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Abstract Deep neural networks (DNNs) have introduced novel and useful tools
to the machine learning community. Other types of classifiers can potentially
make use of these tools as well to improve their performance and generality.
This paper reviews the current state of the art for deep learning classifier
technologies that are being used outside of deep neural networks. Non-neural
network classifiers can employ many components found in DNN architectures.
In this paper, we review the feature learning, optimization, and regularization
methods that form a core of deep network technologies. We then survey non-
neural network learning algorithms that make innovative use of these methods
to improve classifications. Because many opportunities and challenges still
exist, we discuss directions that can be pursued to expand the area of deep
learning for a variety of classification algorithms.

Keywords Deep Learning · Deep Neural Networks · Optimization ·
Regularization

1 Introduction

The objective of supervised learning algorithms is to identify an optimal
mapping between input features and output values based on a given training
dataset. A supervised learning method that is attracting substantial research

A. Ghods
School of Electrical Engineering and Computer Science
Washington State University,
Pullman, WA, 99164
E-mail: alireza.ghods@wsu.edu

D. Cook
School of Electrical Engineering and Computer Science
Washington State University,
Pullman, WA, 99164
E-mail: djcook@wsu.edu



2 Alireza Ghods, Diane J. Cook

and industry attention is DNN. DNNs have a profound effect on our daily
lives; they are found in search engines (Guo et al. 2017), self-driving cars
(Ndikumana and Hong 2019), health care systems (Esteva et al. 2019), and
consumer devices such as smart-phones and cameras (Gjoreski et al. 2020; Yang
et al. 2020). Convolutional Neural Networks (CNN) have become the standard
for processing images (Feng et al. 2019), whereas Recurrent Neural Networks
(RNN) dominate the processing of sequential data such as text and voice
(Smagulova and James 2019). DNNs allow machines to automatically discover
the representations needed for the detection or classification of raw input
(LeCun et al. 2015). Additionally, the neural network community developed
unsupervised algorithms to help with the learning of unlabeled data. These
unsupervised methods have found their way to real-world applications, such as
creating generative adversarial networks (GANs) that design clothes (Singh et al.
2020). The term deep has been used to distinguish these networks from shallow
networks which have only one hidden layer; in contrast, DNNs have multiple
hidden layers. The two terms deep learning and deep neural networks
have been used synonymously. However, we observe that deep learning itself
conveys a broader meaning, which can also shape the field of machine learning
outside the realm of neural network algorithms.

The remarkable recent DNN advances were made possible by the availabil-
ity of massive amounts of computational power and labeled data. However,
these advances do not overcome all of the difficulties associated with DNNs.
For example, there are many real-world scenarios, such as analyzing power
distribution data (Tang et al. 2018), for which large annotated datasets do not
exist due to the complexity and expense of collecting data. While applications
like clinical interpretations of medical diagnoses require that the learned model
be understandable, most DNNs resist interpretation due to their complexity
(Caruana et al. 2015). DNNs can be insensitive to noisy training data (Nguyen
et al. 2015; Zhang et al. 2017; Krueger et al. 2017), and they also require ap-
propriate parameter initialization to converge (Sutskever et al. 2013a; Mishkin
and Matas 2016).

Despite these shortcomings, DNNs have reported higher predictive accuracy
than other supervised learning methods for many datasets, given enough
supervised data and computational resources. Deep models offer structural
advantages that may improve the quality of learning in complex datasets as
empirically shown by Bengio (2009). Recently, researchers have designed hybrid
methods which combine unique DNN techniques with other classifiers to address
some of these identified problems or to boost other classifiers. This survey
paper investigates these methods, reviewing classifiers which have adapted
DNN techniques to alternative classifiers.

1.1 Research Objectives and Outline

While DNN research is growing rapidly, this paper aims to draw a broader
picture of deep learning methods. Although some studies provide evidence
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that DNN models offer greater generalization than classic machine learning
algorithms for complex data (Szegedy et al. 2015; Wu et al. 2016; Józefowicz
et al. 2016; Graves et al. 2013; Ji et al. 2013), there is no “silver bullet” approach
to concept learning (Wolpert and Macready 1997). Numerous studies comparing
DNNs and other supervised learning algorithms (King et al. 1995; Lim et al.
2000; Caruana and Niculescu-Mizil 2006; Caruana et al. 2008; Baumann et al.
2019) observe that the choice of algorithm depends on the data - no ideal
algorithm exists which generalizes optimally on all types of data. Recognizing
the unique and important role other classifiers thus play, we aim to investigate
how non-neural network machine learning algorithms can benefit from the
advances in deep neural networks. Many deep learning survey papers have
been published that provide a primer on the topic (Pouyanfar et al. 2019) or
highlight diverse applications such as object detection (Shickel et al. 2018),
medical record analysis (Han et al. 2018), activity recognition (Wang et al.
2019b), and natural language processing (Hatcher and Yu 2018). In this survey,
we do not focus solely on deep neural network models but rather on how deep
learning can inspire a broader range of classifiers. We concentrate on research
breakthroughs that transform non-neural network classifiers into deep learners.
Further, we review deep network techniques such as stochastic gradient descent
that can be used more broadly, and we discuss ways in which non-neural
network models can benefit from network-inspired deep learning innovations.

The literature provides evidence that non-neural network models may offer
improved generalizability over deep networks, depending on the amount and
type of data that is available. By surveying methods for transforming non-
neural network classifiers into deep learners, these approaches can become
stronger learners. To provide evidence of the need for continued research on
this topic, we also implement a collection of shallow and deep learners surveyed
in this paper, both network and non-neural network classifiers, to compare
their performance. Figure 1 highlights the deep learning components that we
discuss in this survey. This graph also summarizes the deep classifiers that we
survey and the relationships that we highlight between techniques.

2 Brief Overview of Deep Neural Networks

2.1 The Origin

In 1985, Rosenblatt introduced the Perceptron (Rosenblatt 1958), an online
binary classifier which flows input through a weight vector to an output layer.
Perceptron learning uses a form of gradient descent to adjust the weights
between the input and output layers to optimize a loss function (Widrow and
Hoff 1960). A few years later, Minsky proved that a single-layer Perceptron
is unable to learn nonlinear functions, including the XOR function (Minsky
and Papert 1987). Multilayer perceptrons (MLPs, see Table 3 for a complete
list of abbreviations) addressed the nonlinearity problem by adding layers of
hidden units to the networks and applying alternative differentiable activation
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Fig. 1: Content map of the methods covered in this survey.

functions, such as sigmoid, to each node. Stochastic gradient descent was
then applied to MLPs to determine the weights between layers that minimize
function approximation errors (Rumelhart et al. 1985). However, the lack of
computational power caused DNN research to stagnate for decades, and other
classifiers rose in popularity. In 2006, a renaissance began in DNN research,
spurred by the introduction of Deep Belief Networks (DBNs) (Hinton et al.
2006).

2.2 Deep Neural Network Architectures

Due to the increasing popularity of deep learning, many DNN architectures
have been introduced with variations such as Neural Turing Machines (Graves
et al. 2014) and Capsule Neural Networks (Sabour et al. 2017). In this paper, we
summarize the general form of DNNs together with architectural components
that not only appear in DNNs but can be incorporated into other models. We
start by reviewing popular types of DNNs that have been introduced and that
play complementary learning roles.

2.3 Supervised Learning

2.3.1 Multilayer Perceptron

A multilayer perceptron (MLP) is one of the essential bases of many deep
learning algorithms. The goal of a MLP is to map input X to class y by
learning a function y = f(X, θ), where θ represents the best possible function
approximation. For example, in Figure 2 the MLP maps input X to y using
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function f(x) = f (3)(f (2)(f (1)(x))), where f (1) is the first hidden-layer, f (2) is
the hidden-second layer, and f (3) represents the third, output layer. This chain
structure is a common component of many DNN architectures. The network
depth is equal to the length of the chain, and the width of each layer represents
the number of nodes in that layer (Goodfellow et al. 2016).

In networks such as the MLP, the connections are not cyclic and thus belong
to a class of DNNs called feedforward networks. Feedforward networks move
information in only one direction, from the input to the output layer. Figure 2
depicts a particular type of feedforward network which is a fully-connected
multilayer perceptron because each node at one layer is connected to all of the
nodes at the next layer. Special cases of feedforward networks and MLPs have
drawn considerable recent attention, which we describe next.
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Fig. 2: An illustration of a three-layered MLP with j nodes at the first hidden layer and k at the
second layer.

2.3.2 Deep Convolutional Neural Network

A convolutional neural network (CNN) (LeCun et al. 1989) is a specialized
class of feedforward DNNs for processing data that can be discretely presented.
Examples of data that can benefit from CNNs include time series data that
can be presented as samples of discrete regular time intervals and image
data presented as samples of 2-D pixels at discrete locations. Most CNNs
involve three stages: a convolution operation; an activation function, such
as the rectified linear activation (ReLU) function (Krizhevsky et al. 2012);
and a pooling function, such as max pooling (Zhou and Chellappa 1988). A
convolution operation is a weighted average or smooth estimation of a windowed
input. One of the strengths of the convolution operation is that the connections
between nodes in a network become sparser by learning a small kernel for
unimportant features. Another benefit of convolution is parameter sharing. A
CNN makes an assumption that a kernel learned for one input position can be
used at every position, in contrast to a MLP which deploys a separate element
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of a weight matrix for each connection. Applying the convolution operator
frequently improves the network’s learning ability.

A pooling function replaces the output of specific nearby nodes by their
statistical summary. For example, the max-pooling function returns the maxi-
mum of a rectangular neighborhood. The motivation behind adding a pooling
layer is that statistically down-sampling the number of features makes the
representation approximately invariant to small translations of the input by
maintaining the essential features. The final output of the learner is generated
via a Fully-Connected (FC) layer that appears after the convolutional and
max-pooling layers (see Figure 3 for an illustration of the process).

Input
layer

Convolutional
layer + ReLU

Max Pooling
layer

Convolutional
layer + ReLU

Max Pooling
layer

FC
layer

Fig. 3: An illustration of a three-layered CNN made of six convolution filters followed by six max
pooling filters at the first layer, and eight convolution filters followed by seven max pooling filters
at the second layer. The last layer is a fully connected layer (FC).

2.3.3 Recurrent Neural Network

A recurrent Neural Network (RNN) is a sequential model that can capture the
relationship between items in a sequence. Unlike traditional neural networks,
wherein all inputs are independent of each other, RNNs contain artificial
neurons with one or more feedback loops. Feedback loops are recurrent cycles
over time or sequence, as shown in Figure 4. An established RNN problem is
exploding or vanishing gradients. For a long data sequence, the gradient could
become increasingly smaller or increasingly larger, which halts the learning.
To address this issue, Hochreiter and Schmidhuber (1997) introduced a long
short-term memory (LSTM) model and Cho et al. (2014) proposed a gated
recurrent unit (GRU) model. Both of these networks allow the gradient to flow
unchanged in the network, thus preventing exploding or vanishing gradients.

