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Abstract— Intervention strategies can help individuals with
cognitive impairment to increase adherence to instructions,
independence, and activity engagement and reduce errors on
everyday instrumental activities of daily living (IADLs) and
caregiver burden. However, to be effective, intervention prompts
should be given at a time that does not interrupt other
important user activities and is more convenient. In this paper,
we propose an intelligent personalized intervention system for
smartphones. In our approach, we use context and activity
awareness to time prompts when they will most likely be
viewed and used. Our result based on real data collected using
smartphone motion sensors demonstrate that the proposed
approach can detect the time-frame of a user response with an
average accuracy of 65% and reduce the inefficiency by 39%
, on average, compared to different static time interventions
which shows the possibilities and advantages of the proposed
system to increase user satisfaction and response rate.

I. INTRODUCTION

With recent advances in pervasive computing, wearable

devices and smartphones are now being used in various appli-

cations such as activity monitoring [1], medication adherence

[2], gait analysis [3], etc. One of the areas that these systems

can be used is intervention. People who have cognitive

impairment like dementia experience difficulty in everyday

functional independence and therefore find it difficult to

initiate daily tasks [4], [5]. Prompting technologies, that is,

any form of verbal or non-verbal intervention delivered to

the user, could potentially assist individuals with cognitive

impairments [6], [7]. Basic and complex prompting technolo-

gies have been shown to increase adherence to instructions,

decrease errors on everyday instrumental activities of daily

living (IADLs), increase independence and increase activity

engagement of individuals with cognitive impairment [8].

Prompting approaches are usually based on time, on

location, or more recently on pauses between activities [6].

One key aspect of designing technology in this field is the

difficulty of finding the most effective timing for prompt

delivery. While most previous prompting technologies fo-

cused on delivery of prompts at times that are based on

hard-coded rules, the main goal of this work is to develop

a flexible personalized prompting system which offers the

capability to learn prompt timings that are most effective for

each individual and to adapt the timing to those situations.

The ultimate goal of a prompting system is to provide

prompts at times when it would be most opportune for the
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user to receive them, and therefore respond to them. There

are two main approaches for developing prompting systems:

1) Time-based Systems: these systems deliver prompts

based solely on a pre-specified and inflexible time [7]. The

most popular example of time-based prompting is Google

calendar. Several studies have shown the effect of time-based

prompting on people with intellectual disabilities and brain

injuries [9], [10]. On the other hand, time-based prompts may

be delivered when the user is engaged in another important

task. A user may also become annoyed after hearing a prompt

to do a task that has already been completed [6], [7].

2) Context-Aware Systems: context-aware prompting sys-

tems use the environment and the status of a user to find the

effective prompting time. Location based prompting is the

simplest example in this category which provides prompts

based on the location of the user utilizing GPS, smart phone,

or wireless sensor networks for example prompt when near

a grocery store [11]. Similar to time-based prompting, the

main limitation of location-based prompting is that the most

effective time to prompt may not be dependent on the

location of the user.

Activity-based prompts are another type of context-aware

prompts which uses user’s past and current automatically-

recognized activity. These systems improved the prompting

systems by prompting only when the user is experiencing

a natural breakpoint, defined as the boundary between two

adjacent activities [7], [12]. For example authors in [13]

found that activity-based context-aware prompting helped

people remember to take their medications and increased

treatment adherence compared to time-based prompting.

Despite an improvement over classic time-based prompt-

ing methods, context-aware methods of prompting still have

limitations because many tasks do not have clear boundaries.

In addition, the best times for sending prompts to individuals

varies for each person. Our work is novel in that it learns

the best timings for each person in order to maximize user

response and thus intervention effectiveness.

While intervention techniques are currently used by care-

givers and individuals with different impairments to aid

patients in maintaining their independence, it is still difficult

to find convenient prompting times especially in the case

of individuals with cognitive impairment. In addition, the

time of prompting will vary between individuals and for an

individual over time, possibly even on a daily basis. This may

necessitate variable intervention time for the same person

performing the same task [4], [6].

Motivated by these needs, we develop a personalized

context-aware intervention system for smartphones. We hy-
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Fig. 1: An overview of the proposed prompting model. The activity learning module
provides the daily activity labels for use in the prompting module. The prompting
module predicts the most suitable time interval for the next intervention. *Features
extracted in prompting module are listed in Table III.

pothesize that individual’s response rate will vary depending

on the daily activities they perform and other contextual

factors such as day of the week, time, and location. To test

our hypothesis we have three subjects respond to app-based

queries about their current activity. We then apply signal

processing and machine learning techniques to collected data

to develop a personalized prompting system.

