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Abstract— Instrumented smart homes offer an unprecedented opportunity to unobtrusively monitor human 

behavior in natural environments. Additionally, they can be used to determine whether relationships exist between 
behavior and health changes. Here we introduce an approach to behavior change detection (BCD) that can be used to 
identify behavior changes that accompany health events. BCD detects changes between time periods, determines 
significance of the detected changes, and analyzes the nature of the changes. In the case of smart homes, sensor data 
is collected and labeled using activity recognition and BCD is applied to analyze behavior changes by quantifying and 
analyzing changes in the activity timings and durations. We demonstrate our approach using three case studies for 
older adults living in smart homes who experienced major health events. Our evaluation indicates that behavior 
changes consistent with the medical literature do occur in these cases and that the changes can be automatically 
detected using BCD. The proposed smart home, activity recognition, and change detection algorithms are useful data 
mining techniques for understanding the behavioral effects of health conditions. 
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1. INTRODUCTION 

In recent years, sensors have become ubiquitous in our everyday lives. Sensors are ambient in the 
environment, embedded in smartphones, and worn on the body. Data collected from sensors form a time 
series in which each sample of data is paired with an associated timestamp. This sensor-based time series 
data is valuable when detecting and analyzing changes associated with seasonal variations, new lifestyle 
choices, or new job situations. Analyzing sensor-based time series data can also be used to monitor changes 
in human behavior that are related to health events such as a fall, cancer treatment, or onset of a chronic 
medical condition. Automatically tracking behavior changes from sensor data can help with understanding 
the behavior impact of these health events. Similarly, detecting these changes can alert individuals and their 
caregivers about potential health concerns. 

In this paper, we introduce a method to analyze the behavioral impact of health events using smart home 
sensor data called Behavior Change Detection, or BCD. Smart home sensor systems provide the capability 
to automatically collect information about a resident’s everyday behavior without imposing any restrictions 
on their routines. We collect data from ambient sensors placed in smart home environments and label the 
data with the corresponding activities using automated activity recognition. To track changes in routine 
behavior, we quantitatively compare two or more time periods, or windows, of activity-labeled data. If the 
two time windows contain significantly different activity information then this may indicate a significant 
behavior change. In addition, we employ a virtual classifier to provide an explanation of the detected 
change. 

To evaluate BCD, we analyze smart home data collected for multiple years in the homes of older adults. 
Health events are identified for three of the smart home residents based on medical records review and 
monthly interviews with the study participants. Data surrounding the health event is compared with baseline 
normal data to determine if a significant behavior change has occurred and describe the nature of the change. 
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The corresponding behavior change is then analyzed by a clinician to validate the behavior change and 
explain the relationship between the health event and corresponding behavior change. 

Clinical studies support a relationship between daily behavior and cognitive and physical health [1]. Most 
of the prior work in this area utilized wearable data to correlate home-based movement with health measures 
[2], although smart home data has been used to analyze mobility and time out of the home with respect to 
cognitive and physical health [3], [4]. Our own earlier work showed that smart home data can be analyzed 
over time to predict performance on cognitive health assessment tests [5]. We hypothesize that the 
relationship between sensed behavior and health events can also be observed and analyzed using smart 
home data, which has not yet been examined. Results from the case studies presented in this paper indicate 
that smart home and machine learning technologies can be used to understand the behavioral impacts of 
health events and to provide information to individuals that indicate possible health concerns. 

2. COLLECTING AND LABELING SMART HOME DATA 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Smart home floorplan and sensor layout for three testbeds: SH1 (left, with 3 door/temperature sensors and 
10 motion/light sensors), SH2 (center, with 5 door/temperature sensors and 23 motion/light sensors), and SH3 (right, 
with 3 door/temperature sensors and 10 motion/light sensors). Sample raw sensor data is converted to use generalized 
sensor identifiers and automatically labeled by CASAS-AR activity recognition with corresponding activity labels 
(bottom). 
 
 
We collect data in everyday home environments using the CASAS “smart home in a box” [6]. The three 
homes that we include in this study are single-resident apartments, each with at least one bedroom, a 
kitchen, and a dining area. The apartment floorplans, sensor positions, and sample labeled sensor data are 
shown in Figure 1. These homes are equipped with combination motion/light sensors on the ceilings and 
door/temperature sensors on cabinets and doors. The sensors continuously and unobtrusively monitor daily 
activities of the residents by sending text message-type updates, or sensor events, whenever they sense a 
state change (i.e., from “door closed” to “door open” or from “no motion” to “motion”). The CASAS 
middleware collects these sensor events and stores them in a relational database. 

