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The unprecedented rate at which genomic data is accumulated underscores the need to develop highly efficient and
powerful analytical capabilities. Traditionally, most of the effort post-sequencing has been focused on the identification
and annotation of genes and their associated sequences such as promoters and regulatory elements. However, a major
part of the vastness outside the gene-space is still left unexplored because of a lack of appropriate computational
tools. Here, we propose a new approach for exploring and describing a genome without biasing the search process
towards already known structural entities. Our primary objective is to discover novel conserved patterns that would
typically fall off the scope of the current suite of repeat finding tools because of irregularities in their structure. The
output is a hierarchy of patterns with arbitrary structural characteristics. A hierarchical representation captures the
genomic sequence content at an abstract level and offers novel ways to examine the information contained in them.
Our approach is an information theoretic search process which uses pattern matching techniques for processing the
sequence data. Preliminary evaluation on the Drosophila genome has resulted in the finding of a number of irregular
patterns, including a histone gene cluster. Discovering new patterns is an important problem in both whole- and
comparative genomic application domains. It is our intent to use this research as a launch pad towards developing a
comprehensive information-theoretic framework for conducting pattern and knowledge discovery on genomic data.

1. Introduction

A sustained interest and a continued invest-
ment in genome sequencing projects have led
to an overwhelming growth of genomic se-
quence data. Hundreds of genomes have
been sequenced within a decade’s time
(http://www.ncbi.nlm.nih.gov/Genomes/). This in-
creasing availability of genomic data presents a
unique opportunity for scientists to understand their
fundamental composition and discern the patterns
that govern the functioning of organisms directly
from their genomes — a luxury in information that
did not exist only a decade ago.

The tasks that typically follow genome se-
quencing are the identification, location, and struc-
tural/functional annotation of most (if not all) of
its genes. This huge interest in genes, despite the
fact that they are known to occupy only an insignif-
icant portion of higher order genomes (e.g., under
3% in humans), is understandable because of their
pivotal functional implications. Nevertheless, there
are other genomic entities besides genes that are
either known to play important biological roles or
have functional identities that are as yet undiscov-

ered. These portions of the genome, often labeled as
“junk DNA”, occupy the majority of genomes and
have been gaining research focus of late. For in-
stance, most genomes have abundant copies of iden-
tical or highly similar subsequences called “repeats”
scattered all over them — e.g., the human genome
contains at least 50% of its sequence in repetitive re-
gions, while the wheat genome is expected to contain
more than 90% in repeats. While some of the repeats
are better understood for their roles in diseases5, ge-
nomic evolution10 and genomic rearrangements3, 4,
a majority are either uncharacterized and/or do not
have a clear functional role identified yet8. Nonethe-
less, devising mechanisms to discover repetitive ge-
nomic portions and classify them into their respec-
tive types are essential steps towards determining
their biological identity.

Repeat identification is a well-studied prob-
lem. Substantial research over the last decade
has led to the development of several excel-
lent repeat identification methods and software
tools2, 9, 12, 14, 18, 20, 24. While these methods dif-
fer from one another in their underlying algorithms
and approaches, most of them share the following
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set of characteristics in their general approach to-
wards repeat identification: (i) detection based on
sequence similarity, (ii) targeting specific types of re-
peats, and (iii) assuming that the set of structural at-
tributes that characterize each of their target repeat
classes is known a priori to the user so that they can
be provided as part of the input. These attributes
typically include length, sequence similarity and dis-
tance. This is a fair and effective approach to take
when both the target repeat class and its structural
signature are known and well defined.

The problem we propose here complements the
existing approaches, with a scope not limited to con-
ventional repeats. We are interested in capturing
generic recurring “patterns” that are novel and po-
tentially irregular that may fall out of the scope of
the existing suite of repeat identifying tools. Detec-
tion of such patterns is geared towards enabling a
novel means to “describe” a genome at an abstract
level. Providing this capability would significantly
enhance the scope of discovery beyond already char-
acterized repeats to the vast expanse of previously
unexplored types of recurrent patterns.

Our approach is based on information theory.
Instead of targeting a specific repeat class, our ap-
proach detects recurring “patterns” satisfying multi-
ple combinations of basic structural attributes such
as sequence similarity, length, genomic proximity,
frequency and periodicity. Our definition of “pat-
terns” also supports the incorporation of annotated
information during the process of pattern discovery.
This is achieved by not restricting our method to just
the DNA alphabet. The algorithm uses minimum
description length21 during its search and filter pro-
cess which provides the information theoretic basis
for our approach. The output of our algorithm is a
hierarchy of detected patterns which are classified by
the attributes they have in common and are ranked
by their “interestingness” levels. Determining inter-
estingness of repeating patterns is a ubiquitous chal-
lenge for data mining algorithms. For this applica-
tion, interestingness encapsulates the confidence we
have in a predicted pattern and the pervasiveness of
the pattern throughout the data.