II. SYSTEM AND METHODS

We introduce an intelligent prompting model that takes ad-

vantage of advanced signal processing and machine learning

techniques in order to provide a personalized, context-aware

prompting experience. Our novel prompting platform aims to

maximize the information delivery while considering the user

satisfaction. Our system is based on a mobile platform that

uses smartphone for gathering contextual data and interacting

with user. An overview of the data processing pipeline is

illustrated in Fig. 1. The processing pipeline consists of two

key modules: an activity prediction module and a prompt

decision module.

A. Activity Learning

As a part of our context-aware prompting model, we use

a real-time activity learning (AL) algorithm to accurately

predict the user’s daily activities. The AL algorithm uses

the readings from a combination of sensors embedded in the

smartphone to extract discriminatory features. The details of

the information collected from the smartphone are listed in

Table I. It includes time, location, and motion based data.

The data are further transformed into spatial and temporal

features. In each sampling, a window of five seconds of ac-

tivity is captured from the phone and through the interaction,

the user will be asked to annotate the data segment with an

activity label of their choice. When the user has opportunity

he or she will respond to the query with an answer about their

query. However, when the prompt does not appear at a time

the user can be interrupted the user will not respond to the

query (and thus the corresponding data segment will not be

labeled). As a result the input data segment can be grouped

into two: ‘Answered’ and ‘Ignored’. At first, AL algorithm

TABLE I: Details of different data types used in AL module.

Data Category Data Type

Motion 3-axis acceleration, 3-axis rotation, yaw, pitch, roll

Location latitude, longitude, altitude

Time hour, minute

TABLE II: The hypothetical observations from two users and the corresponding
features used for distinguishing such behaviors.
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uses features extracted from the ‘Answered’ data to train a

classifier. Once enough data is gathered (for our application

we define this as at least 20 samples of each activity label),

the trained classifier can be used to label the ‘Ignored’ data

points. Finally, AL will either predict the activity category of

the data (if the user did not respond) or incorporate the data

as additional training examples (if the user did respond with

an activity label). The details of activity learning module are

explained in Section III-A.

B. Personalized Prompting

Our personalized prompting model takes into considera-

tion the type of daily activity that the user is engaged in

and also considers other contextual factors such as time,

location, and the current level of engagement. Users may

be more responsive during certain activities, or a certain

period of the day. Response rates during certain days of

the week might be lower (e.g., busy weekdays). In addition,

unpredictable distractions can contribute to a lower response

rate. The possible impact of each factor can vary among

individuals. Table II shows examples of a few possible

scenarios where different contextual factors may play a major

role in determination of response rates. For instance, user

1 may show a higher response rate when working at home

versus working on campus which emphasizes the importance

of considering the user’s location. In another hypothetical

scenario, user 2 shows lower engagement when he/she is

with company of friends which indicates the importance of

considering the current engagement level in our prompting

model. Based on these hypotheses, we compiled a short list

of discriminative features (explained in Table III) that will be

extracted from each data sample to be used in our prompting

classification model. The output of our classifier is the most

suitable time period for prompting.

III. VALIDATION

In this section, we elaborate on the experimental proce-

dure and discuss the results. This experiment was reviewed



TABLE III: Details of the distinguishing features utilized in our proposed prompting
model.

Feature Description

Daily activity activity labels given by activity prediction module

Engagement level the time taken for the previous prompt to
be responded

Location GPS coordinates (latitude, longitude, altitude)

Time day of week, hour, minute

(a) (b)

Fig. 2: Snapshots of AL application: (a) A prompt window asking the user to annotate
his/her current daily activity (b) The prompt frequency setting view.

and approved by Washington State University Institutional

Review Board.

A. Experimental Setup

Three healthy young adults were recruited to participate in

our experiment. We used the Activity Learning application

(AL) developed by [14] to collect data. Participants were

asked to use AL on their phone for 7 days. As discussed

before, AL collects 5-second windows of motion sensor data

along with location, and time information in each sampling.

After each sampling, a prompt will be shown on the screen,

asking the user to choose an activity label from a list of daily

activities for the collected data segment. The AL app allows

the user to modify the list and add their own activity label.

The frequency of sampling can also be modified, ranging

from every ten seconds to every hour. Fig. 2 shows some

screen-shots of the AL app. In this experiment, the sampling

frequency of AL was set to ten seconds to enable a close

to real-time data collection. Participants were instructed to

respond to the prompts only when convenient and ignore the

prompt otherwise.

B. Results

Over 1100 data samples marked with interactions were

collected. Interactions include the prompts responded or

directly rejected by the user. The collected data was used

to extract activity learning dataset detailed in Table III. We

further use motion and location-based data to extract 13
temporal and spatial features including maximum, minimum,

sum, mean, median, standard deviation, mad, cross-axis

correlation, skewness, kurtosis, signal energy, power, and

autocorrelation. Using Weka 3.6 machine learning toolkit

[15], a J48 decision tree classifier was constructed from

TABLE IV: The performance of the prompting model in predicting the time-frame of
the next response.