2.3.4 Siamese Neural Network

There are settings in which the number of training samples is limited, such as
in facial recognition scenarios where only one image is available per person.
When there is a limited number of examples for each class, DNNs struggle with
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Fig. 4: An illustration of a simple RNN and its unfolded structure through time t.

generalizing the model. One strategy for addressing this problem is to learn a
similarity function. This function computes the degree of difference between
two samples instead of learning each class. As an example, let x1 represents
one facial image and x2 represents a second. If d(x1, x2) ≤ τ , we can conclude
that the images are of the same person while d(x1, x2) > τ implies that they
are different people. Siamese Neural Networks (SNN) (Taigman et al. 2014)
build on this idea by encoding examples xi and xj on two separate DNNs with
shared parameters. The SNN learns a function d using encoded features, as
shown in Figure 5. The network then outputs y > 0 for similar objects (i.e.,
when d is less than a threshold value) and y < 0 otherwise. Thus, SNNs can
be used for similarity learning by learning a distance function over objects. In
addition to their value for supervised learning from limited samples, SNNs are
also beneficial for unsupervised learning tasks (Riad et al. 2018; Alaverdyan
et al. 2020).
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Fig. 5: An illustration of an SNN. In this figure, xi and xj are two data vectors corresponding to a
pair of instances from the training set. Both networks share the same weights and map the input
to a new representation. By comparing the outputs of the networks using a distance measure such
as Euclidean, we can determine the compatibility between instances xi and xj .
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2.4 Unsupervised Learning

2.4.1 Generative Adversarial Network

Until this point in the survey, we have focused on deep learning for its power in
classifying data points. However, researchers have exploited deep learning for
other uses as well, such as generating synthetic data that shares characteristics
with known real data.

One way to create synthetic data is to learn a generative model. A generative
model learns the parameters that govern a distribution based on observation
of real data points from that distribution. The learned model can then be
used to create arbitrary amounts of synthetic data that emulate real data
observations. Recently, researchers have found a way to exploit multiplayer
games for the purpose of improving generative machine learning algorithms. In
the adversarial training scenario, two agents compete against each other, as
inspired by Samuel (1959) who designed a computer program to play checkers
against itself. Goodfellow et al. (2014) put this idea to use in developing
Generative Adversarial Networks (GANs), in which a DNN (generator) tries to
generate synthetic data that is so similar to real data that it fools its opponent
DNN (discriminator), whose job is to distinguish real from fake data (see Figure
6 for an illustration). The goal of GANs is to simultaneously improve the ability
of the generator to produce realistic data and of the discriminator to distinguish
synthetic from real data. GANs have found successful application in diverse
tasks, including translating text to images (Reed et al. 2016), discovering drugs
(Kadurin et al. 2017), and transforming sketches to images (Chen and Hays
2018; Park et al. 2019).

Real Data Discriminator
Network

Real

Fake

Random Noise Generator
Network

Fake
Data

Fig. 6: An illustration of a GAN. The goal of the discriminator network is to distinguish real data
from fake data, and the goal of the generator network is to use the feedback from the discriminator
to generate data that the discriminator cannot distinguish from real.
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2.4.2 Autoencoder

Yet another purpose for deep neural networks is to provide data compression and
dimensionality reduction. An Autoencoder (AE) is a DNN that accomplishes
this goal by creating an output layer that resembles the input layer, using a
reduced set of terms represented by the middle layers (Goodfellow et al. 2016).
Architecturally, an AE combines two networks. The first network, called the
encoder, learns a new representation of input x with fewer features h = f(x);
the second part, called the decoder, maps h onto a reconstruction of the input
space ŷ = g(h), as shown in Figure 7. The goal of an AE is not simply to
recreate the input features. Instead, an AE learns an approximation of the
input features to identify useful properties of the data. AEs are vital tools for
dimensionality reduction (Hinton and Salakhutdinov 2006), feature learning
(Vincent et al. 2008), image colorization (Zhang et al. 2016), higher-resolution
data generation (Huang et al. 2018), and latent space clustering (Yeh et al.
2017). Additionally, other versions of AEs such as variational autoencoders
(VAEs) (Kingma and Welling 2014) can be used as generative models.

...
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Encoder Decoder

Fig. 7: An illustration of an AE. The first part of the network, called the encoder, compresses
input into a latent-space by learning the function h = f(x). The second part, called the decoder,
reconstructs the input from the latent-space representation by learning the function ŷ = g(h).

2.5 Optimization for Training Deep Neural Networks

In the previous section, we described common DNN architecture components.
In this section, we offer a brief overview of optimization approaches for training
DNNs. Learning methods may optimize a function f(x) (e.g., minimize a
loss function) by modifying model parameters (e.g., changing DNN weights).
However, as Bengio (2013) point out, DNN optimization during training may
be further complicated by local minima and ill-conditioning (see Figure 8 for
an illustration of an ill-condition).

The most common type of optimization strategy employed by DNNs is
gradient descent. This intuitive approach to learning the weights of connections
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between layers which reduce the network’s objective function by computing
the error derivative with respect to a higher-level layer of the network. Input x
is fed forward through a network to predict ŷ. A cost function J(θ) measures
the error of the network at the output layer. Gradient descent then directs the
cost value to flow backward through the network by computing the gradient of
the objective function ∇θJ(θ). This process is sometimes alternatively referred
to as backpropagation because the training error propagates backward through
the network from output to input layers. Many variations of gradient descent
have been tested for DNN optimization, such as stochastic gradient descent,
mini-batch gradient descent, momentum (Sutskever et al. 2013b), Ada-Grad
(Duchi et al. 2011), and Adam (Kingma and Ba 2015).

Deep network optimization is an active area of research. Along with gradient
descent, many other algorithms such as derivative-free optimization (Rios
and Sahinidis 2013) and feedback-alignment (Nøkland 2016) have appeared.
However, none of these algorithms are as popular as the gradient descent
algorithms.

Fig. 8: The left-hand side loss surface depicts a well-conditioned model where local minima can
be reached from all directions. The right-hand side loss surface depicts an ill-conditioned model
where there are several ways to overshoot or never reach the minima.

2.6 Regularization

Regularization was an optimization staple for decades prior to the development
of DNNs. The rationale behind adding a regularizer to a classifier is to avoid
the overfitting problem, where the classifier fits the training set too closely
instead of generalizing to the entire data space. Goodfellow et al. (2016) defined
regularization as “any modification to a learning algorithm that is intended to
reduce its generalization error but not its training error”. While regularization
methods such as bagging have been popular for neural networks and other
classifiers, recently, the DNN community has developed novel regularization
methods that are unique to deep neural networks. In some cases, backpropa-
gation training of fully-connected DNNs results in poorer performance than
shallow structures because the deeper structure is prone to being trapped
in local minima and overfitting the training data (Zhang et al. 2017). To
improve the generalizability of DNNs, regularization methods have thus been
adopted during training. Here we review the intuition behind the most frequent
regularization methods that are currently found in DNNs.



A Survey of Deep Networks Techniques All Classifiers Can Adopt 11

2.6.1 Parameter Norm Penalty

A conventional method for avoiding overfitting is to penalize large weights by
adding a p-norm penalty function to the optimization function of the form f(x)+

p-norm(x), where the p-norm p for weights w is denoted as ||w||p = (
∑
i |wi|p)

1
p .

Popular p-norms are the L1 and L2 norms which have been used by other
classifiers such as logistic regression and SVMs prior to the introduction of
DNNs. L1 adds a regularization term Ω(θ) = ||w||1 to the objective function
for weights w, while L2 adds a regularization term Ω(θ) = ||w||2. The difference
between the L1 and L2 norm penalty functions is that L1 penalizes features
more heavily by setting the corresponding edge weights to zero compared to L2.
Therefore, a classifier with the L1 norm penalty tends to prefer a sparse model.
The L2 norm penalty is more common than the L1 norm penalty. However, it
is often advised to use the L1 norm penalty when the amount of training data
is small and the number of features is large to avoid noisy and less-important
features. Because of its sparsity property, the L1 penalty function is a key
component of LASSO feature selection (Tibshirani 1996).

2.6.2 Dropout

A powerful method to reduce generalization error is to create an ensemble of
classifiers. Multiple models are trained separately, then as an ensemble they
output a combination of the models’ predictions on test points. Some examples
of ensemble methods included bagging (Breiman 1996), which trains k models
on k different folds of random samples with replacement and boosting (Freund
1995), which applies a similar process to weighted data. A variety of DNNs use
boosting to achieve lower generalization error (Hinton et al. 2006; Moghimi
et al. 2016; Eickholt and Cheng 2013).

Dropout (Srivastava et al. 2014) is a popular regularization method for
DNNs, which can be viewed as a computationally-inexpensive application of
bagging to deep networks. A common way to apply dropout to a DNN is
to deactivate a randomly-selected 50% of the hidden nodes and a randomly-
selected 20% of the input nodes for each mini-batch of data. The difference
between bagging and dropout is that in bagging, the models are independent
of each other, while in dropout each model inherits a subset of parameters
from the parent deep network.

2.6.3 Data Augmentation

DNNs can generalize better when they have more training data; however,
the amount of available data is often limited. One way to circumvent this
limitation is to generate artificial data from the same distribution as the
training set. Data augmentation has been particularly effective when used in
the context of classification. The goal of data augmentation is to generate
new training samples from the original training set (X, y) by transforming the
X inputs. Data augmentation may include generating noisy data to improve
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robustness (denoising) or creating additional training data for the purpose
of regularization (synthetic data generation). Dataset augmentation has been
adopted for a variety of tasks such as image recognition (Perez and Wang 2017;
Cubuk et al. 2018), speech recognition (Jaitly and Hinton 2013), and activity
recognition (Ohashi et al. 2017). Additionally, GANs (Bowles et al. 2018;
Antoniou et al. 2017) and AEs (Jorge et al. 2018; Liu et al. 2018), described in
Sections 2.4.1 and 2.4.2, can be employed to generate such new examples.

Injecting noise into a copy of the input is another data augmentation method.
Although DNNs are not consistently robust to noise (Tang and Eliasmith 2010),
Poole et al. (2014) show that DNNs can benefit from carefully-tuned noise.

3 Deep Learning Architectures Outside of Deep Neural Networks

Recent research has introduced numerous enhancements to the basic neural
network architecture that enhance network classification power, particularly
for deep networks. In this section, we survey non-neural network classifiers that
also make use of these advances.

3.1 Supervised Learning

3.1.1 Feedforward Learning

A DNN involves multiple layers of operations that are performed sequentially.
The idea of creating a sequence of operations, each of which manipulates the
data before passing them to the next operator, may be used to improve many
types of classifiers. One way to construct a model with a deep feedforward
architecture is to use stacked generalization (Wolpert 1992; Ting and Witten
1999). Stacked generalization classifiers are comprised of multiple layers of clas-
sifiers stacked on top of each other, as found in DNNs. In stacked generalization
classifiers, one layer generates the next layer’s input by concatenating its own
input to its output. Stacked generalization classifiers typically only implement
forward propagation, in contrast to DNNs which propagate information both
forward and backward through the model.

