
Giovanni Acampora, Diane J. Cook, Parisa Rashidi, Athanasios V. Vasilakos

Healthcare Data Analytics



2



Contents

1 Data Analytics for Pervasive Health 1
Giovanni Acampora, Diane J. Cook, Parisa Rashidi, and Athanasios V. Vasilakos
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Intelligent Health Systems . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Introduction to Analytic Techniques . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Supervised Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Unsupervised Techniques . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 Example Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Advanced Analytic Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.1 Activity Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1.1 Activity Models . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.1.2 Activity Complexity . . . . . . . . . . . . . . . . . . . . . . 7

1.3.2 Behavioral Pattern Discovery . . . . . . . . . . . . . . . . . . . . . . 7
1.3.3 Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.4 Planning and Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.5 Decision Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.6 Anonymization and Privacy Preserving Techniques . . . . . . . . . . 10

1.4 Conclusions and Future Outlook . . . . . . . . . . . . . . . . . . . . . . . . 10

i



ii



Chapter 1

Data Analytics for Pervasive Health

1.1 Introduction

1.1.1 Intelligent Health Systems

Nowadays, the majority of industrialized nations are facing significant complications re-
garding the quality and cost of various healthcare and wellbeing services. These difficulties
will exacerbate even more due to an increasing aging population, which translates into a
multitude of chronic diseases and tremendous demand for various health care services. As
a result, the cost of the healthcare sector might not be sustainable and therefore industri-
alized countries need to find and plan policies and strategies to use the limited economical
resources more efficiently and effectively. This need for sustainable healthcare systems trans-
lates into a range of challenges in science and technology which if solved, ultimately could
benefit our global society and economy. In particular, the exploitation of information and
communication technology for implementing autonomous and pro-active healthcare services
will be extremely beneficial.

In face of such challenges, there has been an increasing interest in applying analytics
techniques to health care problems. Analytics techniques can be applied in scenarios such as
assisted living for individuals with disabilities, aging in place, and remote health monitoring.
The need for developing healthcare applications based on analytics techniques is not just
underscored by researchers, but also governments are trying to use such techniques to lower
the cost of health care In US and elsewhere. Especially, with recent advances in analytics as
well as sensor technology, we are embarking on the path of revolutionary low cost intelligent
health systems embedded within the home and living environments (Black et al., 2004;
Kameas and Calemis, 2010). Some examples include cognitive health monitoring systems
based on activity recognition, persuasive systems for motivating users to change their health
and wellness habits, and abnormal health condition detection systems. Figure 1.1 depicts
how intelligent health systems might be used as cohesive services integrated into different
environments and devices.

A wide variety of sensor modalities can be used when developing intelligent health sys-
tems, including wearable and ambient sensors. In the case of wearable sensors, sensors are
attached to the body (Yang et al., 2009) or woven into garments (Harms et al., 2008; Met-
calf et al., 2009). For example, 3-axis accelerometers distributed over an individual’s body
can provide information about the orientation and movement of the corresponding body
part. Researchers commonly use these inertial measurement units to recognize ambulatory
movements (e.g., walking, running, sitting, climbing, and falling) (Maurer et al., 2006; Srini-
vasan et al., 2010), posture (Lee and Mase, 2002) and gestures (Agrawal and Srikant, 1995;
Junker et al., 2008; Krishnan et al., 2010; Mantyjarvi et al., 2001).

Ambient sensors such as infrared motion detectors, magnetic door sensors, break-beam
sensors, and pressure mats (Barger et al., 2005; Wilson and Atkeson, 2005) also have been
used to gather information about health status and user activities in indoor environments
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FIGURE 1.1: Interconnected world of intelligent health services.

(Cook, 2010; Nugent et al., 2009). Because this approach embeds sensors within environ-
ments, it is well suited to creating intelligent health systems such as smart environments and
has been widely adopted for health monitoring and ambient assisted living (van Kasteren
et al., 2010a). Other sensors include RFID tags (Buettner et al., 2009; Patterson et al.,
2005), shake sensors (Philipose et al., 2004), video cameras (Brdiczka et al., 2009; Duan
et al., 2010; Moeslund et al., 2006; Weinland et al., 2011), microphones (Hollosi et al., 2010;
Lukowicz et al., 2004), and GPS locators (Liao et al., 2007; Patterson et al., 2003).