-
Nearest Neighbor Decision Tree

Precision F-Score AUC Precision F-Score AUC

Sub 1 0.825 0.822 0.788 0.719 0.73 0.693

Sub 2 0.499 0.498 0.58 0.436 0.467 0.521

Sub 3 0.642 0.648 0.61 0.625 0.637 0.528

AVG 0.655 0.656 0.659 0.593 0.611 0.58

the annotated data segments. The activity learning model

achieved 85%, 80%, and 84% accuracy on subjects 1, 2,

and 3, respectively. The unlabeled dataset was fed into the

J48 classifier to predict activity labels.

Our personalized prompting model was trained and devel-

oped per subject, using the activity labels (provided by AL

module), time-based features, location data, and calculated

engagement level in each data segment. Engagement level

is calculated based on the response time of the previous

prompt. Larger response time in previous prompt indicates

lower engagement level. As mentioned, the output of our

prompting model is the time window within which a response

is expected. For our model, we considered four output labels

(i.e., 5 minutes, 15 minutes, 30 minutes, and 1 hour). For

instance the label ‘15 minutes’ means that the corresponding

prompt will receive a response within next 15 minutes. Note

that the labels are mutually exclusive. In other words, only

one label can be true for each prompt. By predicting the next

response, our customized prompting module can be utilized

to improve the response rate while minimizing the response

time against the existing static prompting. We calculated the

prompt labels for our dataset and used two standard machine

learning algorithms (i.e., nearest neighbor and decision tree)

to develop our prompting model.

Table IV lists the accuracy measures reported for the

prompting model developed using the both algorithms. A

model is constructed for each user using 10-fold cross-

validation. On average, the nearest neighbor outperforms the

decision tree model with an average precision, F-score, and

AUC of around 0.65. Precision measures the fraction of

identified labels that are relevant where recall measures the

proportion of labels that are correctly identified as such. F-

score is the harmonic mean of precision and recall. ROC is

true positive rate vs false positive rate plot. The Area under

the ROC curve (AUC) is an indication of the probability that

the current model is making an informed decision.

In order to further demonstrate the effectiveness of our

model, we compare the false positive (FP) and false nega-

tive (FN) rates of our custom prompt module versus static

prompting. False positives occur when a prompt does not

receive a response within the anticipated response time. For

static modes the response time is constant while for the

custom mode (the proposed model), it is determined by the

output of the classifier. Similarly, false negative accounts

for the missed opportunities where a response could be

achieved but it was missed due to failure in sending one.

In other words, high FP rate can be viewed as inappro-

priate prompting and high FN can be interpreted as poor
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Fig. 3: The false positive and false negative rate of the proposed prompting model
versus various static prompting modes. High false positive means poor response rate
and high false negative means less efficient prompting.

TABLE V: Information gain of individual features.

Feature Day of
week

Time Location Engagement
level

Daily
activity

Information Gain 0.26 0.19 0.14 0.03 0.13

performance in terms of maximized information delivery.

Fig. 3 illustrates the FP and FN results for each subject.

Three fixed frequencies were chosen (identical to output

labels of custom prompting model) to be compared against

the proposed model. As it can be observed, our model is

significantly superior to any fixed frequency modes. Fixed

prompting modes fail to efficiently trade-off between FP and

FN where lower frequencies (e.g., 1-hour interval) have very

small FP rates but unacceptable FN rates. Similarly higher

frequencies have higher FP rates.

We further investigate the impact of individual features

using the Information Gain Evaluation algorithm and Ranker

search method in Weka toolkit. It is a widely used standard

feature selection method which measures the worth of a

feature with respect to the change in information entropy

given by:

IG(Class, F ) = H(Class)−H(Class|F ) (1)

where H denotes the information entropy of data points

associated with a certain class label. A higher score in

Information Gain means easier classifications of the data

points using that corresponding feature. Table V shows the

average results over all the subjects. ‘Day of week’ and

‘Time’ have the most impact on our classifier. Engagement

level fails to provide significant information. One reason

could be not having a large enough dataset.

IV. CONCLUSION

In this paper, we presented a personalized context-aware

prompting system using machine learning techniques than

can potentially be used to help individuals with cognitive

impairment by providing intelligent smartphone-based inter-

vention. We demonstrated the capability of this approach in

identifying appropriate times for intervention. The proposed

algorithm outperforms the traditional time based prompting

by increasing the response rate of interventions and decreas-

ing inappropriate prompting (by 39%, on average).

In the future, we aim to address the existing limitations

of the current approaches. To further investigate the effec-

tiveness of the algorithm more participants and a larger

dataset is required. Furthermore, as a future work, we plan

to investigate the intervention techniques integrated with

the smart-home prompting system to assess their impact on

individuals with cognitive impairment.
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