Once the sensor data is collected we label each sensor event with the corresponding activity using the 
CASAS-AR activity recognition algorithm [7]. Let },..,,{ 21 TaaaA  be the set of all activities. Given 

= infrared motion / light sensor 
= door / temperature sensor 

2014-06-15 03:38:28.094897 M009 ON        2014-06-15 03:38:28.094897 BedroomMotion ON Sleep 
2014-06-15 03:38:29.213955 M009 OFF       2014-06-15 03:38:29.213955 BedroomMotion OFF Sleep 
2014-06-15 03:38:17.814393 M015 ON        2014-06-15 03:38:17.814393 BathroomMotion ON Bed-Toilet 
2014-06-15 03:38:58.584179 M015 OFF      2014-06-15 03:38:22.584179 BathroomMotion OFF Bed-Toilet 
2014-06-15 03:39:17.814393 M009 ON       2014-06-15 03:39:17.814393 BedroomMotion ON Sleep 
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features dx   extracted from a sequence of sensor events ending at time t, the challenge of activity 
recognition is to map x onto a value Aa indicating the activity that occurred at time t. These labels 
provide a vocabulary for expressing and analyzing the sensed behavioral patterns. Activity recognition 
algorithms have been designed for wearable, phone, home, video, and other sensors using machine learning 
techniques that range from naïve Bayes classifiers and decision trees to more complex models including 
Gaussian mixture models and conditional random fields [8], [9]. 

AR is particularly well suited for this type of analysis because it does not require that the sensor data be 
pre-segmented into distinct activity sequences. Instead, it labels sensor events with activity labels in real 
time as the events occur. To do this, it moves a dynamic-size sliding window over the sensor events and 
extracts features x describing the current window of information. The features include the sensor event time 
of day, the size of the sliding window, the event count for each sensor within the window, time elapsed for 
each sensor since its most recent event, the most recent event location and sensor identifier, and the sensor 
generating the most events in the previous two windows. 

Training data for CASAS-AR are provided by external annotators who look at one month of data and 
utilize both the house floorplan and resident information to generate corresponding ground truth activity 
labels [10]. In addition, sensor identifiers are replaced by more general location-based descriptors, as shown 
in Figure 1. Using this method, CASAS-AR learns an activity model based on training data from multiple 
smart home sites and can thus generalize for application to new smart homes with no training data.  
Although CASAS-AR has been tested with a number of classifiers including naïve Bayes, decision trees, 
hidden Markov models, and conditional random fields, the best performance was achieved using a decision 
tree.  In this study we analyze the activities of Hygiene, Sleep, Bed-Toilet, Eat/Drink, Enter/Leave Home, 
Relax, and Work. For these activities in the three smart home testbeds we analyze in this paper, CASAS-
AR achieved a recognition accuracy of 98% using 3-fold cross validation. 

 

3. DETECTING AND ANALYZING BEHAVIOR CHANGE 

We are interested in analyzing the behavioral impact of health events. More specifically, we want to 
determine if a significant change in behavior has occurred at the time of the health event and to analyze the 
nature of the behavior change. To do this, we introduce methods to quantify the amount of change in activity 
patterns between two windows of time series activity data that were sampled by smart home sensors and 
labeled by CASAS-AR. Let X denote a sample of time series data where each day’s data are expressed by 
extracted activity features, ,..},{ 21 xxX   and let W be a window of n days such that XW  . For this 
study, activity features consist of the amount of time spent on each activity for a particular day and the 
sensor density of each activity (measured as number of sensor events) for a particular day. We also collect 
the total amount of movement that occurs in the home for the day, expressed as the total distance travelled 
by the person in the home. These features were shown in earlier work to provide insight on behavior patterns 
that correlate with cognitive and physical health of smart home residents [10]. 