In this chapter, we will explore how different analytics techniques can be used for sup-
porting the development of intelligent health systems and sensor data analysis.

1.2 Introduction to Analytic Techniques

Among data analytics methods, machine learning techniques, have been heavily used in
pervasive health applications in recent years. Machine learning is a sub-discipline of artificial
intelligence which allows real world systems to learn from data. Machine learning algorithms
are able to generalize in case of new, unseen data examples by learning from a set of observed
data examples called a training set. For example, after being trained on a training set of
sample accelerometer data marked as walking or jogging, a machine learning algorithm
will be able to classify the future data points into walking and jogging classes.

Machine learning methods are prevalent in modern applications, and they have been suc-
cessfully implemented and deployed into many real world applications. In the health care
domain, these methods also have gained vast popularity by being used in numerous applica-
tions such as electronic health record analysis for predicting life expectancy (Meystre et al.,
2008), computer aided diagnosis (Doi, 2009), DNA sequence classification (Wang et al.,
1999), medical imaging (Wernick et al., 2010), pharmacovigilance and post-marketing ad-
verse drug reaction detection (Harpaz et al., 2013; Hauben et al., 2005), and early prediction
of diseases (Pearce et al., 2006), among many other health care applications.

Machine learning also has become quite ubiquitous in many pervasive health applica-
tions. Many current pervasive health applications rely on machine learning to analyze the
sensor data. These algorithms make it possible to obtain insights from the wealth of sensor
data, and to support decision making in pervasive health applications. Some example appli-
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cations include activity recognition algorithms for monitoring dementia patients (Rashidi
and Cook, 2011a), or physical activity monitoring algorithms for fitness and wellbeing ap-
plications (Kwapisz et al., 2011). More examples can be found in section 1.2.3.

1.2.1 Supervised Techniques

Two common forms of machine learning techniques are supervised learning and unsuper-
vised learning algorithms. The former focuses on predicting the known properties of data,
while the second focuses on discovering unknown knowledge from data.

Supervised learning techniques construct an internal model of the observed data, which
is used to predict the label of future examples. Supervised learning methods predict the
label of a previously unseen data point based on the model’s properties learned from the
training data. Typically, if the predicted label is discrete, the supervised technique is called
a classifier. If the predicted attribute is a continuous value, it is called a regression task.

Supervised algorithms require a labeled training set, where each training data point is
annotated with its predictive label. Each data point itself is described in terms of a number
of features. For example, if the goal is to distinguish between walking and jogging using
accelerometer data, then each data point in the training set can be described by features
such as the mean and the standard deviance of points in the surrounding window, peak value
in this window, and other relevant features. Each one of the data points in the training set
also needs to be annotated with one of the two labels: jogging or walking. The annotated
training data set is then used as input in the training stage of the algorithm, thus allowing
the machine learning algorithm to make generalization and predictions in case of future
unseen data points. To test the performance of a machine learning algorithm, part of the
annotated data is usually set aside, and is used to test the performance of the algorithm.
If the performance is satisfactory, the machine learning algorithm can be deployed and
integrated with the rest of the system.

Figure 1.2 shows how a supervised machine learning method works. In general, pro-
cessing data is a multi-stage process. First, data are captured and annotated with their
corresponding labels. Then, preprocessing tasks are performed on data. For example, ac-
celerometer data might be filtered to remove high frequency noises and is segmented into
shorter segments. Next, statistical and morphological features are extracted from data. This
step might also reduce the number of features by applying feature selection and dimen-
sionality reduction techniques. Finally, the classification step predicts the class of activity
according to the features.

Model
Prediction

Machine 

Learning 

Algorithm

New Query

TestingTraining

Preprocessing
Feature 

Extraction

Data Preparation

Data

Data

FIGURE 1.2: Machine Learning often involves a number of steps, including data prepa-
ration, training, and testing.