In general, learning methods that employ stacked generalization can be
categorized into two strategies. In the first stacked generalization strategy, the
new feature space for the current layer comes from the concatenation of the
predicted output of the previous layer with the original feature vector. Here,
layers refer not to layers of neural network operations but instead refer to
sequences of other types of operations. Examples of this strategy include Deep
Forest (DF) (Zhou and Feng 2017) and the Deep Transfer Additive Kernel
Least Square SVM (DTA-LS-SVM) (Wang et al. 2019a). At any given layer, for
each instance x, DF extends x’s previous feature vector to include the previous
layer’s predicted class value for the instance. The prediction represents a
distribution over class values, averaged over all trees in the forest. Furthermore,
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Zhou and Feng (2017) introduce a method called Multi-Grained Scanning for
improving the accuracy of DFs. Inspired by CNNs and RNNs where spatial
relationships between features are critical, Multi-Grained Scanning splits a
D-dimensional feature vector into smaller segments by moving a window over
the features. For example, given 400 features and a window size of 100, the
original features convert to 301 features of length 100, {< 1−100 >,< 2−101 >
, . . . , < 301 − 400 >}, where the new instances have the same labels as the
original instances. The new samples which are described by a subset of the
original features might have incorrectly-associated labels. At first glance, it
seems these noisy data could hurt the generalization. But as Breiman (2000)
illustrates, perturbing a percentage of the training labels can actually help
generalization.

Furthermore, Ho (1995) demonstrates that feature sub-sampling can en-
hance the generalization capability for RFs. Zhou and Feng (2017) tested three
different window sizes (D/4, D/8, and D/16), where data from each differ-
ent window size fits a different level of a DF model. Then the newly-learned
representation from these three layers is fed to a multilayer DF, applying to
subsample when the transformed features are too long. Multi-Grained Scanning
can improve the performance of a DF model for continuous data, as Zhou and
Feng (2017) report that accuracy increased by 1.24% on the MNIST (LeCun
1998) dataset. An alternative method, DTA-LS-SVM, applies an Additive
Kernel Least Squares SVM (AK-LS-SVM) (Cawley 2006; Yang and Wu 2012)
at each layer and concatenates the original feature vector x with the prediction
of the previous level to feed to the next layer. In addition, DTA-LS-SVM
incorporates a parameter-transfer approach between the source (previous-layer
learner) and target (next-layer learner) to enhance the classification capability
of the higher level.

In the second stacked generalization strategy, the current layer’s new feature
space comes from the concatenation of predictions from all previous layers
with the original input feature vector. Examples of this strategy include the
Deep SVM (D-SVM) (Abdullah et al. 2009) and the Random Recursive SVM
(R2-SVM) (Vinyals et al. 2012). The D-SVM contains multiple layers of SVMs,
where the first layer is trained in the normal fashion. Following this step, each
successive layer employs the kernel activation from the previous layer with
the desired labels. The R2-SVM is a multilayer SVM model which at each
layer transforms the data based on the sigmoid of a projection of all previous
layers’ outputs. For the data (X,Y ) where X ∈ RD and Y ∈ RC , the random
projection matrix is W ∈ RD×C , where each element is sampled from N(0, 1).
The input data for the next layer is:

Xl+1 = σ(d+ βWl+1[oT1 , o
T
2 , ..., o

T
l ]T ), (1)

where β is a weight parameter that controls the degree with which a data sample
in Xl+1 moves from the previous layer, σ(.) is the sigmoid function, Wl+1 is the
concatenation of l random projection matrices [Wl+1,1,Wl+1,2, ...,Wl+1,l], one
for each previous layer, and o is the output of each layer. Addition of a sigmoid
function to the recursive model prevents deterioration to a trivial linear model
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in a similar fashion as MLPs. The purpose of the random projection is to push
data from different classes in different directions.

It is important to note here that stacked generalization can be found in
DNNs as well as non-neural network classifiers. Examples of DNNs with stacked
generalization include Deep Stacking Networks (Deng et al. 2012; Hutchinson
et al. 2013) and Convex Stacking Architectures (Yu and Deng 2011; Deng
et al. 2012). This is clearly one enhancement that benefits all types of classifier
strategies. However, there is no evidence that stack generalization could add
nonlinearity to the model.

DNN classifiers learn a new representation of data at each layer with a goal
that the newly-learned representation maximally separates the classes. Unsu-
pervised DNNs often share this goal. As an example, Deep PCA’s model (Liong
et al. 2013) is made of two layers that each learn a new data representation
by applying a Zero Components Analysis (ZCA) whitening filter (Krizhevsky
and Hinton 2009) followed by a principal components analysis (PCA) (Shlens
2014). The final data representation is derived from concatenating the output
of the two layers. The motivation behind applying a ZCA whitening filter is
to force the model to focus on higher-order correlations. One motivation for
combining output from the first and second layers could be to preserve the
learned representation from the first layer and to prevent feature loss after
applying PCA at each layer. Experiments demonstrate that Deep PCA exhibits
superior performance for face recognition tasks compared to standard PCA and
a two-layer PCA without a whitening filter. However, as empirically confirmed
by Damianou and Lawrence (2013), stacking PCAs does not necessarily result
in an improved representation of the data because Deep PCA is unable to
learn a nonlinear representation of data at each layer. Damianou and Lawrence
(2013) fed a Gaussian to a Deep PCA and observed that the model learned
just a lower rank of the input Gaussian at each layer.

As pointed out earlier in this survey, the invention of the deep belief net
(DBN) (Hinton et al. 2006) drew the attention of researchers to developing
deep models. A DBN can be viewed as a stacked restricted Boltzmann machine
(RBM), where each layer is trained separately and alternates functionality
between hidden and input units. In this model, features learned at hidden
layers then represent inputs to the next layer. An RBM is a generative model
that contains a single hidden layer. Unlike the Boltzmann machine, hidden
units in the restricted model are not connected to each other and contain
undirected, symmetrical connections from a layer of visible units (inputs). All
of the units in each layer of an RBM are updated in parallel by inputting the
current state of the unit to the other layer. This updating process repeats until
the system is sampling from an equilibrium distribution. The RBM learning
rule is shown in Equation 2.

∂ logP (v)

∂Wij
≈< vihj >data − < vihj >reconstruction (2)

In this equation, Wij represents the weight vector between a visible unit vi
and a hidden unit hj , and < . > is the average value over all training samples.
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Since the introduction of DBNs, many other different variations of Deep RBMs
have been proposed, such as temporal RBMs (Sutskever and Hinton 2007),
gated RBMs (Memisevic and Hinton 2007), and cardinality RBMs (Swersky
et al. 2012).

Another novel form of a deep belief net is a deep Gaussian process (DGP)
model (Damianou and Lawrence 2013). DGP is a deep directed graph where
multiple layers of Gaussian processes map the original features to a series of
latent spaces. DGPs offer a more general form of Gaussian Processes (GPs)
(Rasmussen 2003) where a one-layer DGP consists of a single GP, f . In a
multilayer DGP, each GP, fl, maps data from one latent space to the next. As
shown in Equation 3, each data point Y is generated from the corresponding
function fl with ε Gaussian noise applied to data Xl that is obtained from a
previous layer.

Y = fl(Xl) + εl, εl ∼ N (0, σ2
l I) (3)

Figure 9 illustrates a DGP expressed as a series of Gaussian processes
mapping data from one latent space to the next. Functions fl are drawn from
a Gaussian process, i.e. f(x) ∼ GP(0, k(x, x′)). In this setting, the covariance
function k defines the properties of the mapping function. DGP can be utilized
for both supervised and unsupervised learning. In the supervised setting, the
top hidden layer is observed, whereas, in the unsupervised setting, the top
hidden layer is set to a unit Gaussian as a fairly uninformative prior. DGP is a
powerful non-parametric model, but it has only been tested on small datasets.
Also, we note that researchers have developed deep Gaussian process models
with alternative architectures such as recurrent Gaussian processes (Mattos
et al. 2016), convolutional Gaussian processes (van der Wilk et al. 2017) and
variational auto-encoded deep Gaussian processes (Dai et al. 2016). There
exists a vast amount of literature on this topic that provides additional insights
on deep Gaussian processes (Duvenaud et al. 2014; Damianou 2015; Dunlop
et al. 2018).

X f1 f2 f3 Y

Fig. 9: A deep Gaussian process with two hidden layers.

As we discussed, non-neural network classifiers have been designed that
contain multiple layers of operations, similar to a DNN. We observe that a
common strategy for creating a deep non-neural network model is to add the
prediction of the previous layer or layers to the original input feature. Likewise,
novel methods can be applied to learn a new representation of data at each
layer. We discuss these methods next.
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3.1.2 Siamese Model

As discussed in Section 2.3.4, an SNN represents a powerful method for similarity
learning. However, one problem with SNNs is overfitting when there is a small
number of training examples. The Siamese Deep Forest (SDF) (Utkin and
Ryabinin 2018) is a method based on DF, which offers an alternative to a
standard SNN. The SDF, unlike the SNN, uses only one DF. The first step in
training an SDF is to modify the training examples. The training set consists
of the concatenation of each pair of samples in the original set. If the sample
points xi and xj are semantically similar, the corresponding class label is set
to zero; otherwise, the class label is set to one. The difference between the
SDF and the DF in training is that the Siamese Deep Forest concatenates
the original feature vector with a weighted sum of the tree class probabilities.
Training of SDF is similar to DF; the primary difference is that SDF learns the
class probability weights w for each forest separately at each layer. Learning
the weights for each forest can be accomplished by minimizing the function in
Equation 4.

min
w
Jq(w) = min

w

∑
i,j

l(xi, xj , yij , w) + λR(w) (4)

Here, w represents a concatenation of vectors wk, k = 1, ...,M , q is the SDF
layer, R(w) is a regularization term, and λ is a hyper-parameter to control
regularization. Detailed instructions on minimizing Equation 4 are found in
the literature (Utkin and Ryabinin 2018). The results of SDF experiments
indicate that the SDF can achieve better classification accuracy than DF
for small datasets. In general, all non-neural network models that learn data
representations can take advantage of the Siamese architecture like SDF.

3.2 Unsupervised Learning

3.2.1 Generative Adversarial Model

A common element found in GANs is the inclusion of an FC layer in the
discriminator. One issue with the FC layer is that it cannot deal with the
ill-condition in which local minima are not surrounded by spherical wells, as
shown in Figure 8. The Generative Adversarial Forest (GAF) (Zuo et al. 2018)
replaces the FC layer of the discriminator with a deep neural decision forest
(DNDF), which is discussed in Section 4. GAF and DNDF are distinguished
based on how leaf node values are learned. Instead of learning leaf node values
iteratively, as DNDF does, GAF learns them in parallel across the ensemble
members. The strong discriminatory power of the decision forest is the reason
the authors recommend this method in lieu of the fully-connected discriminator
layer.

In this previous work, the discriminator is replaced by an unconventional
model. We hypothesize that replacing the discriminator with other classifiers
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such as Random Forest, SVM, of K-nearest neighbor based on the data could
result in a diverse GAN strategy, each of which may offer benefits for alternative
learning problems.

3.2.2 Autoencoder

As we discussed in Section 2.4.2, AEs offer strategies for dimensionality reduc-
tion and data reconstruction from compressed information. The autoencoding
methodology can be found in neural networks, non-neural networks, and hybrid
methods. As an example, the multilayer SVM (ML-SVM) autoencoder is a
variation of ML-SVM with the same number of output nodes as input features
and a single hidden layer that consists of fewer nodes than the input features.
ML-SVM is a model with the same structure as an MLP. The distinction here
is that the network contains SVM models as its nodes. A review of ML-SVM
is discussed in Section 4. The outputs of hidden nodes are fed as input to each
SVM output node c as follows:

gc(f(X|θ)) =

l∑
i=1

(αc∗i − αci )Ko(f(xi|θ), f(x|θ)) + bc, (5)

where αc∗i and αci are the support vector coefficients, Ko is the kernel function,
and bc is their bias. The error backpropagates through the network to update
the parameters.