2. Problem Description

We call a genomic region an “interesting” pattern
if it satisfies the following criteria: (i) there are a
“significant” number of occurrences of the pattern

in the data, (ii) for every occurrence, there exists
at least another occurrence which satisfies an arbi-
trary set of structural constraints (given by Table 1),
and (iii) each pattern occurrence can be decomposed
into the same sequence of “blocks” where each block
is either a smaller pattern or a contained stretch of
nucleotides. Figure 1 illustrates this definition using
an example. The decomposition of a pattern into
blocks represents a description of the pattern and is
referred to as its signature. Two or more patterns
can share the same signature — e.g., even though
p1 and p2 are two different patterns, they can be
described the same way as a region in which a pro-
moter is followed by a gene, a 3′ UTR and a simple
repeat (assuming α and β are both simple repeats).
The above feature allows for incorporation of anno-
tated information into the pattern discovery process
rather than restricting similarity searches only at the
nucleotide level.

3. Methods

The goal of this work is to discover new and interest-
ing patterns in genomic data. Rather than focusing
on a specific set of patterns, our algorithm performs
an iterative search over all possible patterns, find-
ing the most interesting, as measured by principles
from information theory. The essence of this strategy
is derived from a prior approach used by Cook and
Holder in mining generic graph data 6, though here
we enhance it by using pattern matching techniques
to identify repeating sequences in DNA sequences.

The definition of our target patterns (described
in Section 2) implies that the number of patterns
may be at worst quadratic in the genome size (i.e.,
O(n2)). This is because each pattern occurrence is
basically a “substring” within a genome. To remove
redundant results in a given output, we define a max-
imal pattern occurrence as one that is not entirely
contained within an occurrence of a larger pattern.
This implies that there are only O(n) number of
maximal pattern occurrences to be detected in the
worst-case. However, if we start gathering mutually
maximal pattern occurrences into sets then the num-
ber of such sets is bound only by the number of all
possible subsets of the maximal patterns, which is
exponential in the input size. We do not seek to
enumerate all possible combinations of patterns and
their occurrences; instead, we aim at reporting one
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Fig. 1. Illustration of patterns: the figure shows two different patterns p1 and p2 with their respective occurrences {pi
1, pj

1} and
{pk

2}. Occurrences of the patterns α and β are also shown. The patterns p1 and p2 bear the same signature: “promoter → gene→
3′UTR→ conventional repeat pattern”.

Table 1. Set of structural attributes (denoted by Θ).

Structural Attributes Description

Length (in bp) minimum and maximum length cutoffs for exact matches ([MinExactMatch,
MaxExactMatch]), and inexact matches ([MinAlignLen, MaxAlignLen])

Similarity (in % identity) similarity cutoff defined in terms of alignment scoring (MinSimilarity)

Proximity (in bp) minimum and maximum number of bases between starting points of any two
similar occurrences of a pattern along a genome ([dmin, dmax])

Orientation patterns occurring in same or reverse strands

combination that minimizes the Minimum Descrip-
tion Length (MDL), which provides the information
theoretic basis of our approach.

Our approach to pattern identification is an it-
erative procedure that achieves a bottom-up identi-
fication of patterns. (Which is to say that in case of
nested patterns, the smaller patterns are found first.)
We start with the original input, which is a genomic
DNA sequence, and at each iteration apply the fol-
lowing three phases: (i) candidate pattern identifi-
cation, (ii) candidate pattern evaluation, and (iii)
sequence compression. At the end of each iteration,
the sequence at that iteration is “compressed” to a
smaller sequence using the patterns identified during
that phase, which is then carried over as the input
sequence for the next iteration. This is continued
until no more new patterns could be found. We call
our approach RePDiG, which stands for Repetitive
Pattern Discovery in Genomes. The algorithm for
RepDiG is presented in Figure 2 and its individual
phases at each iteration are explained below.

