Comparison of Techniques to Learn Agent Strategies in Adversarial
Games*

Shar Whisenhunt and Diane J. Cook
Box 19015
Department of Computer Science and Engineering
University of Texas at Arlington
Arlington, TX 76006
{shar, cook}@centauri.uta.edu

Abstract

The focus of this project is to develop methodologies for
using machine learning techniques in adversarial robot
situations. In particular, we are using multiple robots
to play a version of the wumpus world game. In this
game, one robot represents the agent and a second robot
represents the wumpus. Our goal is for the agent robot
to make autonomous decisions that allow it to elude the
wumpus, grab the gold and win the game.

To achieve this goal, we consult several supervised
machine learning algorithms to decide the agent’s move.
Agent moves are learned from training examples encod-
ing characteristics of the world, the game state, and the
predicted wumpus move. In this paper we will com-
pare the performance of a decision tree learner, a naive
Bayesian classifier, a backpropagation neural network,
and a learning-based belief network on actual wumpus
world games.

Introduction

Many adversarial environments exist in which an agent
must take the best possible action in order to survive
or outwit an opponent. While agent strategies can
be learned in such situations, applying learning tech-
niques to real-world applications places constraints on
the learner such as being able to deal with uncertainty
and learning from few training examples. Uncertainty
may arise from a number of sources including incom-
plete or incorrect information about the world, unex-
pected changes in the environment, and unknown ac-
tions taken by adversaries. The scarcity of training ex-
amples may occur when generating training examples
is expensive or when a separate training phase is not
possible, thus learning must occur in an incremental
fashion.

In this project we are interested in using machine
learning techniques to automatically select agent moves
in a two-player robotic adversarial game. We apply
several alternative machine learning methods to to a

Copyright 1998, American Association for Artificial In-
telligence. All rights reserved. The official version of this
paper has been published by the American Association for
Artificial Intelligence (http://www.aaai.org).

robotic version of the wumpus world game including
C4.5, a naive Bayesian classifier, a backprop neural
net, and a learning-based belief network. We measure
the performance of these learning systems on simulated
games and monitor the performance of each system as
the number of available training examples is varied and
as the amount of uncertainty in robot sensing changes.
The following section of the paper describes the two-
player game we utilize for our experiments, an enact-
ment of the wumpus world game. We then provide a de-
scription of the belief network construction and learning
algorithms used to suggest agent actions. We evaluate
the results of the various approaches using randomly-
generated test cases from the wumpus world game.

Wumpus world

The wumpus world is based on an early computer game.
The basis for the game is an agent who explores an NxN
grid world while avoiding a creature known as the wum-
pus. Other elements of the world consist of bottomless
pits (which do not affect the wumpus), and a bar of
gold. The objective of the game is to collect the gold
bar, return to the initial grid location [1,1] and exit the
cave. The information that the agent senses/receives
each turn to aid in locating the gold and avoiding the
wumpus and pits, is a five-element percept. If the agent
is in a square directly adjacent to a pit it will perceive
a breeze. If there is a gold bar in the same location
as the agent it will perceive glitter. If the agent is ad-
jacent to the wumpus it will perceive a stench. If the
agent runs into a wall it will perceive a bump, and if the
agent shoots its arrow and kills the wumpus it will hear
a scream. The actions allowed the agent are to move
forward, turn right, turn left, grab gold, shoot the ar-
row, and climb out of the cave. The actions allowed the
wumpus are to move forward, turn left, turn right, and
do nothing.

Changes to the domain were made to use sonar read-
ings instead of the five element percept, because the
robots playing the roles of the agent and the wumpus
possess a ring of sonar sensors. The agent is supplied
with locations of the pits and the gold bar. Using the
sonar grid, the robot can determine where the walls are,
can calculate its own position in the world, and can de-

termine whether or not it is in horizontal or vertical
alignment with the wumpus.

An obstacle is inserted into the domain to increase
the world complexity. If the wumpus and agent are
on opposite sides of the obstacle, neither can sense the
other robot.