Another exciting emerging research area is the combination of Kalman filters
with deep networks. A Kalman filter is a well-known algorithm that estimates
the optimal state of a system from a series of noisy observations. The classical
Kalman filter (Kalman 1960) is a linear dynamical system and therefore is
unable to model complex phenomena. For this reason, researchers developed
nonlinear versions of Kalman filters. In a seminal contribution, Krishnan
et al. (2015) introduced a model that combines a variational autoencoder
with Kalman filters for counterfactual inference of patient information. In a
standard autoencoder, the model learns a latent space that represents the
original data minus extraneous information or “signal noise”. In contrast, a
variational autoencoder (VAE) (Kingma and Welling 2014) adds a constraint
to the encoder that learns a Gaussian distribution of the original input data.
Therefore, a VAE is able to generate a latent vector by sampling from the
learned Gaussian distribution. Deep Kalman filters (DKF) learn a generative
model from observed sequences x = (x1, · · · , xT ) and actions u = (u1, · · ·uT−1),
with a corresponding latent space z = (z1, · · · , zT ), as follows:

z1 ∼ N (µ0, Σ0)

zt ∼ N (Gα(zt−1, ut−1, ∆t), Sβ(zt−1, yt−1, ∆t))

xt ∼ Π(Fk(zt)),

(6)

where µ0 = 0 and Σ0 = Id, ∆t represents the difference between times t and
t − 1, and Π represents a distribution (e.g., Bernoulli for binary data) over
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observation xt. The functions Gα, Sβ , Fk are parameterized by a neural net.
As a result, the autoencoder will learn θ = {α, β, k} parameters. Additionally,
Shashua and Mannor (2017) introduced deep Q-learning with Kalman filters
and Lu et al. (2018) presented a deep Kalman filter model for video compression.

As we highlighted in this section, non-neural network methods have been
designed that are inspired by AEs. Although ML-SVM mimics the architecture
of AEs, its computational cost prevents the algorithm from being a practical
choice. DKF takes advantage of the VAE idea by learning a Kalman Filter in
its middle layer. Additionally, Feng and Zhou (2018) introduced an encoder
forest, a model inspired by the DNN autoencoder. Because the encoder forest
is not a deep model, we do not include the details of this algorithm in our
survey.

4 Deep Learning Optimization Outside of Deep Neural Networks

As discussed in Section 2.5, gradient descent has been a prominent optimization
algorithm for DNNs; however, it has been underutilized by non-neural network
classifiers. Some notable exceptions are found in the literature. We discuss
these here.

A resourceful method for constructing a deep model is to start with a DNN
architecture and then replace nodes with non-neural network classifiers. As
an example, the multilayer SVM (ML-SVM) (Wiering and Schomaker 2014)
replaces nodes in an MLP with standard SVMs. ML-SVM is a multiclass
classifier which contains SVMs within the network. At the output layer, the
ML-SVM contains the same number of SVMs as the number of classes learned
at the perceptron output layer. Each SVM at the ML-SVM output layer is
trained in a one-versus-all fashion for one of the classes. When observing a new
data point, ML-SVM outputs the class label corresponding to the SVM that
generates the highest confidence. At each hidden layer, SVMs are associated
with each node that learns latent variables. These variables are then fed to
the output layer. At hidden layer f(X|θ) where X is the training set and θ
denotes the trainable parameters of the SVM, ML-SVM maps the hidden layer
features to an output value as follows:

g(f(X|θ)) =

l∑
i=1

yciα
c
iKo(f(xi|θ), f(X|θ)) + bc, (7)

where g is the output layer function, yci ∈ {−1, 1} for each class c, Ko is the
kernel function for the output layer, αci are the support vector coefficients for
SVM nodes of the output layer, and bc is their bias. The goal of ML-SVM is
to learn the maximum support vector coefficient of each SVM at the output
layer with respect to the objective function Jc(.), as shown in Equation 8.

min
wc,b,ξ,θ

Jc =
1

2
||wc||2 + C

l∑
i

ξi (8)
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Here, wc represents the set of weights for class c, C represents a trade-off
between margin width and misclassification risk and ξi are slack variables.
ML-SVM applies gradient ascent to adapt its support vector coefficient towards
a local maximum of Jc(.). The support vector coefficient is defined as zero
for values less than zero and is assigned to C for values larger than C. The
data is backpropagated through the network, similar to traditional MLPs by
calculating the gradient of the objective function.

The SVMs in the hidden layer are identical. Given the same inputs, they
would thus generate the same outputs. The hidden layers train on a perturbed
version of the training set to eliminate producing similar outputs before training
the combined ML-SVM model to diversify the SVMs,. The outputs of hidden
layer nodes are constrained to generate values in the range [−1, 1]. Despite
the effort of ML-SVMs to learn a multi-layer data representation, this ap-
proach is currently not practical because adding a new node incurs a dramatic
computational expense for large datasets.

Kontschieder et al. (2015) further incorporate gradient descent into a Ran-
dom Forest (RF), which is a popular classification method. One of the drawbacks
of an RF is that it does not traditionally learn new internal representations
like DNNs. The Deep Network Decision Forest (DNDF) (Kontschieder et al.
2015) integrates a DNN into each decision tree within the forest to reduce
the uncertainty at each decision node. In DNDF, the result of a decision node
dn(x,Θ) corresponds to the output of a DNN fn(x,Θ), where x is an input
and Θ is the parameter of a decision node. DNDF must have differentiable
decision trees to be able to apply gradient descent to the process of updat-
ing decision nodes. In a standard decision tree, the result of a decision node
dn(x,Θ) is deterministic. DNDF replaces the traditional decision node with a
sigmoid function dn(x,Θ) = σ(fn(x;Θ)) to create a stochastic decision node.
The probability of reaching a leaf node l is calculated as the product of all
decision node outputs from the root to the leaf l, which is expressed as µl
in this context. The set of leaf nodes L learns the class distribution π, and
the class with the highest probability is the prediction of the tree. The aim
of DNDF is to minimize its empirical risk with respect to the decision node
parameter Θ and the class distribution π of L under the log-loss function for a
given data set.

The optimization of the empirical risk is a two-step process which is executed
iteratively. The first step is to optimize the class distribution of leaf nodes
πL while fixing the decision node parameters and the corresponding DNN.
At the start of optimization (iteration 0), class distribution π0 is set to a
uniform distribution across all leaves. DNDF then iteratively updates the class
distribution across the leaf nodes as follows for iteration t+ 1:

π
(t+1)
ly

=
1

Z
(t)
l

∑
(x,y′)∈T

1y=y′πl(t)y
µl(x|Θ)

PT [y|x,Θ, π(t)]
, (9)

where Z
(t)
l is a normalization factor ensuring that

∑
y π

t+1
ly

= 1, 1q is the
indicator function on the argument q, and PT is the prediction of the tree.
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The second step is to optimize decision node parameters Θ while fixing the
class distribution πL. DNDF employs gradient descent to minimize log-loss
with respect to Θ as follows:

∂L

∂Θ
(Θ, π;x, y) =

∑
n∈N

∂L(Θ, π;x, y)

∂fn(x;Θ)

∂fn(x;Θ)

∂Θ
. (10)

The second term in Equation 10 is the gradient of the DNN. Because this is
commonly known, we only discuss calculating the gradient of the differentiable
decision tree. Here, the gradient of the differentiable decision tree is given by:

∂L(Θ, π;x, y)

∂fn(x;Θ)
= dn(x;Θ)Anr − d̄n(x;Θ)Anl , (11)

where dn is the probability of transitioning to the left child, d̄n = 1 − dn is
the probability of transitioning to the right child calculated by a forward pass
through the DNN, and nl and nr indicate the left and right children of node n.
To calculate the term A in Equation 11, DNDF performs one forward pass and
one backward pass through the differentiable decision tree. Upon completing
the forward pass, a value Al can be initially computed for each leaf node as
follows:

Al =
πlyµl∑
l πlyµl

. (12)

Next, the values of Al for each leaf node are used to compute the values of Am
for each internal node m. To do this, a backward pass is made through the
decision tree, during which the values are calculated as Am = Anl +Anr , where
nl and nr represent the left and the right children of node m, respectively.

Each layer of a standard DNN produces the output oi at layer i. As
mentioned earlier, the goal of the DNN is to learn a mapping function Fi :
oi−1 → oi that minimizes the empirical loss at the last layer of DNN on a
training set. Because each Fi is differentiable, a DNN updates its parameters
efficiently by applying gradient descent to reduce the empirical loss.

Adopting a different methodology, Frosst and Hinton (2017) distill a neural
network into a soft decision tree. This model benefits from both neural network-
based representation learning and decision tree-based concept explainability. In
the Frosst soft decision tree (FSDT), each tree’s inner node learns a filter wi
and a bias bi, and leaf nodes l learn a distribution of classes. Like the hidden
units of a neural network, each inner node of the tree determines the probability
of input x at node i as follows:

pi(x) = σ(β(xwi + bi)) (13)

where σ represents the sigmoid function, and β represents an inverse temper-
ature whose function is to avoid soft decisions in the tree. Filter activation
routes the sample x to the left branch for values of pi less than 0.5, and to
the right branch otherwise. The probability distribution Ql for each leaf node
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l represents the learned parameter φl at that leaf over the possible k output
classes:

Qlk =
exp(φlk)∑
k′ exp(φlk′)

. (14)

The predictive distribution over classes is calculated by traversing the greatest-
probability path. To train this soft decision tree, Frosst and Hinton (2017)
calculate a loss function L that minimizes the cross entropy between each
leaf, weighted by input vector x path probability and target distribution T , as
follows:

L(x) = − log
( ∑
l∈LeafNodes

P l(x)
∑
k

Tk logQlk

)
(15)

where P l(x) is the probability of reaching leaf node l given input x. Frosst
and Hinton (2017) also introduce a regularization term to avoid internal nodes
routing all data points on one particular path and encourage them to equally
route data along the left and right branches. The penalty function calculates a
sum over all internal nodes from the root to node i, as follows:

C = −λ
∑

i∈InnerNodes

0.5 log(αi) + 0.5 log(1− αi) (16)

where λ is a hyper-parameter set prior to training to determine the effect of
the penalty. The cross entropy α for a node i is the sum of the path probability
P i(x) from the root to node i multiplied by the probability of that node pi
divided by the path probability, as follows:

αi =

∑
x P

i(x)pi(x)∑
x P

i(x)
. (17)

Because the probability distribution is not uniform across nodes in the penulti-
mate level, this penalty function could actually hurt the generalization. The
authors address this problem by decaying the strength of penalty function λ
exponentially with the depth d of the node to 2d. Another challenge is that in
any given batch of data, as the data descends the tree, the number of samples
decreases exponentially. Therefore, the estimated probability loses accuracy
further down the tree. Frosst and Hinton (2017). recommend addressing this
problem by decaying a running average of the actual probabilities with a time
window that is exponentially proportional to the depth of the nodes (Frosst and
Hinton 2017). Although the authors report that the accuracy of this model was
less than the deep neural network, the model offers an advantage of concept
interpretability.