BCD compares two windows of data, Wi and Wj, within time series X. In this paper the windows are one 
week in length (n=7) and BCD compares a baseline window (i=1, the first week in our data subset 
representing normal behavior for the resident) with each subsequent window (j=2,3,…). We utilize three 
change detection methods. Each of these methods provides a slightly different perspective on the data 
comparison. Additionally, the more methods that detect a significant change, the greater is the evidence for 
a behavior change. 
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Method 1: RuLSIF. This is a non-parametric approach that determines the amount of change between 
two time series samples by comparing the probability distributions of the two samples. Instead of estimating 
the probability distributions which is computationally costly, we directly estimate their ratio. Relative 
unconstrained Least-Squares Importance Fitting (RuLSIF) [11] represents one such approach that estimates 
the ratio using the Pearson divergence dissimilarity measure. 

RuLSIF does not explicitly provide a method to determine a cutoff threshold for Pearson divergence 
values that are considered significant change scores. To address this issue, we introduce a change 
significance test based on intra-window variability and outlier detection. The proposed change significance 
test utilizes the existence of day-to-day variability in human behavior patterns [12]. For a change between 
two windows to be significant, the magnitude of change (inter-window change) should exceed the day-to-
day variability within each window (intra-window change). 

To compute significance of the change score CS between two windows, we first generate a list of all 
possible daily change scores, DCS, within each window (there are 2  Combination(n,2) such scores). Next, 
boxplot-based outlier detection is applied to see if CS is an outlier when compared to the distribution of 
intra-window daily changes scores, DCS. Here an outlier can be defined as an observation which appears 
to be inconsistent with other observations. To determine this, the interquartile range (75th percentile – 25th 
percentile) is computed. CS values outside of the 75th percentile + 1.5  interquartile range are considered 
outliers and thus significant. Advantages of this proposed significance test are that it is non-parametric and 
that it can be computed based on any window size. 

 
Method 2: sw-PCAR. Our Permutation-based Change Detection in Activity Routine (PCAR) approach 

[5] was originally designed to analyze changes in longitudinal smart home data. Here we adapt the original 
approach to handle smaller windows of activity-labeled data. The resulting small-window PCAR (sw-
PCAR) algorithm breaks each day within the window into non-overlapping hour-long time intervals. Each 
time interval has a corresponding probability distribution over the activities that occur at that time. For sw-
PCAR, the days within two windows Wi and Wj are averaged to yield aggregate windows  and . Next, 
we compute a change score CS using the symmetric Kullback-Leibler (KL) divergence distance between 
the activity probability distributions in  and . Finally, the significance of the distance value CS is 
computed by concatenating data from windows  and  into one window W. All of the time intervals 
within W are randomly shuffled then split into two new sub-windows and the KL distance is computed for 
this permuted window pair. This shuffling procedure is repeated N times to produce a N-length vector V of 
KL distances. If N is large enough, the corresponding set of KL distances forms an empirical distribution 
of the possible permutations of activity data for the two windows. sw-PCAR computes change significance 
by comparing CS to the permutation vector V using boxplot-based outlier detection as we did with RuLSIF. 
If CS is identified as an outlier of V then the change score is reported as significant. 

 
Method 3: Virtual Classifier. Our final method utilizes a binary classifier to detect and explain behavior 

change. This type of virtual classifier for change analysis was first proposed by Hido et al. [13]. For the VC 
approach, feature vectors from window Wi are labeled with a positive class and feature vectors from window 
Wj are labeled with a negative class. VC trains a decision tree to learn a boundary between the virtual 
positive and negative classes. The resulting average prediction accuracy based on k-fold cross validation is 
represented as pVC. If a significant change exists between Wi and Wj then the average classification accuracy 
pVC of the learner should be higher than the accuracy expected from random noise which is prand=0.5, the 
binomial maximum likelihood of two equal-length windows. 
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To determine the significance of the change between two windows, the inverse survival function of a 
binomial distribution is used to determine a critical value, pcritical, at which n Bernoulli trials are expected 
to exceed prand at =0.05 significance. If pVC > pcritical then a significant change exists between windows Wi 
and Wj. If a change significance test concludes that the change score is significant, then for our health event 
study we would also like to explain the source of change. Typically, this requires computing features that 
summarize the data and provide a meaningful context for change and applying change tests for those 
specific features.  One of the advantages of the VC, however, is that by utilizing a decision tree learner its 
output includes an explanation of the source of change without reliance on statistical tests. Upon detecting 
a significant change, the decision tree is retrained on the entire dataset and inspected to reveal the features 
that are the most valuable in discriminating between the two windows of data. 