The robots playing the roles of agent and wumpus
are Trilobots. The Trilobot robots have been given an
eight-element sonar array. The sonar array polls all
eight sonar sensors, then rotates 22.5 degrees and polls
all sensors again, yielding a total of sixteen readings. If
the wumpus is not directly in line (same row or same
column of the grid world) as the agent, the agent may
not sense the wumpus. A picture of the robots in a
portion of the wumpus world can be seen in Figure 1.

The behavioral strategies that the wumpus can em-
ploy are to 1) move to a gold bar and circle it clockwise,
2) move to a gold bar and circle it counter-clockwise,
3) attack (move toward) the agent, 4) do nothing, and
5) hide behind an obstacle until the agent comes close
and then attack. The wumpus will only follow one of
these strategies throughout a given game. We learn a
weighted DFA that represents wumpus moves (Peter-
son & Cook 1998), and predict the next wumpus move
at any point during the game using the output of the
DFA algorithm.

Learning Agent Moves for Adversarial
Games

The goal of this project is to learn agent moves in the
two-player wumpus world game. For this learning ap-
plication we require learning algorithms that can oper-
ate in a supervised mode and that can yield good perfor-
mance in the presence of noise. Although the algorithm
will be trained on problems from a simulated game, the
learned concepts must perform well in a robotic envi-
ronment with noisy sensor readings.

We select learning algorithms that meet these crite-
ria and yet represent varied approaches to supervised
learning. In particular, we compare the performance
of a rule-learner using C4.5 (Quinlan 1993), a statisti-
cal approach to learning using a naive Bayesian classi-
fier (Cestnik 1990), a backprop neural network (Rumel-
hart & McClelland 1986), and Netica, a commercial
belief network that learns conditional probability rela-
tionships from training examples. The first three learn-
ing algorithms are contained in ML2.0, a UTA-created
C collection of machine learning routines and perfor-
mance analysis functions.

We choose to include Netica in our study in particu-
lar because we may need to make decisions in our robot
domain while some uncertainty exists. We construct a
belief network to represent the factors influencing the
choice of action for the agent to take. By incorporating
the learning algorithm available in the Netica belief net-
work system, the values of the belief net can be learned
automatically from randomly-generated training exam-
ples. Given uncertainty, we are interested to see if the

belief network outperforms the other algorithms which
are not set up to handle uncertain conditions. After
training, we compare the results of the various algo-
rithms to determine which method most often makes
the best decision as to the agent’s best move.

We randomly-generate 100 cases to test the first three
learning algorithms. Each case is encoded in terms of
the world description, the current agent position and
wumpus position, and the DFA-predicted wumpus next
move. Each case is classified based on the best action
that can be taken in the situation. In our modified ver-
sion of the game, the agent must select an action from
the following possibilities: move north, move south,
move east, move west, grab the gold, or climb out of
the world. Preferred moves bring the agent closer to the
gold initially (closer to the [1,1] location if the gold has
been grabbed) without moving into the current wum-
pus square, the pit locations, or the predicted wumpus
next location.

When simulated, it is easy to see all the variables that
are needed to make a sound decision. We know the po-
sition of the all the pits, the obstacle, the gold bar, and
the wumpus. However, the robots are not always able
to obtain all the information needed to decide the opti-
mal move. For example, the agent may not be able to
“see” the wumpus if the wumpus cannot be detected by
the agent’s sonar sensors. The agent needs to select an
action based on this possibly incomplete information.

The structure of our Netica belief net is shown in Fig-
ure 2. The gold (x,y) location and agent (x,y) location
are provided as input to the network. Based on this
information together with the highest-probability pre-
dicted wumpus location output by the DFA algorithm,
the belief net generates values corresponding to the de-
sirability of each possible action. Using this value and
the feasibility of each move (the agent cannot move into
pit locations, obstacle locations or current wumpus lo-
cations), the final node of the belief network generates a
set of values corresponding to the probability of success
for each possible agent action. The encoded information
described here is available to all of the learning systems
except for the causal relationships between parts of the
domain.