Classification techniques are one of the most widely used type of supervised machine
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learning techniques in the context of pervasive health applications. As mentioned before, if
the predicted label is a discrete value, such as predicting whether the user is walking or
jogging, it is called a classification task, and the algorithm that performs the classification is
called a classifier. Some famous classification techniques include naive bayes (Lewis, 1998),
decision trees (Quinlan, 1986; Safavian and Landgrebe, 1991), support vector machines
(Cortes and Vapnik, 1995), logistic regression (Hosmer Jr et al., 2013), and neural networks
(Hagan et al., 1996).

Figure 1.3 shows how a classification algorithm works for a toy problem. Here, each
data point is represented in terms of two features (i.e. x and y axis). In real world, most
datasets have tens, hundreds, or even thousands of features. As can be seen in figure 1.3,
the decision boundary separates the first class from the second class. In reality, we do
not know what the true boundary looks like, therefore machine learning algorithms try to
reconstruct an approximate boundary based on extracting information from the training set.
Some algorithms might only reconstruct a liner boundary such as the perceptron algorithm
(Rosenblatt, 1958), or a recti-linear boundary such as decision trees (Quinlan, 1986), or a
non-linear boundary such as the nearest neighborhood (Chang, 1974) and kernel machines
(Williams and Seeger, 2001). Some algorithms might also assign a confidence value to each
prediction, such as the logistic regression algorithm.

If the predicted value is a continuous value, the supervised machine learning technique
is called a regression task. For example, if our goal is to predict blood pressure value in the
next few days based on current food intake and activity level, then a regression algorithm
is needed. Similar to classification techniques, regression algorithms might be linear or non-
linear in nature.
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FIGURE 1.3: The true decision Boundary is typically unknown, machine learning algo-
rithms try to reconstruct an approximate boundary.

1.2.2 Unsupervised Techniques

Unlike the supervised learning algorithms, unsupervised methods do not require any
labeled data. Instead, they try to automatically find interesting patterns in unlabeled data,
such as by grouping similar examples together into a cluster. For example, sequence mining
can be used to discover user activities from ambient sensor data obtained in a smart home.
Some of the unsupervised machine learning techniques includes cluster analysis (Kaufman
and Rousseeuw, 2009), as well as a large class of data mining methods including associa-
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tion rule mining (Zhang and Zhang, 2002), frequent item-set mining (Borgelt, 2012), and
sequence mining (Mooney and Roddick, 2013).

Frequent pattern mining is an area of data mining that involves finding frequently ob-
served patterns in data. Pattern mining algorithms might look for different types of patterns:
frequent itemsets, frequent sequences, frequent trees, or frequent graphs, among others. Fre-
quent pattern mining algorithms can be useful in many pervasive health applications. For
example, activity recognition is often used in monitoring the activities of elderly with de-
mentia. While recognizing predened activities often relies on supervised learning techniques,
frequent pattern mining is valuable for its ability to discover recurring sequences of unla-
beled sensor activities that may comprise activities of interest.

The pioneering work of Agrawal’s Aprori algorithm (Agrawal et al., 1994) was the start-
ing point in this area. Apriori finds frequent itemsets and uses a bottom up approach, where
frequent subsets are extended one item at a time in a step known as candidate generation,
and then groups of candidates are tested against the data; the algorithm terminates when
no further successful extensions are found. There have been many extensions and variations
of frequent pattern mining algorithms (Garofalakis et al., 1999; Han et al., 2000, 2007;
Aggarwal et al., 2009). For more information, refer to surveys on frequent pattern mining
(Mooney and Roddick, 2013; Borgelt, 2012).

1.2.3 Example Applications

There are many examples of using both supervised and unsupervised machine learning
techniques in pervasive health technology in the literature (Acampora et al., 2013), here we
mention two prominent examples: continuous health monitoring and emergency detection.

