatest number of nodes. Because case a and b discover smaller
substructures as deviation is increased, they expand fewer nodes.

We again embedded an artificial substructure into larger graphs of varying sizes.
Each of the graphs varies in size, as well as in the amount of substructure coverage.
For each coverage value, we test the same four cases. The effect of the varying
coverage values are measured against the average number of embedded instances
found (Figure 9). As coverage increases, cases ¢ and d find an increasing number of
embedded instances. Case b finds only a slightly increasing number of instances. On
the other hand, case a does not find any instances.

In addition to the domains described here, SUBDUE has been used successfully with
and without domain knowledge in a number of other domains including databases of
program source code, NASA satellite images, Chinese character databases, and the

Brookhaven protein databases [4].
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7 Scalability

A topic of critical importance in data mining is the scalability of the developed algo-
rithms. In this section we address the issue of scalability of the SUBDUE system. First,
we derive an upper bound on the theoretical complexity of the system, and demon-
strate how exponential run time performance can be avoided. Second, we present the
results of empirical tests on an artificial domain and CAD circuit domains, indicating

the run time of SUBDUE as the input graph size increases.

7.1 Theoretical computational complexity analysis

Since algorithms of knowledge discovery in databases always deal with large databases,
the issue of computational complexity is very significant. The algorithms employed
by SUBDUE are computationally expensive. For example, an unconstrained graph
match is exponential in the number of graph vertices. In practice, SUBDUE employs
constraints that make the program more scalable. Since the algorithm spends most
of its time perform graph matching, the total running time of the algorithm can be
expressed as the number of search nodes expanded during graph matches throughout
the entire discovery process. In this section, we generate an upper bound on the

complexity of SUBDUE as a function of the number of vertices in the input graph.



Additionally, the algorithm without using domain knowledge and the algorithm using
domain knowledge are compared.

In what follows, we will be using the following definitions:

e [ = user-defined limit on the number of substructures considered for expansion

e nv = number of vertices in the input graph

e nsub = total number of substructures that can be generated

e gm = user-defined maximum number of partial mappings considered during
each graph match

® n;,s; = total number of instances of a given substructure

e m = maximum number of vertices of a model in the model knowledge

e M = average branching factor of a model in the model knowledge

e M(C' = average number of models that are parent to another model in the model
hierarchy

e N1 = total number of vertices expanded in SUBDUE without using domain
knowledge

e N2 = total number of vertices expanded in SUBDUE using model knowledge and

graph match rules

7.1.1 Complexity without domain knowledge

This section provides an expression for the computational complexity of the algorithm
without using domain knowledge, showing that it depends on the number of vertices
in the input graph and the limitations set by the user.

Since the algorithm spends most of its time perform graph matching, the total
running time of the algorithm can be expressed as N1 = nsubXmn;,s X gm. Considering
an upper bound time complexity, assume the input graph is a fully connected graph,
where the number of neighbors for a given vertex is (nv — 1), the maximum size of a
substructure generated in iteration i of the algorithm is 7 vertices, and the number of
vertices which have already been considered in previous iterations is ( — 1). Hence,
the total number of vertices that can be expanded is ((nv — 1) — (i — 1)). Therefore,

the total number of substructures that can be generated is nsub = Y%, i x ((nv —



1)~ (i - 1)).

The total number of instances needed to be compared for a given substructure
involves the instances of the substructure itself and the instances of the substructure’s
parent. For a substructure with ¢ vertices, the maximum number of non-overlapping
instances is “*. Since we consider an upper bound case, let the maximum number of
non-overlapping instances be nv. Hence, the total number of instances needed to be
compared for a given substructure is n;,ss = nv x (L — 1).

We have shown that by placing a limit on gm and L, the time complexity for the
graph matching is polynomial in nv. If either of the two limits L or gm are removed,
the complexity of the discovery algorithm becomes exponential in nv. We are cur-
rently developing a parallel implementation of SUBDUE that may further improve the

scalability of the algorithm.

7.1.2 Complexity using domain knowledge

This section provides an expression for the computational complexity of the algorithm
using domain knowledge, showing that it depends on the number of vertices in the
input graph, the limitation set by the user, and the model knowledge used. We
will point out that for the upper bound case, the number of vertices expanded for
discovery using domain knowledge can be less than the number of vertices expanded
for discovery without using domain knowledge under certain circumstances.

Since the algorithm searches not only for the instances of a substructure, but also
for a model in the model hierarchy which matches the substructure, the total running
time of the algorithm can be expressed as N2 = (nsub X nise X gm) + (nsub x M X
MC x gm), where the first term is the number of vertices expanded for the search of
the substructures’ instances, and the second term is the number of vertices expanded
during the search for a model in the model hierarchy.

The maximum number of expanded nodes for a substructure is limited to the
maximum number of vertices of a model in the model hierarchy (m). Hence, the
number of iterations is limited to m. Therefore, nsub=>", i x ((nv —1) — (1 —1)).