Algorithm 1. RePDiG

RePDiG (Input: Sequence G, Structural At-

tributes Θ)

S0 ← G, Θ0 ← Θ, i← 0, P0 ← ∅.
REPEAT

(Phase 1; Section 3.1)
CandidatePatterns← Identify can-
didate patterns in Si using Θi as
constraints

(Phase 2; Section 3.2)
Pi ← Evaluate each pattern in the
CandidatePatterns list based on its
compression value and perform a
greedy selection

(Phase 3; Section 3.3)
Si+1 ← Compress Si using Pi

Θi+1 ← Recalculate the values of the
structural attributes based on Si+1

UNTIL Pi = ∅
OUTPUT Pi

Fig. 2. RePDiG. G denotes a genomic DNA sequence, and Θ
denotes the base values of the attributes specified in Table 1.
Pi is a running list of patterns identified at iteration i.
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3.1. Phase 1: Candidate Pattern

Identification

The goal of this phase is to identify a set of candi-
date patterns in the input sequence that satisfy the
required similarity, length and distance constraints
as specified in Table 1. This is achieved by deploy-
ing a strategy of first identifying pairs of exact (max-
imal, to be precise) matching substrings as “seeds”
and extending the seeds outwards through sequence
alignment12. The rationale is that a substantially
long (MinExactMatch) exact match is a necessary
but not sufficient indicator for a satisfactory align-
ment (MinSimilarity) — thus, generating pairs of
loci with long exact matching pairs provides a good
filter to predict potential aligning regions.

One challenge in our approach is the need to han-
dle an expanding alphabet set with each iteration.
Only the sequence input in the first iteration is over
the DNA alphabet; thereafter, every pattern identi-
fied and used for sequence compression contributes
to a unique symbol in the alphabet for the follow-
ing iteration. But the number of such patterns is
bounded by O(n) at any given iteration. This en-
sures that the size of the alphabet is also bound by
O(n) at any iteration. Our algorithm for seed gen-
eration uses the suffix array (SA) data structure17,
which is a lexicographically sorted array of all suffixes
of a given sequence over O(n) alphabet size, along
with its longest common prefix (LCP) array. The
LCP array is a (n−1)-long array where each LCP [i]
stores the length of the longest common prefix be-
tween suffixes SA[i] and SA[i + 1]. The algorithm is
a minor variant of a previously developed approach12

— our version takes into account the proximity pa-
rameter as well. The run-time cost of generating each
seed is O(1). The space complexity is O(n). Due to
lack of space, we omit the details of the algorithm.

Each generated exact matching seed is extended
using traditional dynamic programming methods22

until the computed similarity drops below the
MinSimilarity threshold or the length of the align-
ing regions exceeds MaxAlignLen. All such success-
ful extensions are recorded in a list sorted by starting
positions. This list is traversed to create a candidate
pattern list through the following merging scheme:
If a pair of similar regions have at least one of their
occurrences significantly overlapping in its genomic
positions with another occurrence from a different

pair of similar regions, then all the four occurrences
are combined to correspond to just one representa-
tive pattern. This is similar to the transitive-closure
clustering scheme in Volfovsky et al.24, with the main
difference in our implementation which uses a union-
find data structure23 that enables us to perform each
such merge in near constant time, independent of
the size of the lists being merged. At the end of
this mechanism we have a set of candidate patterns
prevalent in the input sequence data, each of which
has a list of its occurrences.

3.2. Phase 2: Candidate Pattern Evaluation

and Selection

In order to decision which patterns identified in the
first phase to report, we evaluate each candidate pat-
tern according to how greatly it reduces the descrip-
tion length of the data. RePDiG’s search is guided by
the Minimum Description Length (MDL) principle21

from information theory. This principle defines the
best theory to describe some data as that theory
which minimizes the number of bits required to de-
scribe the data. As specified in Equation 1, the MDL
value of a pattern P can be defined as the description
length of the original input sequence DL(S) divided
by the description length of the compressed sequence
using pattern, or DL(S|P ). The best pattern is the
one that maximizes this compression ratio.

Compression(P ) =
DL(S)

DL(P ) + DL(S|P )
(1)

One way to use the MDL idea in our approach
is to compress the sequence using the best discov-
ered pattern before advancing to the next iteration.
This implies we have as many iterations as there are
number of such identified patterns. However at any
given iteration, there are likely to be other patterns
which do not overlap with the selected top pattern,
and which when compressed along with the top pat-
tern would yield a much higher aggregate compres-
sion value. To take advantage of this we developed
an alternative method which selects a set of non-
overlapping candidate patterns in a greedy manner
so as to get the best aggregate compression value
at any given iteration. This is achieved by comput-
ing the compression value for each candidate pat-
tern, then ranking them in a non-increasing order,
and perform a greedy selection of non-overlapping
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candidate patterns. Given the prevalence of repeats
and other patterns in genome data, this approach is
expected to approximate the original single-pattern
selection MDL approach while ensuring the practi-
cality of our search process.