Netica uses algorithms for fast probabilistic inference
in a compiled belief network based on research per-
formed by Spiegelhalter et al (Spiegelhalter et al. 1993)
and Neapolitan (Neapolitan 1990). Netica’s learning al-
gorithm is a type of supervised learning. Each training
case represents an example world situation or event.
Each feature that can be used to describe the training
case becomes a node in the learned network. Although
learning of belief networks consists of learning both the
structure of the network and the conditional probability
relationships at each node, currently Netica performs
only parameter learning and assumes the structure is
predefined.

Netica assumes that each conditional probability is
independent, an assumption that can be fairly well
maintained in the wumpus world game. The system will

15

Figure 1: Robotic wumpus world.

Wumpus Wumpus-
Gold - x Gold-y Agent - x Agent -y ne;:t-f ! ne;_yp !
18 18 18 18 18 18
Want-to-move
North
South Can-move-N
Ead True/Fal
West rue/ False
Climb
Grah Can-move-S
True/ False
Agent-best-move Can-move-E
North True/ False
South
East Can-move-W
Wed True/Fal
Climb fuerras
Grah
Figure 2: Wumpus world belief network

generate any specified number of training cases, which
are classified by the user. Netica will then learn prob-
ability relationships that minimize total error based on
the sample cases.

Evaluation

To compare the performance of these four systems,
we perform ten-fold cross validation on the 100 cases.
These training examples include random values for the
agent position, the gold position, the wumpus current
position, the wumpus’s chosen strategy, and six pit lo-
cations.

The prediction accuracies for each of the ten trials are
shown in Table 1. As can be seen from these results,
although the decision tree performs well, the belief net-
work consistently yields the best result and generates
the best overall performance. Both C4.5 and Netica
performed significantly better than either the backprop
algorithm or the Bayesian classifier.

In the first experiment, each system was learning the
best moves to reach the gold. To determine how well
these systems can learn more complex concepts, we gen-
erate 100 training examples, half of which lead the agent
to the gold and half of which lead the agent to the exit
once the gold is grabbed.

Next, we monitor the algorithms’ ability to handle
uncertainty. We model the type of uncertainty that
will likely occur during robotic execution of the adver-
sarial game. Because of faulty readings, sensor gaps,
or obstacle occlusion, the robot may not always accu-
rately sense its own location or the wumpus location.
To simulate this uncertainty we inject a “don’t know”
value for these attributes in a percentage of the training
examples. Figure 3 shows that C4.5 and the Bayesian

Trial | C4.5 | Bayesian Classifier (BC) | Backprop NN (NN) [Netica (Net) |

1 80 60 40 100
2 90 90 20 100
3 90 80 20 90
4 90 70 20 50
5 100 70 40 100
6 80 80 30 100
7 80 70 50 90
8 90 90 60 80
9 90 90 50 100
10 90 100 30 100
Average 88 80 36 91
Stat. Sig. Bayes — .034854
Backprop — .000822 Backprop — .008055
Netica — .302179 Netica — .042075 Netica — .003815

Table 1: Percentage of cases accurately predicted for each algorithm

=— -a Netica
A C45
[<H) . L g
>3 Bayesian Classifier
8BS gf ~ ¢ ———0 oo
3 § +—o Backprop NN
O go¢b— o ¢
20
0 25 50
Per centage uncertainty

Figure 3: Predictive accuracy with uncertainty

| Trial [C4.5] BC | NN | Net |
1 80 50 20 | 100
2 100 90 20 80
3 70 40 60 | 100
4 70 80 30 90
5 100 50 70 | 100
6 90 80 30 | 100
7 90 60 70 | 100
8 80 80 30 90
9 90 50 50 90
10 90 90 30 90

Average 86 67 | 41 94

Table 2: Percentage of accurated predictions for each
algorithm - half gold, half exit

109 P ——a —-—a C45
"

92 80l A/A/H A A Bayesian Classifier
5 g 60 o —o Backprop NN
Do
g
a

40 0—-—0-—0-_9

20

100 200 300 400

Training Examples

Figure 4: Predictive accuracy as a function of the num-
ber of training examples

classifier are adversely affected by an increased amount
of uncertainty, while the neural network results jump
around and Netica yields steady results even with in-
creased uncertainty. Thus Netica not only yields the
best results overall but also demonstrates the greatest
stability in the presence of uncertainty.