 

4. ANALYZING BEHAVIORAL IMPACT OF HEALTH EVENTS 

We collected data in smart homes with older adult residents for multiple years. For each study participant 
we also recorded health events with their date and event type, based on medical records and monthly 
interviews with the participants. Here we describe three of these health events and utilize these case studies 
to illustrate the use of BCD. 
 
4.1. Case 1: Radiation treatment 

Case 1 focuses on an 86 year old female resident living in a smart home testbed that we refer to as SH1 (see 
Figure 1 for the smart home floorplans). Three months into the data collection, the participant was 
diagnosed with lung cancer and started radiation treatment during week W10.  We hypothesize that radiation 
treatment will have an observable and quantifiable impact on her behavior. To validate this hypothesis, we 
use BCD to compare one-week baseline of smart home activity data (W1) with two other weeks.  The first 
comparison is with another pre-event week, namely the week immediately following the baseline (W2).  
The second comparison is with the first full week during which the individual underwent radiation treatment 
(W11). 

 



 

6 
 

 
 

Figure 2. Results of SH1 health event analysis.  Overall change scores are plotted (left) using RuLSIF, sw-PCAR, and 
VC comparing each week with the baseline week, W1. Values above the red line show significant changes. Density 
maps for selected activities Sleep, EnterHome, and Eat/Drink are plotted (top right) for the same time period. Darker 
colors in the density maps indicate more time spent on the activity during that hour of the day. The top-level rule 
generated using VC is highlighted (bottom right) indicating the activity feature that best discriminates the baseline 
week from the health event week. In each plot the green dashed line indicates the occurrence of the health event. 
 

Figure 2 illustrates results from applying each change detection method. Figure 2 also shows associated 
activity density maps for SH1. Density maps have been used in prior work to visualize levels of movement 
in the home [4]. Our activity density map is a heat map that visualizes the amount of time spent on a 
particular activity as a function of a 24-hour clock (y axis), aggregated over one week (x axis). The darker 
the color, the more time was spent on the activity during that particular hour of the day in the corresponding 
week. 

As the density maps show, the participant’s level of sleep decreased once treatment started and the 
number of times she left the home / returned home increased.  Possible explanations for this are increased 
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trips out of the home for appointments or visits from family and caregivers. Another impact of the treatment 
is the increased number of trips this participant made to the kitchen to eat or drink. These more frequent 
kitchen trips are consistent with the observation that radiation treatment increases the feeling of thirst, 
resulting in a patient drinking more liquids throughout the day [14]. 

 
 

Table 1. Change scores for smart home residents SH1, SH2, and SH3. Scores are computed between two normal 
activity weeks (W1 and W2) and between a normal activity week and a week during the health event (W1 and W11 for 
SH1 and SH2, W1 and W8 for SH3). For RuLSIF and sw-PCAR, larger values indicate greater change and values close 
to 0 indicate no change. In the case of VC, values close to 0.5 indicate no change and values close to 1.0 indicate large 
change. Significant results are indicated with an asterisk (*). 

 

 Method W1/W2 (baseline) W1/Wevent (health event) 

SH1 RuLSIF -0.017 2.298* 

 sw-PCAR 0.001 0.091* 

 VC 0.500 1.000* 

SH2 RuLSIF 0.010 3.315* 

 sw-PCAR 0.004 0.042* 

 VC 0.438 1.000* 

SH3 RuLSIF 0.000 0.000 

 sw-PCAR 0.000 0.001 

 VC 0.500 0.750* 

 

The change scores using the three BCD techniques described in this paper are summarized in Table 1. 
For participant SH1, the behavior changes during radiation treatment are evident for each of the change 
detection methods and the results are significant. The nature of the greatest change is highlighted by the 
decision tree that VC generates. As shown in Figure 2, the top-level feature is the number of sensor events 
that are related to an “EnterHome” activity. The number of times the participant (or a visitor) enters the 
home is larger during radiation treatment, with a great enough increase for this event to discriminate 
between baseline behavior and health event behavior. 
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4.2. Case 2: Insomnia 

 
Figure 3. Results of SH2 health event analysis.  Overall change scores are plotted (left) using RuLSIF, sw-PCAR, and 
VC for baseline week W1 and health event week W11. Values above the red line show significant changes. Density 
maps for selected activities Sleep, Relax, and EnterHome are plotted (top right) for the same time period. The VC-
generated rule is also shown (bottom right). In each plot the green dashed line indicates the occurrence of the health 
event. 
 