Both DNDF and the soft decision tree fix the depth of the learned tree
to a predefined value. In contrast, Tanno et al. (2019) introduced the Adap-
tive Neural Tree (ANT), which can grow to any arbitrary depth. The ANT
architecture is similar to a decision tree, but at each internal node and edge,
ANT learns a new data representation. For example, an ANT may contain one
or more convolution layers followed by a fully-connected layer at each inner
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node, one or more convolution layers followed by an activation function such
as ReLU or tanh at each edge, and a linear classifier at each leaf node.

Training an ANT requires two phases: growth and refinement. In the growth
phase, starting from the root in breadth-first order, one of the nodes is selected.
The learner then evaluates three choices: 1) split the node and add a sub-tree, 2)
deepen edge transformation by adding another layer of convolution, or 3) keep
the current model. The model optimizes the parameters of the newly-added
components by minimizing log likelihood via gradient descent while fixing the
parameters of the previous portion of the tree. Eventually, the model selects
the choice that yields the lowest log likelihood. This process repeats until the
model converges. In the refinement phase, the model performs gradient descent
on the final architecture. The purpose of the refinement phase is to correct
suboptimal decisions that may have occurred during the growth phase. The
authors evaluate their method on several standard testbeds, and the results
indicate that ANT is competitive with many deep networks and non-neural
network learners for these tasks.

In contrast to the soft decision trees, Carreira-Perpiñán and Tavallali (2018)
introduce Tree Alternation Optimization (TAO), which learns a tree with linear
decision nodes. Traditional decision tree algorithms such as CART (Breiman
et al. 1984) and C4.5 (Salzberg 1994) create a decision tree from scratch in
a way that optimizes a proxy measure such as impurity. In contrast, TAO
modifies an existing tree in a way that minimizes classification error. This
is done incrementally, in a way that reflects the incremental adjustment of
weights in a neural network. Specifically, given tree T , TAO minimizes a loss
function representing the classification error resulting from all leaf nodes Θ in
the tree:

L(Θ) =

N∑
n=1

L(yn, T (xn;Θ)). (18)

One advantage of TAO is that it not only learns axis-aligned trees, it can also
learn oblique trees where a linear or nonlinear combination of attributes split
the nodes.

Yang et al. (2018) took a different approach; they obtained a decision tree
using a neural network. The Deep Neural Decision Tree (DNDT) employs a
soft binning function to learn the split rules of the tree. DNDT constructs a
one-layer neural network with softmax as its activation function. The objective
function of this network is:

softmax
(wx+ b

τ

)
. (19)

Here, for a continuous variable x, we want to bin it to n+1, w = [1, 2, · · · , n+1]
is an untrainable constant, b is a learnable bin or the cutting rule in the tree,
and τ is a temperature variable. After training this model, the decision tree
is constructed via the Kronecker product ⊗. Given an input x ∈ RD with D
features, the tree rule to reach a leaf node is:

z = f1(x1)⊗ f2(x2)⊗ · · · ⊗ fD(xD) (20)
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Here, z is an almost-one-hot encoded vector that indicates the index of a
leaf node. One of the shortcomings of this method is that it cannot handle a
high-dimensional dataset because the cost of calculating the Kronecker product
becomes prohibitive. To overcome this problem, authors learn a classifier forest
by training each tree on a random subset of features.

In some cases, the mapping function is not differentiable. Feng et al. (2018)
propose a new learning paradigm for training a multilayer Gradient Boosting
decision tree (mGBDT) (Feng et al. 2018) where Fi is not differentiable.
Gradient boosting decision tree (GBDT) is an iterative method which learns
an ensemble of regression predictors. In GBDT, a decision tree first learns a
model on a training set, and then it computes the corresponding error residual
for each training sample. A new tree learns a model on the error residuals, and
by combining these two trees, GBDT is able to learn a more complex model.
The algorithm follows this procedure iteratively until it meets a prespecified
number of trees for training.

Since gradient descent is not applicable to mGBDT, Feng et al. (2018) obtain
a “pseudo-inverse” mapping. In this mapping, Gti represents the pseudo-inverse
of F t−1

i at iteration t, such that Gti(F
t−1
i (oi−1)) ∼ oi−1. After performing

backward propagation and calculating Gti, forward propagation is performed
by fitting a pseudo-label zti−1 from Gti to F t−1

i . The last layer Fm computes
ztm based on the true labels at iteration t, where i ∈ {2 . . .m}. After this step,
pseudo-labels for previous layers are computed via pseudo-inverse mapping. To
initialize mGBDT at iteration t = 0, each intermediate (hidden) layer outputs
Gaussian noise and F 0

i represent depth-constrained trees that will later be
refined. Feng et al. (2018) thus create a method that is inspired by gradient
descent yet is applicable in situations where true gradient descent cannot be
effectively applied.

In this section, we examine methods that apply gradient descent to non-
neural network models. As we observed, one way of utilizing gradient descent
is to replace the hidden units in a network with a differentiable algorithm like
SVM. Another common theme we recognized was to transform deterministic
decision-tree nodes into stochastic versions that offer greater representational
power. Alternatively, trees or other ruled-based models can be built using
neural networks.

5 Deep Learning Regularization Outside of Deep Neural Networks

We have discussed some of the common regularization methods used by DNNs
in Section 2.6. Now we focus on how these methods have been applied to non-
neural network classifiers in the literature. It is worth mentioning that while
most models introduced in this section are not deep models, we investigate
how non-neural network models can improve their performance by applying
regularization methods typically associated with the deep operations found in
DNNs.
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5.1 Parameter Norm Penalty

Problems arise when a model is learned from data that contain a large number
of redundant features. For example, selecting relevant genes associated with
different types of cancer is challenging because of a large number of redundancies
may exist in the gene’s long string of features. There are two common ways
to eliminate redundant features: the first way is to perform feature selection
and then train a classifier from the selected features; the second way is to
simultaneously perform feature selection and classification. As we discussed in
Section 2.6.1, DNNs apply a L1 or L2 penalty function to penalize large weights.
In this section, we investigate how the traditional DNN idea of penalizing
features can be applied to non-neural network classifiers to simultaneously
select high-ranked features and perform classification.

Standard SVMs employ the L2 norm penalty to penalize weights in a manner
similar to DNNs. However, the Newton Linear Programming SVM (NLP-SVM)
(Fung and Mangasarian 2004) replaces the L2 norm penalty with the L1 norm
penalty. This has the effect of setting small hyperparameter coefficients to
zero, thus enabling NLP-SVM to select important features automatically. A
different way to penalize non-important features in SVMs is to employ a
Smoothly Clipped Absolute Deviation (SCAD) (Zhang et al. 2006) function.
The L1 penalty function can be biased because it imposes a larger penalty on
large coefficients; in contrast, SCAD can give a nearly unbiased estimation
of large coefficients. SCAD learns a non-convex penalty function as shown in
Equation 21.

pλ(|w|) =


λ|w| if |w| ≤ λ
− (|w|2−2aλ|w|+λ2)

2(a−1) if λ < |w| ≤ aλ
(a+1)λ2

2 if |w| > aλ

(21)

SCAD equates with L1 penalty function until |w| = λ, then smoothly transitions
to a quadratic function until |w| = aλ, after which it remains a constant for
all |w| > aλ. As shown by Fan and Li (2001), SCAD has better theoretical
properties than the L1 function.

One limitation of decision tree classifiers is that the number of training
instances that can be selected at each branch in the tree decreases with the tree
depth. This downward sampling may cause less relevant or redundant features
to be selected near the bottom of the tree. Deng and Runger (2012) proposed
to penalize features that were never selected in the process of making a tree to
address this issue. In a Regularized Random Forest (RRF) (Deng and Runger
2012), the information gain for a feature j is specified as follows:

Gain(j) =

{
λ.Gain(j) j 6∈ F
Gain(fi) j ∈ F

(22)

where F is the set of features used earlier in the path, fi ∈ F , and λ ∈ [0, 1] is
the penalty coefficient. RRF avoids including a new feature j, except when the
value of Gain(j) is greater than max

i

(
Gain(fi)

)
.
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To improve RRF, Guided RRF (GRRF) (Deng and Runger 2013) assigns a
different penalty coefficient λj to each feature instead of assigning the same
penalty coefficient to all features. GRRF employs the importance score from a
pre-trained RF on the training set to refine the selection of features at a given
node. The importance score of feature j in an RF with T trees is the mean of
gain for features in the RF. The important scores evaluate the contribution
of features for predicting classes. The GRRF uses the normalized importance
score to control the degree of regularization of the penalty coefficient as follows:

λj = (1− γ)λ0 + γImp′j , (23)

where λ0 ∈ (0, 1] is the base penalty coefficient and γ ∈ [0, 1] controls the
weight of the normalized importance score. The GRRF and RRF are compu-
tationally inexpensive methods that are able to select stronger features and
avoid redundant features.

5.2 Dropout

As detailed in Section 2.6.2, dropout is a method that prevents DNNs from
overfitting by randomly dropping nodes during the training. Dropout can be
added to other machine learning algorithms through two methods: by dropping
features or by dropping models in the case of ensemble methods. Dropout has
also been employed by dropping input features during training (Wang and
Manning 2012, 2013). Here we look at techniques that have been investigated
for dropping input features, particularly in non-neural network classifiers.

Rashmi and Gilad-Bachrach (2015) applied dropout to Multiple Additive
Regression Trees (MART) (Friedman 2001, 2002). MART is a regression tree
ensemble that iteratively refines its model by continually adding trees that fit
the loss function derivatives from the previous version of the ensemble. Because
trees added at later iterations may only impact a small fraction of the training
set and thus over-specialize, researchers previously used shrinkage to exclude
a random subset of leaf nodes during each tree-adding step. More recently,
Rashmi and Gilad-Bachrach (2015) integrated the deep-learning idea of dropout
into MART. A subset of the trees is temporarily dropped. by applying dropout.
A new tree is created based on the loss function for the on-dropped trees. This
new tree is combined with the previously-dropped trees into a new ensemble.
This method, Dropout Multiple Additive Regression Trees (DART) (Rashmi
and Gilad-Bachrach 2015), weights the votes for the new and re-integrated
trees to have the same effect on the final model output as the original set
of trees. Other researchers have experimented with permanently removing a
strategic subset of the dropped trees as well (Lucchese et al. 2017).

5.3 Early Stopping

The core concept of early stopping is to terminate DNN training once per-
formance on the validation set is not improving. One potential advantage of
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Deep Forest (Zhou and Feng 2017) over DNNs is that DF can determine the
depth of a model automatically. In DF, if the model performance does not
increase on the validation set after adding a new layer, the learning terminates.
Unlike DNNs, DF may avoid the tendency to overfit as more layers are added.
Thus, while early stopping does not necessarily enjoy the primary outcome of
preventing such overfitting, it can provide additional benefits such as shortening
the validation cycle in the search for the optimal tree depth.

5.4 Data Augmentation

As discussed in Section 2.6.3, data augmentation is a powerful method for
improving DNN generalization. However, little research has investigated the
effects of data augmentation methods on non-neural network classifiers. As
demonstrated by Wong et al. (2016), the SVM classifier does not always benefit
from data augmentation, in contrast to DNNs. However, Xu (2013) ran several
data augmentation experiments on synthetic datasets and observed that data
augmentation did enhance the performance of random forest classifiers. Offering
explanations for the circumstances in which such augmentation is beneficial is
a needed area for future research.