We are then interested in determining which learn-
ing techniques will be affected the most by an increased
number of training examples. Because of the training
time, we do not include Netica in this experiment. For
this experiment, we generate 100, 200, 300, and 400
random training examples using only one goal (grab
the gold). As Figure 4 shows, all learning algorithms
except the neural network benefit from an increased
number of training examples, and the Bayesian classi-
fier realizes the greatest improvement as the number
of training examples increases. Because training exam-
ples can be expensive to generate in robotic domains,
we would select a system such as C4.5 or Netica which
can perform well with few training examples but which
can also benefit from more training examples when they
are available.

Finally, instead of determining which algorithm

would perform best for all situations, we attempt to
let C4.5 make a decision of which learned output to
use for a given game situation. We train the learning
system on the 100 game situations (50 gold, 50 exit),
using the name of the learning system with the correct
answer as the classification for the instance (if multi-
ple algorithms give the right answer, opt for the system
with the higher average success rate). When Netica is
included as an option, C4.5 always decides to let Netica
make the choice. When C4.5 chooses only between it-
self, the Bayesian classifier, and the neural net, it usu-
ally chooses C4.5 and occasionally uses the output of
the neural network. Even though the average success
of the Bayesian classifier is higher than that of the neu-
ral network, its output is never utilized. The average
accuracy of the results degrades in this case over the av-
erage C4.5 results from 86% accuracy to 83% accuracy,
possibly due to the occasional integration of neural net-
work results.

Conclusions

In this paper we presented an application of machine
learning techniques to decision making in a robotic ad-
versarial environment. Using pre-classified training ex-
amples we are able to learn concepts that yield action
decisions conforming closely to the human-selected ac-
tion in each situation. However, we have also clearly
demonstrated that the decision tree and belief network
algorithms outperform backprop neural net or Bayesian
classifiers on this task. We have also delineated fac-
tors about this domain that can affect the selection of
a learning algorithm such as sensitivity to number of
training examples and ability to handle uncertainty in
the data.

There are a number of extensions to this research
that we would like to pursue. First, in the same way
that a belief network was constructed to pick optimal
agent moves, so we would like to construct and learn
values for a network that predicts wumpus moves, and
compare the predictive accuracy of the belief network
with the learned probabilistic DFA. We would also like
to train the learning systems on entire game sequences
instead of individual moves from the game. Finally, we
would like to increase the complexity of the program to
allow the wumpus and agent to change strategies during
execution of a game.

Acknowledgements

This research is supported by NSF grants HRD-
9255016, IRI-9502260 and DMI-9724497.

References

Cestnik, B. 1990. Estimating probabilities: a crucial
task in machine learning. In Proceedings of the Ninth
European Conference on Artificial Intelligence, 174—
179.

Neapolitan, R. E. 1990. Probabilistic Reasoning in
Expert Systems: Theory and Algorithms. John Wiley
and Sons.

Peterson, G., and Cook, D. J. 1998. Dfa learning of
adversarial strategies. In to appear in Proceedings of
the Florida AI Research Symposium.

Quinlan, J. R. 1993. C4.5: Programs For Machine
Learning. Morgan Kaufmann.

Rumelhart, D., and McClelland, J. 1986. Parallel dis-
tributed processing: exploration in the microstructure
of cognition, Volumes 1 and 2. Cambridge, MA: MIT
Press.

Spiegelhalter, D. J.; Dawid, A. P.; Lauritzen, S. L.;
and Cowell, R. G. 1993. Bayesian analysis in expert
systems. Statistical Science 8(3):219-283.