Case 2 is a 91 year old female smart home resident whom we refer to as SH2. During the time that data was 
collected in this participant’s home, she was diagnosed with insomnia. To measure the impact of this health 
event on her sleep and on other routine activities, we use BCD to compare two weeks of normal behavior 
(weeks W1 and W2) and one week of baseline behavior with a week surrounding the insomnia diagnosis 
(weeks W1 and W11). The change scores are summarized in Table 1 and indicate that significant changes in 
overall routine are detected by all three methods. 
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In Figure 3 we see that changes occur not only during week W11 but in the days leading up to the health 
event and persisting to days and weeks following the insomnia diagnosis.  We can also observe in the 
density maps that the amount of sleep does decrease during this period. The change in behavior also impacts 
relaxation, which is time spent in a favorite chair or couch with little movement and possibly napping. 
These relaxation periods occur during normal sleep hours but also throughout the day.  In addition, the 
number of trips outside the home decreases during this time.  The virtual classifier actually finds the 
corresponding decrease in EnterHome events to be the main discriminating feature between baseline and 
health event weeks.  On the other hand, if we look slightly earlier at week W10, VC again detects a 
significant change from the baseline week and the main discriminating feature is the total movement in the 
home throughout the day (measured as distance traveled in the home). This is a factor that could be 
considered when examining possible reasons for insomnia or impact of a decrease in sleep time. 
 

4.3. Case 3: Fall 

The last case, called SH3, is an 80 year old female living in a smart home testbed. During the time that we 
were collecting sensor data in this home, the participant fell in her home. She described that her right leg 
hurt for several days after that and “slowed her down”. To analyze the impact of this health event we 
compared data collected at baseline (W1) with the following week which also contained normal activity and 
no health events (W2). We also compared W1 with the week containing the health event (W8). 

As the results in Table 1 indicate, this health event has a subtler impact on behaviors, at least those that 
can be detected by ambient smart home sensors.  RuLSIF and sw-PCAR detect almost no change between 
weeks W1 and W2 or between weeks W1 and W8. The virtual classifier is the only method that finds the 
change during the health event week.  As the VC-generated rule indicates, the difference is primarily 
detected based on the total distance that the individual traveled throughout the home on a daily basis.  The 
decrease in movement is consistent with the observation that the hurt leg caused the resident to slow down.  
As the density plots indicate, there appears to be less impact on other routine activities such as sleep and 
bed toilet transitions. There is an apparent slight decrease in trips out of the home but this is not large 
enough to be detected by the change detection methods. 
 

5. CONCLUSIONS 

In this paper we introduce BCD, an approach to behavior change detection. We describe how BCD can be 
used to quantify and explain changes that are detected in daily activity data. In particular, BCD can detect 
changes in smart home-detected behavior data that occur as a result of health events. From the three case 
studies that we analyzed in this paper we see that the ability to detect behavioral impact of health events 
depends on the nature of the health event itself.  Some events impact multiple activities including sleep, 
eating, and trips out of the home. In contrast, other events have more localized impact.  The ability to detect 
the actual health event occurrence (e.g., fall) and its impact may require additional, more sensitive sensors 
to be placed in the home or on the body. A systematic comparison of different BCD window sizes may also 
provide insights on the typical duration of behavior changes that may be associated with different types of 
health events. Future work also consists of analyzing all of the BCD-detected changes to determine the 
broader spectrum of events that elicit changes, such as failed sensors or visitors in the home. 

The ability to detect behavior changes that are associated with health events is valuable for researchers 
who want to better understand the relationship between health and behavior. These insights may also help 
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care providers respond to the needs of individuals who are experiencing changes in their health. An 
algorithm such as BCD can periodically look for changes in behavioral routine and alert the individual and 
their caregiver about these changes as they may indicate changes in cognitive or physical health. Because 
BCD can analyze any type of sensor data, our continued research will adapt these methods to analyze smart 
phone and wearable data, as well as data collected in smart homes. 

 

 
Figure 4. Results of SH3 health event analysis.  Overall change scores are plotted (left) using RuLSIF, sw-PCAR, and 
VC for baseline week W1 and health event week W8. Values above the red line show significant changes. Density 
maps for selected activities Sleep, BedToilet, and EnterHome are plotted (top right) for the same time period. The 
VC-generated rule is also shown (bottom right). In each plot the green dashed line indicates the occurrence of the 
health event. 
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