6 Hybrid Models

Hybrid models can be defined as a combination of two or more classes of models.
There are many ways to construct hybrid models, such as DNDF (Kontschieder
et al. 2015), which integrates a deep network into a decision forest, as explained
in Section 4. In this section, we discuss other examples of hybrid models.

6.1 Neural Network and Decision Trees

Neural decision trees can be categorized into two groups: (1) decision trees
with linear decision nodes (Carreira-Perpiñán and Tavallali 2018), and (2) soft
decision trees with differentiable decision nodes (Kontschieder et al. 2015; Ioan-
nou et al. 2016; Frosst and Hinton 2017; Tanno et al. 2019). One motivation for
combining aspects of multiple models is to find a balance between classification
accuracy and computational cost. Energy consumption by mobile devices and
cloud servers is an increasing concern for responsive applications and green
computing. Decision forests are computationally inexpensive models because of
the conditional property of decision trees. Conversely, while CNNs are less effi-
cient, they can achieve higher accuracy because of their representation-learning
capabilities. Ioannou et al. (2016) introduced the Conditional Neural Network
(CondNN) to reduce computation in a CNN model by introducing a routing
method similar to that found in decision trees. In CondNN, each node in layer
l is connected to a subset of nodes from the previous layer, l− 1. Given a fully
trained network, for every two consecutive layers, a matrix Λ(l−1,l) stores the
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activation values of these two layers. By rearranging elements of Λ(l−1,l) based
on highly-active pairs for each class in the diagonal and zeroing out off-diagonal
elements, the CondNN develops explicit routes Λroute(l,l−1) through nodes in the
network. CondNN incurs profoundly lower computation cost compared to other
DNNs at test time; whereas, CondNN’s accuracy remains similar to larger
models. We note that DNN size can also be reduced by employing Bayesian
optimization, as investigated by Blundell et al. (2015) and by Fortunato et al.
(2017). These earlier efforts provide evidence that Bayesian neural networks
are able to decrease network size even more than CondNNs while maintaining
a similar level of accuracy.

Another motivation is to make the DNNs more interpretable. Zhao et al.
(2018) replace the last layer of a deep network with a visual hierarchical tree to
learn a better solution for image classification problems. A visual hierarchical
tree with L levels organizes N objects classes based on their visual similarities
in its nodes. Deeper in the tree, groups become more separated wherein each
leaf node should contain instances of one class. The class similarity between
the class ci and cj is defined as follows:

Si,j = S(ci, cj) = exp
(
− d(xi, xj)

σ

)
. (24)

Here, d(xi, xj) represents the distance between the deep representation of
instances of classes ci and cj , and σ is automatically determined by a self-
tuning technique. After calculating matrix S, hierarchical clustering is employed
to learn a visual hierarchical tree.

In a traditional visual hierarchical tree, some objects might be assigned to
incorrect groups. A level-wise mixture model (LMM) (Zhao et al. 2018) aims to
improve this visual hierarchical tree by learning a new representation of data
via a DNN, then updating the tree during training. For a given tree, matrix
Ψyi,ti denotes the probability of objects with label y belonging to group t in
the tree. First, LMM updates the DNN parameters and the visual hierarchical
tree as is done with a traditional DNN. The only difference is a calculation of
two gradients, one based on the parameters of the DNN and other one based
on the parameters of the tree. Second, LMM updates the matrix Ψyi,ti for each
training sample separately and updates the parameters of the DNN and the
tree afterward. To update the Ψ , the posterior probability of the assigning
group ti for the object xi is calculated based on the number of samples having
the same label y as the label of xi in a group t. For a given test image, LMM
learns a new representation of the image based on the DNN and then obtains
a prediction by traversing the tree. One of the advantages of an LMM is that,
over time, by learning a better representation of data via DNN, the algorithm
can update the visual hierarchical tree.

6.2 Neural Networks and K-nearest Neighbors

Another direction for blending a deep network with a non-neural network
classifier is to improve the non-neural network model by learning a better
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representation of data via a deep network. Zoran et al. (2017) introduce the
differentiable boundary tree (DBT) in order to integrate a DNN into the
boundary tree (Mathy et al. 2015) to learn a better representation of data. The
newly-learned data representation leads to a simpler boundary tree because
the classes are well separated. The boundary tree is an online algorithm in
which each node in the tree corresponds to a sample in the training set. The
first sample together with its label are established as the tree root. Given a
new query sample z, the sample traverses through the tree from the root to
find the closest node n based on some distance function like the Euclidean
distance function. If the label of the nearest node in the tree is different from
the query sample, a new node containing the query z is added as a child of the
closest node n in the tree; otherwise, the query node z is discarded. Therefore,
each edge in the tree marks the boundary between two classes, and each node
tends to be close to these boundaries.

Transitions between nodes in a standard boundary tree are deterministic.
DBT combines a SoftMax cost function with a boundary tree, resulting in
stochastic transitions. Let x be a training sample, and c be the one-hot encoding
label of that sample. Given the current node xi in the tree and a query node z,
the transition probability from node xi to node xj , where xj ∈ {child(xi), xi}
is the SoftMax of the negative distance between xj and z. This is shown in
Equation 25.

p(xi → xj |z) = SoftMax
i,j∈child(i)

(−d(xj , z))

=
exp(−d(xj , z))∑

j′∈{i,j∈child(i)}
exp(−d(xj , z))

(25)

The probability of traversing a particular path in the boundary tree, given a
query node z, is the product of the probability of each transition along the
path from the root to the final node xfinal∗ in the tree. The final class log
probability of DBT is computed by summing the probabilities of all transitions
to the parent of xfinal∗ together with the probabilities of the final node and its
siblings. The set sibling(xi) consists of all nodes sharing the same parent with
node xi and the node xi itself. As discussed earlier, a DNN fθ(x) transforms
the inputs to learn a better representation. The final class log probabilities for
the query node z are calculated as follows:

log p(c|fθ(z)) =
∑

xi→xj∈path†|fθ(z)

log p(fθ(xi)→ fθ(xj)|fθ(z))

+ log
∑

xk∈sibling(xfinal∗ )

p(parent(fθ(xk))→ fθ(xk)|fθ(z))c(xk).
(26)

In Equation 26, path† denotes path∗ (the path to the final node xfinal∗) without
the last transition, and sibling(x) represents node x and all other nodes sharing
the same parent with node x. The gradient descent algorithm can be applied
to Equation 26 by plugging in a loss function to learn parameter θ of the DNN.
However, gradient descent cannot be applied easily to DBT because of the node
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and edge manipulations in the graph. To address this issue, DBT transforms
a small subset of training examples via a DNN and builds a boundary tree
based on the transformed examples. Next, DBT transforms a query node z
via the same DNN and calculates the log probability of a class according to
Equation 26. The DNN employs gradient descent to update its parameters by
propagating the gradient of log loss probability. DBT discards this boundary
tree and iteratively builds a new boundary tree as described until a convergence
criteria is met. In the described method, the authors set a specific threshold
for the loss value to terminate the training. DBT is able to achieve greater
accuracy with a simpler tree than the original boundary tree, as shown by the
authors on the MNIST dataset (LeCun 1998). One of the biggest advantages
of DBT is its interpretability. However, DBT is computationally an expensive
method because a new computation graph needs to be built, which makes
batching inefficient. Another limitation is that the algorithm needs to switch
between building the tree and updating the tree. Therefore, scaling to large
datasets is fairly prohibitive.

Often, k nearest neighbor (kNN) models are disregarded because of their
computational cost and need for a large training set. In the traditional k-nearest
neighbor algorithm (kNN), the posterior probability is estimated by the class
distributions provided by points that are the closest neighbors to the point in
question. In a special case of kNN, the 1-nearest neighbor (1NN) classifies the
new point based on the nearest training (labeled prototype). To improve the
kNN model, a variation uses a prototype learning model to generate prototypes
that replace the original training set (Liu and Nakagawa 2001). In recent years,
many neural prototype learning (NPL) models have been developed. The NPL
models can be categorized in two ways: (1) learned prototypes are points in the
feature space that represent each class (Snell et al. 2017; Mettes et al. 2019),
(2) learned prototypes are very close to the training set examples and a set of
prototypes represents the training set (Li et al. 2018; Chen et al. 2019).

The first type of NPL learns a vector representing the mean of all of the
points in a given class through an encoder network. The second type of NPL
employs an encoder to learn a fixed-length feature vector z of size m. Next,
a predefined number of prototypes n of size m utilizes z to learn meaningful
prototypes. In general, the goal of these models is to minimize the sum of the
misclassification loss plus two regularizers. The first regularizer pushes the
prototype vectors to be meaningful by minimizing the average squared distance
between the prototypes and the encoded vector. The second regularizer helps
with clustering the training examples around prototypes by minimizing the
average squared distance between the encoded vector and prototypes.

6.3 Neural Networks and SVMs

Yet another way of building a hybrid model is to learn a new representation of
data with a DNN, then hand the resulting feature vectors off to other classifiers
to learn a model. Tang (2013) explored replacing the last layer of DNNs with
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a linear SVM for classification tasks. The activation values of the penultimate
layer are fed as input to an SVM with a L2 regularizer. The weights of the lower
layer are learned through momentum gradient descent by differentiating the
SVM objective function with respect to activation of the penultimate layer. The
author’s experiments on the MNIST (LeCun 1998) and CIFAR-10 (Krizhevsky
et al. ????) datasets demonstrate that replacing a CNN’s SoftMax output layer
with SVM yields a lower test error. Tang (2013) postulate that the performance
gain is due to the superior regularization effect of the SVM loss function.

It is worth mentioning that in their experiment on MNIST (LeCun 1998),
Tang (2013) first used PCA to reduce the features and then fed the reduced
feature vectors as input to their model. Also, Niu and Suen (2012) replaced
the last layer of a CNN with an SVM, which similarly resulted in lowering
test error of the model compared to a CNN on the MNIST dataset. Similar to
these methods, Bellili et al. (2001), Azevedo and Zanchettin (2011), Nagi et al.
(2012), and Zareapoor et al. (2018) replace the last layer of a DNN with an
SVM. In these cases, their results from multiple datasets reveal that employing
a SVM as the last layer of a neural network can improve the generalization of
the network.

6.4 Neural Networks and Statistical Models

In some cases, two different data views are available. As an example, one view
might contain video and another sound. Canonical correlation analysis (CCA)
(Hotelling 1992) and kernel canonical correlation analysis (KCCA) (Hardoon
et al. 2004) find basis vectors that maximize the correlations between the
projections of the two views onto the basis vectors. Nonlinear representations
learned by KCCA can achieve a higher correlation than linear representations
learned by CCA. Despite the advantages of KCCA, the kernel function faces
some drawbacks. Specifically, the representation is bound to the fixed kernel.
Furthermore, the training time, as well as the time to compute the new data
representation, scales poorly with the size of the training set because of the
non-parametric nature of kernel models.