Continuous Health Monitoring: Machine learning techniques can be used in contin-
uous health monitoring applications, where a variety of noninvasive sensors monitor various
physiological parameters such as ECG, EEG, respiration, and even biochemical processes
such as wound healing. For example, Jin et al. (Jin et al., 2009) describe a cell phone-based
real-time monitoring technology for cardiovascular disease (CVD) which automatically de-
tects and classifies abnormal CVD conditions using neural networks. The training data is
a combination of both an individual’s cardiac characteristics and information from clinical
ECG databases. Similar research has been done using sensors to monitor EEG to predict
onset of epilepsy (Shoeb and Guttag, 2010), or in spirometry sensing using the built-in mi-
crophone of cell phones (Larson et al., 2012). In addition to monitoring physiological signs,
one can also monitor and track activity as an indicator of physical and cognitive function.
Activity might refer to activities of daily living (ADL) when monitoring dementia patients
and elderly (Rashidi et al., 2011a), or to physical activity in the context of fitness and well-
being applications (Kwapisz et al., 2011), or to online activity when monitoring patients
with mental disorders (Burns et al., 2011). Both supervised and unsupervised approaches
have been used quite frequently in activity recognition, especially supervised techniques
(Acampora et al., 2013; Lane et al., 2010).

Emergency Detection: While it is valuable to monitor common normal events, we
are also very interested in abnormal events. These abnormal events may indicate a crisis
or an abrupt change in a regimen that is associated with health difculties. Classification
techniques can be used to detect abnormal events from normal events based on incoming
sensor data. There have been solutions for detecting emergency situations using PIR sensor
network (Buckland et al., 2006), for detecting possible fall in elderly using ambient sound
and sensors (Zhuang et al., 2009; Alwan et al., 2006), or for classifying cane usage and
walking patterns, in case of high risk of falling (Wu et al., 2008).
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TABLE 1.1: Advanced analytics techniques used in intelligent health systems.

Component Example Techniques Example Applications

Activity Recognition Graphical models Health monitoring

Behavior Discovery Sequence mining Behavior monitoring

Anomaly Detection Statistical methods Emergency detection

Planning D-HTN Prompting

Decision Support Knowledge based Communication of care personnel

Anonymization K-Anonymity Privacy preservation

1.3 Advanced Analytic Techniques

In this section we introduce the set of more advanced analytics techniques that enable
us to develop sophisticated intelligent health care systems, as summarized in Table 1.1.

1.3.1 Activity Recognition

Intelligent health systems focus on the needs of a human and therefore require infor-
mation about the activities being performed by the human (Singla et al., 2010a). At the
core of such technologies is activity recognition, which is a challenging and well researched
problem. The goal of activity recognition is to identify activities as they occur based on
data collected by sensors. There exist a number of approaches to activity recognition (Chen
et al., 2010; Rashidi et al., 2011b) that vary depending on the underlying sensor technologies
that are used to monitor activities, the machine learning algorithms that are used to model
the activities, and the complexity of the activities that are being modeled.

In terms of sensor technology, besides using wearable and ambient sensors, researchers
have used a varity of other sensors for activity recognition. Some activities such as washing
dishes, taking medicine, and using the phone are characterized by interacting with unique
objects. In response, researchers have explored the usage of RFID tags (Buettner et al.,
2009; Patterson et al., 2005) and accelerometers or shake sensors (Philipose et al., 2004)
for tagging these objects and using the data for activity recognition. The challenge with
this modality is deciding which objects to tag with sensors. One approach that has been
investigated (Palmes et al., 2010; Perkowitz et al., 2004) is to mine web page description of
activities to determine which objects are instrumental to the activity and help differentiate
the activity from others. Other sensor modalities that have been researched for activity
recognition include video cameras (Brdiczka et al., 2009; Duan et al., 2010; Moeslund et al.,
2006; Weinland et al., 2011), microphones (Hollosi et al., 2010; Lukowicz et al., 2004),
and GPS locators (Liao et al., 2007; Patterson et al., 2003). Each of these does face a
unique challenge for use in health care applications. Cameras and microphones need to be
carefully positioned and robust in the presence of occlusion. Furthermore, these technologies
are not always well accepted because of privacy concerns. Smart phones are increasing in



Data Analytics for Pervasive Health 7

popularity for activity recognition (Győrb́ıró et al., 2009; Lane et al., 2011) because sensors
in the phone collect all of the gyro, accelerometer, GPS, acoustic, and video data found the
other methods, as long as they are on the individual while they perform activities.