3.3. Phase 3: Sequence Compression and

Parameter Transformation

Once a set of each candidate patterns are selected,
each such pattern is given a unique character label.
As there are only a O(n) number of patterns that
could be selected in the worst-case, an integer (i.e.,
O(n)) alphabet is sufficient over all iterations. The
original sequence is then compressed into a new se-
quence such that each occurrence (ie., a substring)
of a selected pattern in the original sequence is re-
placed by the unique character label associated with
the pattern. In addition, we also store additional in-
formation describing each pattern used during com-
pression in a separate record at each iteration. The
transformed input sequence is then input to the next
iteration.

Given that the next iteration is going to oper-
ate on the compressed sequence with a new alpha-
bet, the current set of values used for the structural
attributes (shown in Table 1) becomes no longer ap-
propriate for the next iteration. Thus, we perform
a simple transformation of each parameter value by
scaling it down relative to the new length of the com-
pressed sequence. For example, the new value of
MinExactMatch for the iteration i + 1 is given by
MinExactMatchi+1 ← MinExactMatchi × |Si+1|

|Si| ,
where |Si| and |Si+1| denote the lengths of input
sequences at the start of iterations i and i + 1 re-
spectively. Note that there is no need to change the
similarity threshold (MinSimilarity) after each it-
eration.

By repeating the process of finding a repeating
sequence in DNA data and compressing the input
string with this pattern, the RePDiG algorithm pro-
duces a hierarchical clustering of patterns found in
the input data11. The resulting organization of dis-
covered patterns is actually a lattice, where each
cluster can be defined in terms of one or more par-
ent patterns. The RePDiG algorithm iterates until
no more compression can be obtained or the number
of iterations exceeds a user-defined number.

4. Results and Discussion

We implemented the RePDiG software program in C.
For validation, we used the Drosophila melanogaster
genome. The 2005 FlyBase Release 4.1 version of the
120 Mbp genome was downloaded from the NCBI’s
GenBank repository. The genome consists of 6 chro-
mosomal sequences: CHR 2R, CHR 2L, CHR 3R,
CHR 3L, CHR 4 and CHR X. For our experiments,
we used a machine with a 2.33 GHz Xeon processor
and 8 GB RAM.

Table 2. Table showing the running time for the first it-
eration of the RePDiG software on the Drosophila genome
using a 2.33 GHz Xeon processor machine.

Chromosome Length (in bp) Runtime (minutes)

CHR 2L 23,011,544 96
CHR 2R 21,146,708 160
CHR 3L 24,543,557 41
CHR 3R 27,905,503 194
CHR 4 1,351,857 45
CHR X 22,422, 827 1470

Table 2 shows the run-time results for executing
RePDiG on each chromosome for the first iteration.
As can be observed, the amount of time spent by
the software analyzing each chromosome is not pro-
portional to the length of the chromosome. This is
because of the disproportionate number of seeds and
patterns found in the chromosomal sequences. For
example, the number of seeds generated on CHR X
was ≈200,000, as opposed to roughly ≈20,000 seeds
on CHR 2L. While the preprocessing time to con-
struct suffix and LCP arrays require only linear time
proportional to the input size, a bulk of the time
is spent on evaluating the seeds using dynamic pro-
gramming alignment techniques. E.g., in our exper-
iments, this accounted for than 90% of the run-time
— a step that can be accelerated by distributing the
alignment workload across multiple processors.

We spent our effort on analyzing just one chro-
mosome (CHR 2L). We ran the program for sev-
eral iterations, which led to the identification several
complex pattern hierarchies such as a histone gene
cluster.

5. Conclusions

Repeat identification is a thoroughly researched topic
for over a decade now. As an increasing number of
complete genome sequences there is a need to de-
velop more sophisticated tools that can capture not
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just conventional repeats, but also more complex and
irregular patterns. In this paper we report the de-
sign and development of a novel pattern discovery
method that uses an information theoretic basis to
hierarchically describe a genome up to an arbitrary
coarse level. Our approach has been developed using
efficient pattern matching techniques. The results
that we obtained using the preliminary version of our
program indicates a promising research direction.
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