Andrew et al. (2013) proposed to apply deep networks to learn a nonlinear
data representation instead of employing a kernel function. Their resulting deep
canonical correlation analysis (DCCA) consists of two separate deep networks
for learning a new representation for each view. The new representation learned
by the final layer of networks H1 and H2 is fed to CCA. To compute the
objective gradient of DCCA, the gradient of the output of the correlation
objective with respect to the new representation can be calculated as follows:

∂corr(H1, H2)

∂H1
(27)

After this computation, backpropagation is applied to find the gradient with
respect to all parameters. The details of calculating the gradient in Equation
27 are provided by the authors (Andrew et al. 2013).
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While researchers have also created LSTM methods that employ tree
structures (Tai et al. 2015; Alvarez-Melis and Jaakkola 2017), these methods
utilize the data structure to improve a network model rather than employing
tree-based learning algorithms. Similarly, other researches integrate non-neural
network classifiers into a network structure. Cimino and Dell’Orletta (2016),
and Agarap (2018) introduce hybrid models. These two methods apply LSTM
and GRU, respectively, to learn a network representation. Unlike traditional
DNNs, the last layer employs a SVM for classification. The work surveyed in

Table 1: Summary of classifiers which integrate deep network components into non-neural network
classifiers.

Methods Classifiers

Architecture

Feedforward

ANT (Tanno et al. 2019), DNDT (Yang et al. 2018), DBN (Hinton et al. 2006),
Deep PCA (Liong et al. 2013), DF (Zhou and Feng 2017), DPG (Damianou 2015),
R2-SVM (Vinyals et al. 2012), D-SVM (Abdullah et al. 2009),
DTA-LS-SVM (Wang et al. 2019a), SFDT (Frosst and Hinton 2017)

Autoencoder DKF (Krishnan et al. 2015), eForest (Feng and Zhou 2018), ML-SVM (Wiering and Schomaker 2014)

Siamese Model SDF (Utkin and Ryabinin 2018)

Generative Adversarial Model GAF (Zuo et al. 2018)

Optimization Gradient Decent
DNDF (Kontschieder et al. 2015), mGBDT (Feng et al. 2018), ML-SVM (Wiering and Schomaker 2014),
TAO (Carreira-Perpiñán and Tavallali 2018)

Regularization
Parameter Norm Penalty

NLP-SVM (Fung and Mangasarian 2004), GRRF (Deng and Runger 2013), RRF (Deng and Runger 2012) ,
SCAD-SVM (Zhang et al. 2006)

Dropout DART (Rashmi and Gilad-Bachrach 2015)

Hybrid Model

CondCNN Ioannou et al. (2016), DBT (Zoran et al. 2017), DCCA (Andrew et al. 2013),
DNDF (Kontschieder et al. 2015), LMM (Zhao et al. 2018) ,
DNN+SVM : (Tang 2013) (Niu and Suen 2012) (Zareapoor et al. 2018) (Nagi et al. 2012) (Bellili et al. 2001)

(Azevedo and Zanchettin 2011)
NPL: (Snell et al. 2017)(Mettes et al. 2019)(Li et al. 2018) (Chen et al. 2019)

this section provides evidence that deep neural nets are capable methods for
learning high-level features. These features, in turn, can be used to improve
the modeling capability for many types of supervised classifiers. In this survey,
we aim to provide a thorough review of non-neural network models that utilize
the unique features of deep network models. Table 1 provides a summary
of such non-neural network models, organized based on four aspects of deep
networks: model architecture, optimization, regularization, and hybrid model
fusing. A known advantage of traditional deep networks compared with non-
neural network models has been the ability to learn a better representation of
input features. Inspired by various deep network architectures, deep learning
of non-neural network classifiers has resulted in methods to also learn new
feature representations. Another area where non-neural network classifiers
have benefited from recent deep network research is applying backpropagation
optimization to improve generalization. This table summarizes published efforts
to apply regularization techniques that improve neural network generalization.
The last category of models combines deep network classifiers and non-neural
network classifiers to increase overall performance.

7 Experiments

In this paper, we survey a wide variety of models and methods. Our goal is
to demonstrate that diverse types of models can benefit from deep learning
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techniques. To highlight this point, we empirically compare the performance of
many techniques described in this survey, as shown in Table 2. This comparison
includes deep and shallow networks as well as non-neural network learning
algorithms. Because of the variety of classifiers that are surveyed, we orga-
nize the comparison based on the learned model structure. We compare the

Table 2: Comparison of model performance on MNIST, CIFAR-10, and HAR datasets. Depth
indicates the depth of a decision tree. Ens. is the ensemble size, which in the case of multi-layer
models is the number of trees at each layer. The number of parameters refers to the number of
weights. Time reflects the elapsed training time in seconds. (*) reported result reflects the code
was ran on a machine with 31GB memory, Intel Core i7-8700K CPU, and Nvidia RTX2070 GPU.

Model Structure Depth Ens. Parms. Time Avg. Err

M
N

IS
T

T
re

e

RF (Breiman 2000)* Ensemble of DTs NA 200 NA 53.78 2.95
ANT (Tanno et al. 2019) Soft DT with integrated neural network NA 1 100,596 NA 0.64
ANT (Tanno et al. 2019) Soft DT with integrated neural network NA 8 850,775 NA 0.29
DF (Zhou and Feng 2017) Stacked Forest NA 1000 NA NA 0.74
SFDT (Frosst and Hinton 2017) Soft DT based on neural network NA 1 NA NA 5.55
DNDF (Kontschieder et al. 2015) Neural network with soft DTs as output layer 5 10 60,000 NA 0.7
TAO (Carreira-Perpiñán and Tavallali 2018) Sparse oblique tree 12 1 10,000 NA 5.69
RRF (Deng and Runger 2012)* RF with regularizer NA 200 NA 2057.97 4.87
DART (Rashmi and Gilad-Bachrach 2015)* XGBoost with regularizer 6 NA NA 475.25 2.91

k
N

N DBT (Zoran et al. 2017) Boundry tree with integrated DNN NA NA 482,630 NA 1.85
NPL (Li et al. 2018) Neural Prototype Learning NA NA NA NA 0.47

C
IF

A
R

-1
0

T
re

e

RF (Breiman 2000) Ensemble of DT NA 2000 NA NA 50.17
ANT (Tanno et al. 2019) Soft DT with integrated neural network NA 1 1.4M NA 8.31
ANT (Tanno et al. 2019) Soft DT with integrated neural network NA 8 8.7M NA 7.71
DF (Zhou and Feng 2017) Stacked Forest NA 1000 NA DF 38.22
CondCNN (Ioannou et al. 2016) Conditional network NA NA NA NA 15.99

S
V

M

RBF SVM (Vinyals et al. 2012) SVM NA NA NA NA 21
R2SVM (Vinyals et al. 2012) Stacked SVM NA NA NA NA 20.3
DNN+SVM (Tang 2013) DNN with SVM as last layer NA NA 284,106 NA 11.9

H
A

R

T
re

e

RF (Breiman 2000)* Ensemble of DT NA 100 NA 13.70 7.2
DART (Rashmi and Gilad-Bachrach 2015)* XGBoost with regularizer 6 NA NA 32.58 6.37
mGBDT (Feng et al. 2018)* Multi-layer XGBoost 5 NA NA 399.97 7.57
RRF (Deng and Runger 2012)* RF with regularizer NA 100 NA 74.50 3.82

performance of the models utilizing three datasets: (1) MNIST, (2) CIFAR-
10, and (3) UCI Human Activity Recognition (HAR) (Anguita et al. 2013).
MNIST instances contain 28× 28 pixel grayscale images of handwritten digits
and their labels. The MNIST labels are drawn from 10 object classes, with
a total of 6000 training samples and 1000 testing samples. CIFAR-10 is also
a well-known dataset containing 10 object classes with approximately 5000
examples per class, where each sample is a 32 × 32 pixel RGB image. The
HAR data were collected from 30 participants performing six scripted activities
(walking, walking upstairs, walking downstairs, sitting, standing, and laying)
while wearing smartphones. The dataset contains 561 features extracted from
sensors, including an accelerometer and a gyroscope. The training set contains
7352 samples from 70% of the volunteers, and the testing set contains 2947
samples from the remaining 30% of volunteers.

We report the test error and model parameters provided by the authors
for the mentioned datasets. If the performance of a model was not available
for any of these datasets, we ran that experiment with the authors code when
available. We employ default values for parameters that are not specified in
the original papers. In the event that the authors did not provide their code,
we did not report any results. These omissions prevent the report of erroneous
performances that result from implementation differences.
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For a fair comparison, we divide Table 2 into different sections based on
the type of models. First, we investigate the performance of the models that
have a tree structure. The popularity of both neural networks and decision
trees (DT) gives rise to a type of model that combines positive aspects of both
models. We observe that models that integrated neural networks into their
architecture, such as DNDF and ANT, outperform RF. Whereas stacking RF
on DF displayed performance improvement for the MNIST and CIFAR-10
datasets, the multi-layer XGBoost model, mGBDT, did not perform well, even
on a small dataset such as HAR. Additionally, we could not run mGBDT on
MNIST data because of the computational cost, as mentioned in the original
paper (Feng et al. 2018). In the cases of models such as ANT, TAO, and SFDT,
their performance does not necessarily exceed the other approaches because
these authors try to balance classification accuracy with model interpretability.
Both DART and RRF make use of regularizers frequently used by neural
networks. The results in Table 2 indicate that DART achieves consistently-
strong performance. Although RRF did not perform well on MNIST, it did
outperform other methods on HAR. We can conclude that there is no specific
model that performs consistently well on all types of data.

Second, we observe that models DBT and NPL, which combine nearest
neighbor strategies with neural networks, do yield strong classification perfor-
mance on MNIST data while retaining the interpretability of kNN methods.
Lastly, we study the models that utilize SVM as part of their structure. This
type of model focuses on improving accuracy. We observe that a strategy like
stacking SVMs (R2SVM) can improve performance over standard SVMs. Ta-
ble 2 shows that the average error for R2SVM is 20.3 on the HAR dataset, while
the average error for R2SVM is 21. The strategy of swapping the traditional
Softmax deep network final layer with an SVM further improves accuracy to
11.9.

The results from our experiments reveal that both network classifiers and
non-neural network classifiers benefit from deep learning. The methods surveyed
in this paper and evaluated in these experiments demonstrate that non-neural
network machine learning models do improve performance by incorporating
DNN components into their algorithms. Whereas models without feature
learning such as RF usually do not perform well on unstructured data such
as images, we observe that adding deep learning to these models drastically
improves their performance, as shown in Table 2. Additionally, non-deep models
may achieve improved performance on structured data by adding regularizers,
as shown in Table 2. The methods surveyed in this paper demonstrate that
deep learning components can be added to any type of machine learning model
and are not specific to DNNs. The incorporation of deep learning strategies is
a promising direction for all types of classifiers, both network, and non-neural
network methods.
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Table 3: The list of abbreviations and their descriptions utilized in this survey.