1.3.1.1 Activity Models

The methods that are used to model and recognize activities are as varied as the sen-
sor modalities used to observe activities. Existing methods can be broadly categorized into
template matching / transductive techniques, generative, and discriminative approaches.
Template matching techniques employ a nearest-neighbor classifier based on Euclidean dis-
tance or dynamic time warping (Bao and Intille, 2004; Stikic and Schiele, 2009). Generative
approaches such as näıve Bayes classifiers where activity samples are modeled using Gaus-
sian mixtures have yielded promising results for batch learning (Brdiczka et al., 2009; Tapia
et al., 2004; van Kasteren and Krose, 2007). Generative probabilistic graphical models such
as hidden Markov models (Brand et al., 1997; Tapia et al., 2004; van Kasteren et al., 2011;
Cao and Liu, 2010) and dynamic Bayesian networks (Liao et al., 2007; Wilson and Atke-
son, 2005) have been used to model activity sequences and to smooth recognition results
of an ensemble classifier (Cook et al., 2012). Decision trees as well as bagging and boost-
ing methods have been tested (Maurer et al., 2006). Discriminative approaches, including
support vector machines (Brdiczka et al., 2009) and conditional random fields (Hsu et al.,
2010; Mahdaviani and Choudhury, 2007; van Kasteren et al., 2010a; Vail et al., 2007) which
attempt to maximally separate activity clusters, have also been effective.

1.3.1.2 Activity Complexity

Many of these methods analyze pre-segmented activity sequences that have been col-
lected in controlled settings. More recently, attempts have been made to perform automatic
segmentation of the data into sensor events that belong to the same activity class (Gu et al.,
2010; Palmes et al., 2010; Rashidi and Cook, 2010). Still others have focused on recognizing
activities in real time from continuous sensor streams (Rashidi and Cook, 2010). In addi-
tion, researchers have also investigated methods of leveraging information or models in one
setting to boost activity recognition for a new sensor network (van Kasteren et al., 2010b), a
new environmental setting (Rashidi and Cook, 2011a,b; Cook, 2010), or new activity labels
(Iglesias et al., 2011). Another level of complexity for activity recognition is analyzing data
for interwoven activities (Modayil et al., 2008; Singla et al., 2010b) or concurrent activities
(Wang et al., 2009b). Humans often make efficient use of time by performing a step for one
activity while still in the middle of another activity, causing the sensor streams to inter-
weave. Concurrent activities may occur if a single sensor event contributes to more than one
activity. This situation may also indicate that multiple residents are in the space, which can
be a challenge for activity recognition algorithms (Crandall and Cook, 2009; Phua et al.,
2011).

1.3.2 Behavioral Pattern Discovery

While recognizing predefined activities often relies on supervised learning techniques,
unsupervised learning is valuable for its ability to discover recurring sequences of unlabeled
sensor activities that may comprise activities of interest. Methods for activity discovery build
on a rich history of discovery research, including methods for mining frequent sequences,
mining frequent patterns using regular expressions (Barger et al., 2005), constraint-based
mining (Pei et al., 2007), and frequent-periodic pattern mining (Rashidi and Cook, 2009;
Heierman III and Cook, 2003).

More recent work extends these early approaches to look for more complex patterns.
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Ruotsalainen et al. (Ruotsalainen et al., 2007) design the Gais genetic algorithm to detect
interleaved patterns in an unsupervised learning fashion. Other approaches have been pro-
posed to mine more complex discontinuous patterns (Rashidi et al., 2011b; Pei et al., 2007),
from streaming data over time (Rashidi and Cook, 2010), in different types of sequence
datasets and to allow variations in occurrences of the patterns (Pei et al., 2007). Discovered
behavioral patterns are valuable to interpret sensor data, and models can be constructed
from the discovered patterns to recognize instances of the patterns when they occur in the
future.

1.3.3 Anomaly Detection

While it is value to characterize and recognize common normal events that account for
the majority of the sensor events that are generated, for health applications we are also very
interested in abnormal events. These abnormal events may indicate a crisis or an abrupt
change in a regimen that is associated with health difficulties.