The total number of instances needed to be compared for a given substructure is



Ninst = nv X (m — 1).

We have shown that by placing a limit on gm, the time complexity for the graph
match algorithm is polynomial in nv. If the gm limitation is removed, the complexity
of the discovery algorithm becomes exponential in nwv.

(M x MC) is dependent upon the size of the model knowledge. In general, L
is set to half the size of the input graph, gm is set to the fourth power of the size
of a substructure or model, whichever is bigger. Therefore, L is much larger than
m. When the size of a substructure is big, which means that (M x MC) is small
compared to gm, and (M x MC) is negligible, the number of nodes expanded for
discovery using domain knowledge is less than the number of nodes expanded for
discovery without domain knowledge.

In conclusion, the number of nodes expanded for discovery using domain knowl-
edge and without domain knowledge depends on the size of the input graph and model
knowledge (m, M, MC), the size of the discovered substructures, and the limitations

set by the user.

7.2 Empirical Scalability Results

The previous section derived upper bounds on SUBDUE’s run-time performance. Here
we empirically demonstrate SUBDUE’s run-time performance on increasing database
sizes. Figure 10 shows the results of the first experiment, which measures SUBDUE’s
run time when used to discover substructures embedded in artificial graphs. The x
axis of the graph represents the size of the artificial input graph in number of vertices.
The graphs are designed to contain twice as many edges as vertices. For each graph
size, six random graphs are generated. The graphs vary in terms of the type of
substructure embedded, the number of instances of the substructure, and the amount
of deviation in the substructure instances.

As can be seen from the graph in Figure 10, SUBDUE’s run time increases poly-
nomially with the size of the input graph. Figure 11 demonstrates similar results
when SUBDUE is applied to increasing sizes of CAD graphs representing portions

of an A-to-D converter. For this experiment, a CAD circuit database was provided
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Figure 10: Artificial graph scalability Figure 11: CAD scalability results.

results.

by National Semiconductor. The original circuit was described in terms of modular
sub-circuit units. We flattened the database, removing the sub-circuit definitions, to
let SUBDUE rediscover the modular components. The graphs in this experiment rep-
resent sub-circuits from the original circuit database. Although variations in graph
features cause variations in run time, Figure 11 again indicates a polynomial increase
in run time as the graph size increases linearly. To provide a basis of comparison, the
CAD circuit shown in Figure 4 is represented using a graph with 156 vertices and 200
edges.

While the theoretical complexity indicates exponential run time of the system
when the graph match and number of substructure definitions is unconstrained, these
empirical results demonstrate a polynomial increase in run time. There are several
reasons for the improvement in actual performance over the theoretical upper bound.
First, the graphs used for the experiments in this section have a low amount of
connectivity. As the ratio of edges to vertices in the input graph increases, both the
potential number of substructures and the amount of work inherent in graph match
increases. To demonstrate the effect on performance, Figure 12 graphs the run time
of SUBDUE as the number of vertices in the input graph remains at 200. Connectivity

here reflects the ratio of number of edges to number of vertices. In practice, a low
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Figure 12: Effect of connectivity on performance.

amount of connectivity is usually found. Of the over 100 graphs tested in a variety
of domains, the average ratio of edges to vertices is 1.8.

Although connectivity yields the most dramatic effect on performance, other fea-
tures of the input graph can also affect SUBDUE’s run time. These features include
the number of unique vertex labels, unique edge labels, the size of the best discovered
substructure, and variance in instances of discovered substructures. As mentioned in
the previous subsection, SUBDUE’s performance can be guided manually to optimize
the tradeoff between value of discovered substructures and run time. In particular,
by placing a limit on gm, the complexity of each graph match can be limited at the
expense of a less-accurate determination of similarity between substructure instances.
Similarly, the value of L can be changed to limit the number of substructures that
are considered for expansion. These parameters can be used to ensure polynomial

run-time performance with even the most complex input graphs.

8 Conclusions

The increasing structural component of today’s databases requires data mining algo-
rithms capable of handling structural information. The SUBDUE system is specifically

designed to discover knowledge in structural databases.



This paper describes a method for integrating domain independent and domain
dependent substructure discovery based on the minimum description length principle.
The method is generally applicable to many structural databases, such as computer
aided design (CAD) circuit data, computer programs, image data, chemical com-
pound data, etc. This integration improves SUBDUE’s ability to both compress an
input graph and discover substructures relevant to the domain of study. We also
analyzed the complexity of the algorithms and showed that by placing computational
constraints on the graph match and substructure expansion, exponential behavior of
the algorithm can be avoided. These complexity results combined with the results
of experiments on databases of increasing size verify the scalability of the SUBDUE
system.

We are continuing to demonstrate SUBDUE’s behavior on a wide range of discovery
tasks. Because scalability is of paramount importance for data mining applications,
we are also currently developing a parallel MIMD version of SUBDUE and a version

that runs on a distributed network of workstations.
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