Abbreviation Description

AE Autoencoder
ANT Adaptive Neural Tree
CNN Convolutional Neural Network
CondNN Conditional Neural Network
DART Dropout Multiple Additive Regression Trees
DBT Differentiable Boundary Tree
DBN Deep Belief Network
DCCA Deep Canonical Correlation Analysis
Deep PCA Deep principal components analysis
DF Deep Forest
DGP Deep Gaussian Processes
DKF Deep Kalman Filters
DNDT Deep Network Decision Tree
DNDF Deep Network Decision Forest
DNN Deep Neural Network
DSVM Deep SVM
DT Decision tree
DTA-LS-SVM Deep Transfer Additive Kernel Least Square SVM
eForest Encoder Forest
FC Fully Connected
FSDT Frosst Soft Decision Tree
GAF Generative Adversarial Forest
GAN Generative Adversarial Network
GRRF Guided Regularized Random Forest
LMM Level-wise Mixture Model
mGBDT Multilayer Gradient Decision Tree
ML-SVM Multilayer SVM
MLP Multilayer perceptron
NLP-SVM Newton Linear Programming SVM
NPL Neural Prototype Learning
R2-SVM Random Recursive SVM
RBM Restricted Boltzmann Machine
RNN Recurrent Neural Network
RRF Regularized Random Forest
SCAD-SVM Smoothly Clipped Absolute Deviation SVM
SDF Siamese Deep Forest
SNN Siamese Neural Network
TAO Tree Alternation Optimization
VAE Variational Autoencoder

8 Conclusions and Directions for Ongoing Research

DNNs have emerged as a powerful force in the machine learning field for the
past few years. This survey paper reviews the latest attempts to incorporate
methods that are traditionally found in DNNs into other learning algorithms.
DNNs work well when there is a large body of training data and available
computational power. DNNs have consistently yielded strong results for a
variety of datasets and competitions, such as winning the Large Scale Visual
Recognition Challenge (Russakovsky et al. 2015) and achieving strong results
for energy demand prediction (Paterakis et al. 2017), identifying gender of a
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text author (Sboev et al. 2018), stroke prediction (Hung et al. 2017), network
intrusion detection (Yin et al. 2017), speech emotion recognition (Fayek et al.
2017), and taxi destination prediction (de Brébisson et al. 2015). Since there
are many applications which lack large amounts of training data or for which
the interpretability of a learned model is important, there is a need to integrate
the benefits of DNNs with other classifier algorithms. Other classifiers have
demonstrated improved performance on some types of data; therefore the field
can benefit from examining ways of combining deep learning elements between
the network and non-neural network methods.

Although some work to date provides evidence that DNN techniques can
be used effectively by other classifiers, there are still many challenges that
researchers need to address, both to improve DNNs and to extend deep learning
to other types of classifiers. Based on our survey of existing work, some related
areas where supervised learners can benefit from unique DNN methods are
outlined below.

The most characteristic feature of DNNs is a deep architecture and its
ability to learn a new representation of data. A variety of stacked generalization
methods have been developed to allow other machine learning methods to utilize
deep architectures as well. These methods incorporate multiple classification
steps in which the input of the next layer represents the concatenation of the
output of the previous layer and the original feature vector, as discussed in
Section 3.1.1. Future work can explore the many other possibilities that exist
for refining the input features to each layer to better separate instances of each
class at each layer.

Previous studies provide evidence that DNNs are effective data generators
(Radford et al. 2016; Hoffman et al. 2018), while in some cases, non-neural
network classifiers may actually be the better discriminators. Future research
can consider using a DNN as a generator and an alternative classifier as a
discriminator in generative adversarial models. Incorporating this type of model
diversity could improve the robustness of the models.

Gradient descent can be applied to any differentiable algorithm. We observed
that Kontschieder et al. (2015), Frosst and Hinton (2017), Tanno et al. (2019),
and Zoran et al. (2017) all applied gradient descent to two different tree-
based algorithms by making them differentiable. In the future, additional
classifiers can be altered to be differentiable. Applying gradient descent to
other algorithms could be an effective way to adjust the probability distribution
of parameters.

Another area which is vital to investigate is the application of regularization
methods that are customized for non-neural network classifiers. As discussed in
Section 5, the non-neural network classifiers can benefit from the regularization
methods that are unique to DNNs. However, there exist many different ways
that these regularization methods can be adapted by non-neural network
classifiers to improve model generalization.

An important area of research is interpretable models. There exist appli-
cations such as credit score, insurance risk, health status because of their
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sensitivity, models need to be interpretable. Further research needs to exploit
the use of DNNs in interpretable models such as DNDT (Yang et al. 2018).

As we discussed in this survey, an emerging area of research is to combine the
complementary benefits of statistical models with neural networks. Statistical
models offer mathematical formalisms as well as possible explanatory power.
This combination may provide a more effective model than either approach
used in isolation.

There are cases in which the amount of ground truth-labeled data is limited,
but a large body of labeled data from the same or similar distribution is
available. One possible area of ongoing exploration is to couple the use of DNNs
for learning from unlabeled data with the use of other classifier strategies for
learning from labeled data. The simple model learned from labeled data can
be exploited to further tune and improve learned representation patterns in
the DNN.

We observe that currently, there is a general interest among the machine
learning community to transfer new deep network developments to other
classifiers. While a substantial effort has been made to incorporate deep learning
ideas into the general machine learning field, continuing this work may spark
the creation of new learning paradigms. However, the benefit between network-
based learners and non-neural network learners can be bi-directional. Because
a tremendous variety of classifiers has shown superior performance for a wide
range of applications, future research can focus not only on how DNN techniques
can improve non-neural network classifiers but on how DNNs can incorporate
and benefit from non-neural network learning ideas as well.
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pp 3555–3565, URL http://papers.nips.cc/paper/7614-multi-layered-
gradient-boosting-decision-trees

Feng X, Jiang Y, Yang X, Du M, Li X (2019) Computer vision algorithms and
hardware implementations: A survey. Integration 69:309–320, DOI 10.1016/
j.vlsi.2019.07.005, URL https://doi.org/10.1016/j.vlsi.2019.07.005

Fortunato M, Blundell C, Vinyals O (2017) Bayesian recurrent neural net-
works. CoRR abs/1704.02798, URL http://arxiv.org/abs/1704.02798,
1704.02798

Freund Y (1995) Boosting a weak learning algorithm by majority. Inf Com-
put 121(2):256–285, DOI 10.1006/inco.1995.1136, URL https://doi.org/
10.1006/inco.1995.1136

Friedman JH (2001) Greedy function approximation: a gradient boosting
machine. Annals of statistics pp 1189–1232

Friedman JH (2002) Stochastic gradient boosting. Computational Statistics &
Data Analysis 38(4):367–378

Frosst N, Hinton GE (2017) Distilling a neural network into a soft decision
tree. In: Besold TR, Kutz O (eds) Proceedings of the First International
Workshop on Comprehensibility and Explanation in AI and ML 2017 co-
located with 16th International Conference of the Italian Association for
Artificial Intelligence (AI*IA 2017), Bari, Italy, November 16th and 17th,
2017, CEUR-WS.org, CEUR Workshop Proceedings, vol 2071, URL http:

//ceur-ws.org/Vol-2071/CExAIIA 2017 paper 3.pdf
Fung G, Mangasarian OL (2004) A feature selection newton method for support

vector machine classification. Comput Optim Appl 28(2):185–202, DOI
10.1023/B:COAP.0000026884.66338.df, URL https://doi.org/10.1023/B:
COAP.0000026884.66338.df

Gjoreski M, Janko V, Slapnicar G, Mlakar M, Resçiç N, Bizjak J, Drobnic V,
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10-15, 2018, PMLR, Proceedings of Machine Learning Research, vol 80, pp
1994–2003, URL http://proceedings.mlr.press/v80/hoffman18a.html

Hotelling H (1992) Relations between two sets of variates. In: Breakthroughs
in statistics, Springer, pp 162–190

Huang D, Huang W, Yuan Z, Lin Y, Zhang J, Zheng L (2018) Image super-
resolution algorithm based on an improved sparse autoencoder. Inf 9(1):11,
DOI 10.3390/info9010011, URL https://doi.org/10.3390/info9010011

Hung C, Chen W, Lai P, Lin C, Lee C (2017) Comparing deep neural network
and other machine learning algorithms for stroke prediction in a large-scale
population-based electronic medical claims database. In: 2017 39th Annual
International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), Jeju Island, South Korea, July 11-15, 2017, IEEE, pp 3110–
3113, DOI 10.1109/EMBC.2017.8037515, URL https://doi.org/10.1109/
EMBC.2017.8037515

Hutchinson B, Deng L, Yu D (2013) Tensor deep stacking networks. IEEE Trans
Pattern Anal Mach Intell 35(8):1944–1957, DOI 10.1109/TPAMI.2012.268,
URL https://doi.org/10.1109/TPAMI.2012.268

Ioannou Y, Robertson DP, Zikic D, Kontschieder P, Shotton J, Brown M,
Criminisi A (2016) Decision forests, convolutional networks and the models in-
between. CoRR abs/1603.01250, URL http://arxiv.org/abs/1603.01250,
1603.01250

Jaitly N, Hinton GE (2013) Vocal tract length perturbation (vtlp) improves
speech recognition. In: Proc. ICML Workshop on Deep Learning for Audio,
Speech and Language, vol 117

Ji S, Xu W, Yang M, Yu K (2013) 3d convolutional neural networks for human
action recognition. IEEE Trans Pattern Anal Mach Intell 35(1):221–231, DOI
10.1109/TPAMI.2012.59, URL https://doi.org/10.1109/TPAMI.2012.59

Jorge J, Vieco J, Paredes R, Sánchez J, Bened́ı J (2018) Empirical evaluation
of variational autoencoders for data augmentation. In: Imai FH, Trémeau
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Józefowicz R, Vinyals O, Schuster M, Shazeer N, Wu Y (2016) Explor-
ing the limits of language modeling. CoRR abs/1602.02410, URL http:

//arxiv.org/abs/1602.02410, 1602.02410
Kadurin A, Aliper A, Kazennov A, Mamoshina P, Vanhaelen Q, Khrabrov

K, Zhavoronkov A (2017) The cornucopia of meaningful leads: applying
deep adversarial autoencoders for new molecule development in oncology.
Oncotarget 8(7):10883

http://proceedings.mlr.press/v80/hoffman18a.html
https://doi.org/10.3390/info9010011
https://doi.org/10.1109/EMBC.2017.8037515
https://doi.org/10.1109/EMBC.2017.8037515
https://doi.org/10.1109/TPAMI.2012.268
http://arxiv.org/abs/1603.01250
1603.01250
https://doi.org/10.1109/TPAMI.2012.59
https://doi.org/10.5220/0006618600960104
http://arxiv.org/abs/1602.02410
http://arxiv.org/abs/1602.02410
1602.02410


44 Alireza Ghods, Diane J. Cook

Kalman RE (1960) A new approach to linear filtering and prediction problems.
Journal of basic Engineering 82(1):35–45

King RD, Feng C, Sutherland A (1995) Statlog: comparison of classification
algorithms on large real-world problems. Applied Artificial Intelligence an
International Journal 9(3):289–333

Kingma DP, Ba J (2015) Adam: A method for stochastic optimization. In:
Bengio Y, LeCun Y (eds) 3rd International Conference on Learning Rep-
resentations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, URL http://arxiv.org/abs/1412.6980

Kingma DP, Welling M (2014) Auto-encoding variational bayes. In: Bengio
Y, LeCun Y (eds) 2nd International Conference on Learning Representa-
tions, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track
Proceedings, URL http://arxiv.org/abs/1312.6114

Kontschieder P, Fiterau M, Criminisi A, Bulò SR (2015) Deep neural decision
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