Abnormal event detection, or anomaly detection, is also important in security monitor-
ing where suspicious activities need to be flagged and handled. Anomaly detection is most
accurate when it is based on behaviors that are frequent and predictable. There are common
statistical methods to automatically detect and analyze anomalies including the box plot,
the chart, and the CUSUM chart (Tukey, 1977). Anomalies can be captured at different
population scales. For example, while most of the population may exhibit condition A, one
person might exhibit condition B, which pinpoints a condition needing further investiga-
tion (Dawadi et al., 2011). Anomalies may also be discovered at different temporal scales,
including single events, days, or weeks (Song et al., 2010).

Little attention has been devoted to anomaly detection in intelligent health systems.
This is partly because the notion of an anomaly is somewhat ill-defined. Many possible
interpretations of anomalies have been offered and use cases have even been generated
for intelligent health systems (Tran et al., 2010). Some algorithmic approaches have been
suggested that build on the notion of expected temporal relationships between events and
activities (Jakkula and Cook, 2008). Others tag events as anomalies if the occur rarely and
they are not anticipated for the current context (Yin et al., 2008).

1.3.4 Planning and Scheduling

Automatic planning and scheduling can be useful in many intelligent health systems
applications. Automatic planning techniques achieve a goal state by starting from an initial
known state and choosing among possible actions at each state. Planning can be useful in
a number of different intelligent health scenarios. For example, planning can be used to
schedule daily activities in a flexible manner for reminding dementia patients about their
daily activities. It also can be used in order to detect any possible deficiencies in task
execution, and to help dementia patients to complete those steps. Another use of planning
is in automating daily routines, in order to allow users with physical limitations to live a
more independent lifestyle.

In the past, many planning techniques have been proposed. Some techniques include
decision-theoretic techniques (e.g. Markov Decision Processes (Bellman, 1957)), search
methods (e.g. forward and backward search (Bonet and Geffner, 2001)), graph-based tech-
niques (e.g. GraphPlan (Blum and Furst, 1997)), hierarchal techniques (e.g. O-Plan (Tate
et al., 2000)), and reactive planning techniques (e.g. (Firby, 1987)). For example, graph-
based planning techniques represent search space of possible actions in form of a graph,
hierarchal planning techniques use hierarchies to predefine groups of actions, and reactive
planning techniques adjust the plan based on sensed information.
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Intelligent health systems pose many new challenges to the classical planning techniques.
For example, the planner has to be functional in a dynamic environment where the outcome
of the actions and their duration is not deterministic. Also, the availability of resources might
change due to user mobility or other factors. Therefore, more advanced planning techniques
have been proposed by extending classical planning techniques (Simpson et al., 2006). One
example is the distributed hierarchal task network (D-HTN) technique (Amigoni et al., 2005)
which extends the hierarchal task network (HTN). It uses a centralized approach to manage
the distributed capabilities provided by the distributed devices. The distributed devices
might be available in a permanent or transient manner. D-HTN has been studied in the
context of care for diabetic patients at home, where different home devices communicate and
coordinate plans with each other in a distributed manner. For example data from monitoring
devices might require actions such as adjusting the room temperature, suggesting insulin
injection, or contacting medical help.

Several intelligent health systems have been reported in the literature which use auto-
mated planning and scheduling, especially to help dementia patients. COACH is one such
system which provides task guidance to Alzheimer’s disease patients (Mihailidis et al., 2004).
It uses a hand-coded representation of detailed steps of hand-washing, and relies on vision
techniques to recognize user steps. If user is unable to complete a particular step, detailed
instructions are provided. Another example is PEAT which also provides task guidance to
the user (Levinson, 1997). It maintains a detailed model of the daily plan in terms of hier-
archal events, and tracks their execution. PEAT has the capability of rescheduling activities
in case of unexpected events, however it lacks any real sensory information from the world,
except for user feedback. Autominder by Pollack et al. (Pollack et al., 2003) is another
system which provides users with reminders about their daily activities by reasoning about
any disparities between what the client is supposed to do and what she is doing, and makes
decisions about whether and when to issue reminders.

1.3.5 Decision Support

Decision Support Systems (DSS) (Efraim, 1996; Eom et al., 1998; Eom and Kim, 2006)
have been widely used in the field of heath care for assisting physicians and other health care
professionals with decision making tasks, for example for analyzing patient data (Omichi
et al., 1984; Bakonyi et al., 1985; Bankowitz et al., 1992; Linnarsson, 1993; Snyder-Halpern,
1999; Romano and Stafford, 2011; Perwez et al., 2012). DSS systems are mainly based on
two mainstream approaches: knowledge-based and non knowledge-based.

The knowledge-based DSS consists of two principal components: the knowledge database
and the inference engine. The knowledge database contains the rules and associations of
compiled data which often take the form of IF-THEN rules, whereas the inference engine
combines the rules from the knowledge database with the real patients’ data in order to
generate new knowledge and to propose a set of suitable actions. Different methodologies
have been proposed for designing health care knowledge databases and inference engines,
such as the ontological representation of information (Kaptein et al., 2010).

The non knowledge-based DSS have no direct clinical knowledge about a particular
health care process, however they learn clinical rules from past experiences and by finding
patterns in clinical data. For example, various machine learning algorithms such as decision
trees represent methodologies for learning health care and clinical knowledge.

Both of these approaches could be used in conjunction with intelligent health systems.
Indeed, the sensitive, adaptive, and unobtrusive nature of intelligent health systems is par-
ticularly suitable for designing decision support systems capable of supporting medical staffs
in critical decisions. In particular, intelligent health systems enable the design of the third
generation of telecare systems. The first generation was the panic-alarms gadgets, often worn
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as pendants or around the wrist to allow a person to summon help in the case of a fall or
other kinds of health emergency. The second generation of telecare systems uses sensors to
automatically detect situations where assistance or medical decisions are needed. Finally,
the third generation represents intelligent health systems which move away from the simple
reactive approach and adopt a proactive strategy capable of anticipating emergency situ-
ations. As a result, DSSs could be used with multimodal sensing and wearable computing
technologies for constantly monitoring all vital signs of a patient and for analyzing such
data in order to take real-time decisions and opportunely support that people.

Finally, DSSs are jointly used with the intelligent health systems paradigm for enhancing
communications among health personnel such as doctors and nurses. For example, Anya
et al. have introduced a DSS system based on context aware knowledge modeling aimed
at facilitating the communication and improving the capability to take decisions among
healthcare personal located in different geographical sites (Anya et al., 2010).

1.3.6 Anonymization and Privacy Preserving Techniques

As intelligent health systems become more ubiquitous, more information will be collected
about individuals and their lives. While the information is intended to promote the well
being of individuals, it may be considered an invasion of privacy and, if intercepted by other
parties, could be used for malicious purposes.

While some privacy concerns focus on the perception of intrusive monitoring (Demiris
et al., 2008), many heavily-deployed Internet gadgets and current intelligent systems are
nearly devoid of security against adversaries, and many others employ only crude methods
for securing the system from internal or external attacks. The definition of privacy will
continue to evolve as ambient intelligent systems mature (Hayes et al., 2007). This is high-
lighted by the fact that even if personal information is not directly obtained by an unwanted
party, much of the information can be inferred even from aggregated data. For this reason,
a number of approaches are being developed to ensure that important information cannot
be gleaned from mined patterns (Laszlo and Mukherjee, 2005; Wang et al., 2009a).

1.4 Conclusions and Future Outlook

With the help of analytics techniques, intelligent health systems promise to enhance our
health and well-being in many aspects in a radical manner by successful acquisition and
interpretation of contextual information. We are aware that the goals set up for analytics
techniques in intelligent health systems are not easily reachable and there are still many
challenges to face and, consequently, this research field is getting more and more impetus.
Researchers with different backgrounds are enhancing the current state of the art of intel-
ligent health systems by addressing fundamental problems not only in analytics, but also
related to human factors, design and implementation, security, as well as social and ethical
issues. As a result, we are confident that this synergic approach will materialize the com-
plete vision of intelligent health systems and its full application to health care and human
well-being.
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